A VISUAL TOUR THROUGH THE FEATURES OF THE TEXT

Many pedagogical tools are interwoven throughout the chapters to guide students on their learning journey.

Chapter Openers

Each chapter begins with a thoughtprovoking opener figure and legend that relate to the main topic of the chapter. The chapter opening page also contains the Chapter Outline that shows the sequence of topics and subtopics, and the final paragraph of the introduction, called In This Chapter, ties the main topics to the outline. In the margin next to the introduction, Concepts and Skills to Review refers to key material from earlier chapters that you should understand before you start reading the current one.

Problem Solving

A worked-out sample problem appears whenever an important new concept or skill is introduced, and the problem-solving approach helps you think through all problems logically and systematically. The stepwise approach, based on the universally accepted four-step approach of plan, solve, check, and practice, is used consistently for every sample problem in the text. These steps are as follows:

- Plan: analyzes the problem so that you can use what is known to find what is unknown. This step develops the habit of thinking through the solution before performing calculations. Most quantitative problems are accompanied in the margin by a roadmap, a flow diagram that leads you visually through the planned steps for each specific problem.
- Solution: presents the calculation steps in the same order as they are discussed in the plan and shown in the roadmap.
- Check: fosters the habit of going over your work with a rough calculation to make sure the answer is both chemically and mathematically reasonable-a great way to avoid careless errors. In many cases, following the check is a Comment that provides an additional insight, alternative approach, or common mistake to avoid.
- Follow-up Problem: presents a similar problem to provide immediate practice, with an abbreviated multistep solution appearing at the end of the chapter.

In this edition, in addition to sample problems involving only calculations, a large number of molecularscene sample problems utilize depictions of chemical species to solve quantitative problems.

SAMPLE PROBLEM 3.18 Visualizing Changes in Concentration

Applications

Tools of the Laboratory essays describe the key instruments and techniques that chemists use in modern practice to obtain the data that underlie their theories.

Chemical Connections essays show the interdisciplinary nature of chemistry by applying chemical principles directly to related scientific fields, including physiology, geology, biochemistry, engineering, and environmental science.

Gallery features show how common and unusual substances and processes relate to chemical principles. You'll learn how a towel dries you, why bubbles in a drink are round, why contact-lens rinse must have a certain concentration, and many other intriguing facts about everyday applications.

Margin notes are brief, lively explanations that apply ideas presented in the text. You'll learn how water controls the temperature of your body and our planet, how crime labs track illegal drugs, how gas behavior affects lung function, how fat-

Illustrated Summaries of Facts and Concepts

The multipage Interchapter is a Perspective on the Properties of the Elements that reviews major concepts from Chapters $7-13$, covering atomic and bonding properties and their resulting effects on element behavior.

Family Portraits (within Chapter 14) display the atomic and physical properties of each main group of elements and present their representative chemical reactions and some important compounds.

Three-Level Illustrations

A hallmark of this text, the three-level illustrations help you connect the macroscopic and molecular levels of reality with the symbolic level in the form of a chemical equation.

Accurate, Cutting-Edge Molecular Models

Author and illustrator worked side by side to create ground-breaking visual representations.

Page Layout

Author and pager collaborated on page layout to ensure that all figures, tables, margin notes, and sample problems are as close as possible to their related text.

Section Summary

A stepwise process converts a molecular formula into a Lewis structure, a twodimensional representation of a molecule (or ion) that shows the placement of atoms and distribution of valence electrons among bonding and lone pairs. - When two or more Lewis structures can be drawn for the same relative placement of atoms, the actual structure is a hybrid of those resonance forms. - Formal charges are often useful for determining the most important contributor to the hybrid. - Electron-deficient molecules (central Be or B) and odd-electron species (free radicals) have less than an octet around the central atom but often attain an octet in reactions. - In a molecule (or ion) with a central atom from Period 3 or higher, the atom can hold more than eight electrons because it is larger and uses d orbitals to expand its valence shell.

Chapter Review Guide

A rich assortment of study aids ends each chapter to help you review its content.

- Learning Objectives are listed, with section and/or sample problem numbers, to focus you on key concepts and skills.
- Key Terms that are boldfaced within the chapter are listed here by section (with page numbers) and defined again in the end-of-book Glossary.
- Key Equations and Relationships are screened and numbered within the chapter and listed here with page numbers.
- Highlighted Figures and Tables are listed with page numbers so that you can review their essential content.
- Brief Solutions to Follow-up Problems double the number of worked problems by offering multistep calculations at the end of the chapter, rather than just numerical answers at the back of the book.

End-of-Chapter Problems

An exceptionally large number of problems end each chapter. These include three types of problems keyed by chapter section followed by a number of comprehensive problems:

The lonic Bonding Model

- Concept Review Questions
9.16 If energy is required to fom monatomic ions from metals
and nonmeals, why do ionic compoundsevits and nonmetals, why do ionic compounds exis?
9.17 (a) In general , how does the latice energy of an ionic com9.17 (a) In In general, how does the latitice energy of an ionic com-
pound depend on the charges and sizes of the ions? (b) lon
arrangements of three general salts arrangements of three general sants are e peresented below. Rank
them in order of increasing lattice energ.

- Concept Review Questions test your qualitative understanding of key ideas.
- Skill-Building Exercises are presented in pairs that cover a similar idea, with one of each pair answered in the back of the book. These exercises begin with simple questions and increase in difficulty, gradually eliminating your need for multistep directions.
- Problems in Context apply the skills learned in the Skill-Building Exercises to interesting scenarios, including examples from industry, medicine, and the environment.
- Comprehensive Problems, based on realistic applications, are more challenging and rely on concepts and skills from any section of the current chapter or from previous chapters.

Moreover, in this edition, 140 molecular-scene problems are included.

