

Contributing Author

Dinah Zike

Foldables

Consultant

Douglas Fisher, Ph.D.
Director of Professional Development
San Diego, CA

Glencoe

The McGraw-Hill Companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act, no part of this book may be reproduced in any form, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027

Contents

CHAPTER 1

Foldables. 1
Vocabulary Builder. 2
1-1 Variables and Expressions 4
1-2 Order of Operations. 6
1-3 Open Sentences 9
1-4 Identity and Equality Properties . . 11
1-5 The Distributive Property. 13
1-6 Commutative and Associative
Properties 15
1-7 Logical Reasoning and
Counterexamples 17
1-8 Square Roots and Real Numbers . . 19
1-9 Functions and Graphs. 22
Study Guide . 25

CHAPTER 2
Foldables. 29
Vocabulary Builder. 30
2-1 Writing Equations 32
2-2 Solving Equations by Using Addition and Subtraction 35

2-3 Solving Equations by Using
Multiplications and Division 37
2-4 Solving Multi-Step Equations 40
2-5 Solving Equations with the Variable on Each Side 43
2-6 Ratios and Proportions 45
2-7 Percent of Change 48
2-8 Solving Equations and Formulas 50
2-9 Weighted Averages 53
Study Guide 55
CHAPTER 3
Foldables 59
Vocabulary Builder 60
3-1 Representing Relations 62
3-2 Representing Functions 65
3-3 Linear Functions 67
3-4 Arithmetic Sequences. 70
3-5 Proportional and Nonproportional Relationships. 72
Study Guide 75

CHAPTER 4

Foldables. 79
Vocabulary Builder. 80
4-1 Rate of Change and Slope 82
4-2 Slope and Direct Variation 86
4-3 Graphing Equations in Slope-Intercept Form 88
4-4 Writing Equations in Slope-Intercept Form 91
4-5 Writing Equations in Point-Slope Form 93
4-6 Statistics: Scatter Plots and Lines of Fit 95
4-7 Geometry: Parallel and Perpendicular Lines 98
Study Guide 101
CHAPTER 5
Foldables 105
Vocabulary Builder 106
5-1 Graphing Systems of Equations 108
5-2 Substitution 110
5-3 Elimination Using Addition and Subtraction 113
5-4 Elimination Using Multiplication 115
5-5 Applying Systems of Linear Equations 117
Study Guide 120
CHAPTER 6
Foldables 124
Vocabulary Builder. 125
6-1 Solving Inequalities by Addition and Subtraction 127
6-2 Solving Inequalities by Multiplication and Division 129
6-3 Solving Multi-Step Inequalities 131
6-4 Solving Compound Inequalities 133
6-5 Solving Open Sentences Involving Absolute Value 136
6-6 Graphing Inequalities in Two Variables 138
6-7 Graphing Systems of Inequalities 141
Study Guide 144

Contents

CHAPTER 7

Foldables. 149
Vocabulary Builder. 150
7-1 Multiply Monomials 152
7-2 Dividing Monomials 155
7-3 Polynomials 157
7-4 Adding and Subtracting Polynomials 160
7-5 Multiplying a Polynomial by a Monomial 162
7-6 Multiplying Polynomials 164
7-7 Special Products 167
Study Guide 169
CHAPTER 8
Foldables. 173
Vocabulary Builder 174
8-1 Monomials and Factoring 176
8-2 Factoring Using the Distributive Property 178
8-3 Factoring Trinomials $a x^{2}+b x+c:$ 180
8-4 Factoring Trinomials $a x^{2}+b x+c:$ 182
8-5 Factoring Differences of Squares 185
8-6 Perfects Squares and Factoring 187
Study Guide 191
CHAPTER 9
Foldables. 195
Vocabulary Builder. 196
9-1 Graphing Quadratic Functions 198
9-2 Solving Quadratic Equations by Graphing 203
9-3 Solving Quadratic Equations by Completing the Square 206
9-4 Solving Quadratic Equations by Using the Quadratic Formula 209
9-5 Exponential Functions 212
9-6 Growth and Decay 215
Study Guide 218

CHAPTER 10

Foldables. 222
Vocabulary Builder 223
10-1 Simplifying Radical Expressions 225
10-2 Operations with Radical Expressions 228
10-3 Radical Equations 230
10-4 The Pythagorean Theorem 232
10-5 The Distance Formula. 235
10-6 Similar Triangles 237
Study Guide 240
CHAPTER 11
Foldables. 244
Vocabulary Builder 245
11-1 Inverse Variation 247
11-2 Rational Expressions 249
11-3 Multiplying Rational Expressions 251
11-4 Dividing Rational Expressions 253
11-5 Dividing Polynomials 256
11-6 Rational Expressions with Like Denominators 258
11-7 Rational Expressions with Unlike Denominators 260
11-8 Mixed Expressions and Complex Fractions 263
11-9 Solving Rational Equations 265
Study Guide 269
CHAPTER 12
Foldables. 275
Vocabulary Builder 276
12-1 Sampling and Bias 278
12-2 Counting Outcomes 280
12-3 Permutations and Combinations 282
12-4 Probability of Compound Events 284
12-5 Probability Distributions 287
12-6 Probability Simulations 289
Study Guide 292

Organizing Your Foldables

OLDABLES

Have students make this Foldable to help them organize and store their chapter Foldables.
Begin with one sheet of 11 " $\times 17$ " paper.

STEP 1 Fold

Fold the paper in half lengthwise. Then unfold.

STEP 2 Fold and Glue

Fold the paper in half widthwise and glue all of the edges.

STEP 3 Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.

Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

Using Your
 Noteables"

Interactive Study Notebook
This note-taking guide is designed to help you succeed in Algebra 1. Each chapter includes:

NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

1 The Language of Algebra

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

NOTE-TAKING TIP: When you take notes, write concise definitions in your own words. Add examples that illustrate the concepts.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
$\underbrace{\text { algebraic expression }}$ al.juh•BRAY•ik			
base			
$\underbrace{\text { coefficient }}_{\text {koh } \cdot \text { uh } \cdot \text { FIH }}$			
conditional statement			
coordinate system			
counterexample			
$\underbrace{\text { deductive reasoning }}$ dih•DUHK•tihv			
dependent variable			
domain			
exponent			
function			

Vocabulary Term	Found on Page	Definition	Description or Example
$\underbrace{\text { hypothesis }}$ hy-PAH•thuh•suhs			
independent variable			
inequality			
integer			
irrational numbers			
like terms			
multiplicative inverses			
open sentence			
order of operations			
perfect square			
principal square root			
rational approximation			
real numbers			
reciprocal			
solution set			

BUILD YOUR VOGABULARY (page 3)

MAIN IDEAS

- Write mathematical expressions for verbal expressions.
- Write verbal expressions for mathematical expressions.

TEKS A. 1 The
student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 3 The student understands how algebra can be used to express generalizations and recognizes and uses the power of symbols to represent situations.
(A) Use symbols to represent unknowns and variables.

FOLDABLES

Organize IT

Under the tab for Lesson 1-1, take notes on writing expressions. Be sure to include examples.

In algebra, variables are symbols used to represent unspecified
 An expression like \square is called a power and is read \square power.

EXAMPLE Write Algebraic Expressions

(1) Write an algebraic expression for each verbal expression.
a. five less than a number \boldsymbol{c}

Thus, the algebraic expression is \square
b. 9 plus the product of 2 and the number d

So, the expression can be written as \square
c. two thirds of the original volume v

The word of implies multiply.
\square
d. the product of $\frac{3}{4}$ and a to the seventh power The word product implies multiplication.

Check Your Progress
Write an algebraic expression for each verbal expression.
a. nine more than a number h
\square
b. the difference of 6 and 4 times a number x

c. one half the size of the original perimeter p

d. the product of 6 and x to the fifth power

EXAMPLE Evaluate Powers

(2) Evaluate 3^{4}.
$3^{4}=3 \cdot 3 \cdot 3 \cdot 3$

Multiply.
\square

EXAMPLE Write Verbal Expressions

3 Write a verbal expression for each algebraic expression.
a. $\frac{8 x^{2}}{5}$
the quotient of 8 times \square and \square
b. $y^{5}-16 y$
\square

Homework

 AssignmentPage(s):
Exercises:

Check Your Progress Write a verbal expression for each algebraic expression.
a. $7 a^{4}$

b. $x^{2}+3$

1-2 Order of Operations

TEKS A. 3 The student understands how algebra can be used to express generalizations and recognizes and uses the power of symbols to represent situations. (A) Use symbols to represent unknowns and variables.

EXAMPLE Evaluate Expressions

MAIN IDEAS

- Evaluate numerical expressions by using the order of operations.
- Evaluate algebraic expressions by using the order of operations.

Key Concept

Order of Operations
Step 1 Evaluate expressions inside grouping symbols.

Step 2 Evaluate all powers.

Step 3 Do all multiplications and/or divisions from left to right.

Step 4 Do all additions and/or subtractions from left to right.

FOLDABLES On the tab for Lesson 1-2, write the Order of Operations. Include examples.

(1) Evaluate $48 \div 2^{3} \cdot 3+5$.

$48 \div 2^{3} \cdot 3+5=48 \div \square \cdot 3+5 \quad$ Evaluate powers

Divide

by

Multiply \square and

Check Your Progress Evaluate $3+6^{2} \div 4-5$.
\square

EXAMPLE Grouping Symbols

2 Evaluate each expression.

a. $(8-3) \cdot \mathbf{3 (3 + 2)}$

$$
\begin{aligned}
(8-3) \cdot 3(3+2) & =5 \cdot 3(5) & & \begin{array}{l}
\text { Evaluate inside grouping } \\
\text { symbols. }
\end{array} \\
& =\square(5) & & \text { Multiply } \square \text { and } \square . \\
& =\square & & \text { Multiply } \square \text { and } \square .
\end{aligned}
$$

b. $4[12 \div(6-2)]^{2}$

$$
4[12 \div(6-2)]^{2}=4(12 \div 4)^{2} \quad \text { Evaluate innermost }
$$ expression first.

Evaluate expression in grouping symbol.
$=4(\square) \quad$ Evaluate power.
\square Multiply.
c. $\frac{2^{5}-6 \cdot 2}{3^{3}-5 \cdot 3-2}$

$$
\frac{2^{5}-6 \cdot 2}{3^{3}-5 \cdot 3-2} \text { means }\left(2^{5}-6 \cdot 2\right) \square\left(3^{3}-5 \cdot 3-2\right) .
$$

$$
\frac{2^{5}-6 \cdot 2}{3^{3}-5 \cdot 3-2}=\frac{\square-6 \cdot 2}{3^{3}-5 \cdot 3-2} \quad \begin{aligned}
& \text { Evaluate the power in the } \\
& \text { numerator. }
\end{aligned}
$$

$$
=\frac{\square-\square}{3^{3}-5 \cdot 3-2} \quad \begin{aligned}
& \text { Multiply } 6 \text { and } 2 \text { in the } \\
& \text { numerator. }
\end{aligned}
$$

$$
=\frac{20}{3^{3}-5 \cdot 3-2}
$$

$$
=\frac{20}{\square-5 \cdot 3-2}
$$

$$
=\frac{20}{\square-\square-2}
$$

$$
=\frac{20}{\square} \text { or } \square
$$

Subtract \square and \square in the numerator.

Evaluate the power in the denominator.

Multiply \square and \square in the denominator.

Subtract from left to right in the denominator. Then simplify.

Check Your Progress

Evaluate each expression.

a. $2(4+7) \cdot(9-5)$
b. $3[5-2 \cdot 2]^{2}$

c. $\frac{3^{3}-4 \cdot 3}{2^{5}-5 \cdot 3-2}$

EXAMPLE Evaluate an Algebraic Expression
(3) Evaluate 2 $\left(x^{2}-y\right)+z^{2}$ if $x=4, y=3$, and $z=2$.
$2\left(x^{2}-y\right)+z^{2}=2\left(4^{2}-3\right)+2^{2} \quad$ Replace x with \square, y with

$=2(\square-3)+2^{2} \quad$ Evaluate \square. $=2(\square)+2^{2} \quad$ Subtract \square and \square.

$$
=2(13)+\square
$$

Evaluate \square

$$
=\square+4
$$

Multiply \square and $=\square$

Add.

Check Your Progress Evaluate $x^{3}-y^{3}+z$ if $x=3, y=2$, and $z=5$.

1-3 Open Sentences

Main Ideas

Solve open sentence equations.

- Solve open sentence inequalities.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations.

FOLDABLES

Organize It

Under the tab for Lesson 1-3, explain how to solve open sentence equations and inequalities. Include examples.

BUILD YOUR VOCABULARY (pages 2-3)

The process of finding a value for a variable that results in a \square sentence is called solving the open sentence.

A sentence that contains an \square sign is called an equation.

A set of numbers from which replacements for a \square may be chosen is called a replacement set.

EXAMPLE Use a Replacement Set to Solve an Equation

(1) Find the solution set for $3(8-b)=6$ if the replacement set is $\{\mathbf{2 , 3 , 4 , 5 , 6 \}}$.
Replace b in $3(8-b)=6$ with each value in the replacement set.

\boldsymbol{a}	$3(8-\boldsymbol{b})=\mathbf{6}$	True or False?
2	$3(8-2) \stackrel{?}{=} 6 \rightarrow 18 \neq 6$	\square
3	$3(8-3) \stackrel{?}{=} 6 \rightarrow 15 \neq 6$	\square
4	$3(8-4) \stackrel{?}{=} 6 \rightarrow 12 \neq 6$	\square
5	$3(8-5) \stackrel{?}{=} 6 \rightarrow 9 \neq 6$	\square
6	$3(8-6) \stackrel{?}{=} 6 \rightarrow 6=6$	\square

The solution set is

Check Your Progress
Find the solution set for the equation $6 c-5=7$ if the replacement set is $\{0,1,2,3,4\}$.

ReView It

Write in words how each of the following symbols is read: $>,<, \geq, \leq$.

Homework Assignment

BUILD YOUR VOGABULARY (page 3)

An open sentence that contains the symbol
 or is called an inequality.

EXAMPLE

FISHING Carlos needs $\$ 35$ or more for a fishing trip. He already bought a ticket for the charter boat for $\mathbf{\$ 1 3}$. Does Carlos need to save $\$ 20, \$ 21, \$ 22$, or $\$ 23$ to have enough money for the fishing trip? Find the solution set for $s+\mathbf{1 3} \geq \mathbf{3 5}$ if the replacement set is $\{\mathbf{2 0}, \mathbf{2 1}, \mathbf{2 2}, 23\}$.
Replace s in $s+13 \geq 35$ with each value in the replacement set.

\boldsymbol{s}	$s+13 \geq \mathbf{3 5}$	True or False?
20	$20+13 \geq 35 \rightarrow 33 \geq 35 ?$	\square
21	$21+13 \geq 35 \rightarrow 34 \geq 35 ?$	\square
22	$22+13 \geq 35 \rightarrow 35 \geq 35$	\square
23	$23+13 \geq 35 \rightarrow 36 \geq 35$	\square

The solution set for $s+13 \geq 35$ is \square Carlos needs to save at least $\$ 22$ or $\$ 23$ for the fishing trip.

Check Your Progress

SHOPPING Maleka needs $\$ 75$ or more for a shopping trip. She already bought a sweater for $\$ 22$. Does Maleka need to save $\$ 51, \$ 52, \$ 53$, or $\$ 54$ to have enough money for the shopping trip? Find the solution set for $s+23 \geq 75$ if the replacement set is $\{51,52,53,54\}$.

A $\{51,52\}$; Maleka needs to save at least $\$ 51$ or $\$ 52$ for the shopping trip.

B $\{53,54\}$; Maleka needs to save at least $\$ 53$ or $\$ 54$ for the shopping trip.
C $\{55\}$; Maleka needs to save at least $\$ 55$ for the shopping trip.
D $\{35\}$; Maleka needs to save at least $\$ 35$ for the shopping trip.
\qquad

1-4 Identity and Equality Properties

Main Ideas

- Recognize the properties of identity and equality.
- Use the properties of identity and equality.

TEKS A. 4 The
student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations.

KEY CONCEPTS

Additive Identity For any number a, the sum of a and 0 is a.

Multiplicative Identity For any number a, the product of a and 1 is a.

Multiplicative Property of Zero For any number a, the product of a and 0 is a.

Multiplicative Inverse For every number $\frac{a}{b}$, where $a, b \neq 0$, there is exactly one number $\frac{b}{a}$ such that the product of $\frac{a}{b}$ and $\frac{b}{a}$ is 1 .

BUILD YOUR VOCABULARY (page 3)

Two numbers whose \square is 1 are called
multiplicative inverses or reciprocals.

EXAMPLE Identify Properties

(1) Name the property used in each equation. Then find the value of n.
a. $n \cdot 12=0$

Multiplicative Property of Zero
$n=\square$, since $\square \cdot 12=0$.
b. $n \cdot \frac{1}{5}=1$

Multiplicative Inverse Property
$n=\square$, since $\square \cdot \frac{1}{5}=1$.

Check Your Progress Name the property used in each equation. Then find the value of \boldsymbol{n}.
a. $n \cdot \frac{1}{2}=1$
\square
b. $n \cdot 4=0$

Key CONCEPTS

Reflexive Any quantity is equal to itself.

Symmetric If one quantity equals a second quantity, then the second quantity equals the first.

Transitive If one quantity equals a second quantity and the second quantity equals a third quantity, then the first quantity equals the third quantity.

Substitution A quantity may be substituted for its equal in any expression.

FOLDABLES List the Identity and Equality Properties under the tab for Lesson 1-4. Include an example of each property.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Evaluate Using Properties

2 Evaluate $\frac{1}{4}(12-8)+3(15 \div 5-2)$. Name the property used in each step.
$\frac{1}{4}(12-8)+3(15 \div 5-2)$
$=\frac{1}{4}(4)+3(15 \div 5-2) \square ; 12-8=4$
$=\frac{1}{4}(4)+3(3-2) \square ; 15 \div 5=3$
$=\frac{1}{4}(4)+3(1) \square ; 3-2=1$
$=1+3(1) \square ; \frac{1}{4} \cdot 4=1$
$=1+3 \square ; 3 \cdot 1=3$
$=4 \square ; 1+3=4$

Check Your Progress Evaluate $\frac{1}{3}(10-7)+4(18 \div 9-1)$. Name the property used in each step.

$$
\begin{aligned}
\frac{1}{3}(10- & 7)+4(18 \div 9-1) \\
& =\frac{1}{3}(3)+4(18 \div 9-1) \\
& =\frac{1}{3}(3)+4(2-1) \\
& =\frac{1}{3}(3)+4(1) \\
& =1+4(1) \\
& =1+4 \\
& =5
\end{aligned}
$$

1-5 The Distributive Property

EXAMPLE Distribute Over Addition or Subtraction

MAIN IDEAS

Use the Distributive Property to evaluate expressions.

- Use the Distributive Property to simplify expressions.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions.

(1) EXERCISE Julia walks 5 days a week. She walks at a fast

 rate for 7 minutes and then cools down for 2 minutes. Rewrite $5(7+2)$ using the Distributive Property. Evaluate to find the total number of minutes Julia walks.$$
\begin{aligned}
5(7+2) & =5 \cdot 7+5 \cdot 2 & & \text { Distributive Property } \\
& =\square+\square & & \text { Multiply. } \\
& =\square & & \text { Add. }
\end{aligned}
$$

Julia is on the treadmill for \square minutes each week.

Check Your Progress

WALKING Susanne walks to school and home from school 5 days each week. She walks to school in 15 minutes and then walks home in 10 minutes. Rewrite $5(15+10)$ using the Distributive Property. Then evaluate to find the total number of minutes Susanne spends walking to and home from school.

EXAMPLE The Distributive Property and Mental Math

2. Use the Distributive Property to find 12-82.
$12 \cdot 82=12(80+2)$
Think: $82=80+2$
$\begin{array}{ll}=12(\square)+12(\square) & \begin{array}{l}\text { Distributive Property } \\ \text { Multiply. }\end{array} \\ =960+24 & \\ =\square & \text { Add. }\end{array}$

Check Your Progress

Use the Distributive Property to find $6 \cdot 54$.

BUILD YOUR VOCABULARY (pages 2-3)

Like terms are terms that contain the same variables, with corresponding variables having the same \square
The coefficient of a term is the \square factor.

Remember It

When you simplify expressions, first identify like terms.

Write IT

Give an example of two like terms. Then give an example of two terms that are not like terms.

Homework Assignment

Page(s):

Exercises:

EXAMPLE Algebraic Expressions

3 Rewrite each product using the Distributive Property. Then simplify.
a. $12(y+3)$

$$
\begin{array}{rlrl}
12(y+3) & =12 \cdot y+12 \cdot 3 \\
& =12 y+\square \quad & & \\
& \text { Multiply. }
\end{array}
$$

b. $4\left(y^{2}+8 y+2\right)$

$$
\begin{array}{rll}
4\left(y^{2}+8 y+2\right) & =\square\left(y^{2}\right)+\square(8 y)+\square & \text { (2) }
\end{array} \begin{aligned}
& \text { Distributive } \\
& \text { Property }
\end{aligned}
$$

Check Your Progress Rewrite $3\left(x^{3}+2 x^{2}-5 x+7\right)$ using the Distributive Property. Then simplify.

EXAMPLE Combine Like Terms

a. Simplify $17 a+21 a$.

$$
\begin{aligned}
17 a+21 a & =(17+21) a & & \text { Distributive Property } \\
& =\square & & \text { Substitution }
\end{aligned}
$$

b. Simplify $12 b^{2}-8 b^{2}+6 b$.

$$
\begin{array}{rll}
12 b^{2}-8 b^{2}+6 b & =\square b^{2}+6 b & \text { Distributive Property } \\
& =\square & \text { Substitution }
\end{array}
$$

Check Your Progress

Simplify each expression.
a. $14 x-9 x$
b. $6 n^{2}+7 n+8 n$
\square

1-6 Commutative and Associative Properties

EXAMPLE Use Addition Properties

Main Ideas

Recognize the Commutative and Associative Properties.

- Use the Commutative and Associative Properties to simplify expressions.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions.

Key Concepts

Commutative Property The order in which you add or multiply numbers does not change their sum or product.

Associative Property The way you group three or more numbers when adding or multiplying does not change their sum or product.

FOLDABLES List the properties on the tab for Lesson 1-6.
(1) TRANSPORTATION Refer to Example 1 on p. 35 of your book. Find the distance between Lakewood/ Ft. McPherson and Five Points. Explain how the Commutative Property makes calculating the answer unnecessary.

Calculating the answer is actually unnecessary because the route is the opposite of the one in Example 1 of the textbook.

The \square Property states that the \square which numbers are added does not matter.

The distance is \square miles.

EXAMPLE Use Multiplication Properties

2 Evaluate $2 \cdot 8 \cdot 5 \cdot 7$ using properties of numbers. Name the property used in each step.
You can rearrange and group the factors to make mental calculations easier.
$2 \cdot 8 \cdot 5 \cdot 7=2 \cdot 5 \cdot 8 \cdot 7$

Check Your Progress

a. The distance from Five Points to Garnett is 0.4 mile. From Garnett, West End is 1.5 miles. From West End, Oakland City is 1.5 miles. Write an expression to find the distance from Five Points to Oakland City. Then write an expression to find the distance from Oakland City to Five Points.

b. Evaluate $3 \cdot 5 \cdot 3 \cdot 4$.

1-6

EXAMPLE Write and Simplify an Expression

3 Use the expression three times the sum of $3 x$ and $2 y$ added to five times the sum of x and $4 y$.
a. Write an algebraic expression for the verbal expression.

Words	Three times the sum of $3 x$ and $2 y$ added to five times the sum of x and $4 y$
Variables	Let x and y represent the numbers.
Expression	

b. Simplify the expression and indicate the properties used.

$$
\begin{array}{rlr}
3(3 x+2 y)+5(x+4 y) & \\
=3(3 x)+3(2 y)+5(x)+5(4 y) & & \text { Distributive Property } \\
=9 x+6 y+5 x+20 y & & \text { Multiply. } \\
=9 x+5 x+6 y+20 y & & \text { Commutative (+) } \\
=(9 x+5 x)+(6 y+20 y) & & \text { Associative }(+) \\
=(9+5) x+(6+20) y & & \text { Distributive Property } \\
=\square & & \text { Substitution }
\end{array}
$$

Check Your Progress Use the expression five times the sum of $2 x$ and $3 y$ increased by 2 times the sum of x and $6 y$.
a. Write an algebraic expression for the verbal expression.
b. Simplify the expression and indicate the properties used.

Homework Assignment

Page(s):
Exercises:

1-7 Logical Reasoning and Counterexamples

1 TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (E) Interpret and make decisions, predictions, and critical judgments from functional relationships.

MAIN IDEAS

- Identify the hypothesis and conclusion in a conditional statement.
- Use a counterexample to show that an assertion is false.

BUILD YOUR VOCABULARY (pages 2-3)

Conditional statements can be written in the form

\square B.

The part of the statement immediately after \square is called the hypothesis.

The part of the statement immediately after \square called the conclusion.

EXAMPLE Identify Hyphothesis and Conclusion

(1) Identify the hypothesis and conclusion of each statement.
a. If it is raining, then Beau and Chloe will not play softball.
The hypothesis follows the word \square and the conclusion follows the word \square
Hypothesis: \square
Conclusion: \square
b. If $\mathbf{7 y}+5 \leq \mathbf{2 6}$, then $\boldsymbol{y} \leq 3$.

Hypothesis: \square
Conclusion: \square

Check Your Progress Identify the hypothesis and conclusion of each statement.
a. If it is above 75°, then you can go swimming.

b. If $2 x+3=5$, then $x=1$.
\square
2) Identify the hypothesis and conclusion of the statement. Then write the statement in if-then form.

I eat light meals.
Hypothesis: I eat a meal
Conclusion: it is light

Check Your Progress
Identify the hypothesis and conclusion of each statement. Then write each statement in if-then form.

For a number x such that $11+5 x<21, x \leq 2$.

EXAMPL:

Homework
Assignment

Page(s):
Exercises:

3 Determine a valid conclusion that follows from the statement, "If one number is odd and another number is even, then their sum is odd" for the given conditions. If a valid conclusion does not follow, write no valid conclusion and explain why.
The two numbers are 5 and 12
5 is odd and 12 is even, so the hypothesis is true.
\square

Check Your Progress
Determine a valid conclusion that follows from the statement "If the last digit in a number is 0 , then the number is divisible by 10 " for the given conditions. If a valid conclusion does not follow, write no valid conclusion.
The number is 4005 .

1-8 Square Roots and Real Numbers

MAIN IDEAS

- Find square roots.
- Classify and order real numbers.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations.

Write It

Are the square roots for $\sqrt{-81}$ and $\sqrt{81}$ the same? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad

BUILD YOUR VOCABULARY (page 31)

A square root is one of two square \square of a number.
A number whose square root is a \square number is
called a perfect square.
A radical sign is used to indicate the \square or
principal square root of the expression under the radical sign.

EXAMPLE Classify Real Numbers

(1) Name the set or sets of numbers to which each number belongs.
a. $\sqrt{17}$

Because $\sqrt{17}=$ \square which is neither a repeating nor terminating decimal, this number is \square
b. $\frac{1}{6}$

Because 1 and 6 are integers and $1 \div 6=0.1666 \ldots$ is a

c. $\sqrt{169}$

\square

Check Your Progress Name the set or sets of numbers to which each real number belongs.
a. $\frac{7}{9}$
b. $\sqrt{36}$

c. $\sqrt{45}$
d. $-\frac{56}{7}$

EXAMPLE

Key Concept

Real Numbers The set of real numbers consists of the set of rational numbers and the set of irrational numbers.
(2)
a. Graph $\left\{\frac{3}{2},-\frac{1}{2}, 1, \frac{3}{2}\right\}$.

b. Graph $y \leq 8$.

The heavy arrow indicates that all numbers to the left of
\square are included in the graph. The dot at \square indicates
that \square $i s$ included in the graph.
c. $\operatorname{Graph} z>-5$.

The heavy arrow indicates that all the points to the right
\square are included in the graph. The circle at \square
indicates that \square is not included in the graph.

Check Your Progress

Graph each solution set.
a. $\left\{-\frac{2}{3},-\frac{1}{3}, 0, \frac{2}{3}\right\}$

b. $x \geq 6$

c. $x<-3$

EXAMPLE Find Square Roots

3 Find $-\sqrt{\frac{16}{9}}$.
$-\sqrt{\frac{16}{9}}$ represents the \square square root of $\frac{16}{9}$.
$\frac{16}{9}=\square$, so $-\sqrt{\frac{16}{9}}=\square$

Check Your Progress
Find $\sqrt{\frac{64}{25}}$. \square
4) SPORTS SCIENCE Refer to the application on p. 45 of your textbook. Find the surface area of an athlete whose height is 147 centimeters and whose weight is 48 kilograms.

$$
\begin{aligned}
& \begin{aligned}
\sqrt{\frac{\text { height • weight }}{3600}} & =\sqrt{\frac{147 \cdot 48}{3600}}
\end{aligned} \quad h=\square, w=\square . \\
& \\
& =\sqrt{\frac{7056}{3600}}
\end{aligned} \quad \text { Simplify. } \quad \text { Simplify. }
$$

Check Your Progress SPORTS SCIENCE Find the surface area of an athlete whose height is 152 centimeters and whose weight is 50 kilograms.

EXAMPLE Order Real Numbers

(5) Write $\frac{12}{5}, \sqrt{6}, 2 . \overline{4}$, and $\frac{61}{25}$ in order from least to greatest. Write each number as a decimal.
$\frac{12}{5}=$ \square
$\sqrt{6}=2.4494897 \ldots$ or about 2.4495 .
$2 . \overline{4}=2.444444 \ldots$ or about 2.4444 .
$\frac{61}{25}=\square$
Since $2.4<2.44<2.4444<2.4495$, the numbers arranged in
order from least to greatest are \square

Check Your Progress
from least to greatest.

1-9 Functions and Graphs

MAIN IDEAS

- Interpret graphs of functions.
- Draw graphs of functions.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways.
(A) Describe independent and dependent quantities in functional relationships. A. 2 The student uses the properties and attributes of functions. (B) Identify mathematical domains and ranges and determine reasonable domain and range values for given situations, both continuous and discrete. (C) Interpret situations in terms of given graphs or create situations that fit given graphs. Also addresses TEKS A.1(D).

BUILD YOUR VOCABULARY (page 2)

A function is a relationship between input and output, in which the \square depends on the \square A coordinate system is used to graph \square. In a function, the value of one quantity \square the \square of the other. This \square is called the dependent variable. The other quantity is called the independent variable. The set of values for the
\square variable is called the domain.

The set of values for the \square variable is called the range.

EXAMPLE Identify Coordinates

(1) MEDICINE Refer to the graph on p. 51 of your book. Name the ordered pair at point E and explain what it represents.
Point E is at 6 along the x-axis and about 100 along the y-axis.
So, its ordered pair is \square This represents about
 normal blood flow 6 days after the injury.

EXAMPLE Analyze Graphs

2 The graph represents the temperature in Ms. Ling's classroom on a winter school day. Describe what is
 happening in the graph.

The \square is low until the heat is turned on. Then of the thermostat. Finally, the temperature drops when the heat is turned \square

3 There are three lunch periods at a school cafeteria. During the first period, 352 students eat lunch. During the second period, 304 students eat lunch. During the third period, 391 students eat lunch.

Write It

List three ways data can be represented.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
a. Make a table showing the number of students for each of the three lunch periods.

Period	1	2	3
Number of Students			

b. Write the data as a set of ordered pairs. Then graph the data.
The period is the \square variable and the number of students is the \square variable.

The ordered pairs are

Check Your Progress

 At a car dealership, a salesman worked for three days. On the first day, he sold 5 cars. On the second day, he sold $\mathbf{3}$ cars. On the third day he sold 8 cars.a. Make a table showing the number of cars sold for each day.

Homework Assignment

Page(s):

Exercises:
b. Write the data as a set of ordered pairs.

c. Draw a graph that shows the relationship between the day and the number of cars sold.

EXAMPLE Domain and Range

(5) Mr. Ohms tutors students. He works at most 120 hours for $\$ 4$ per hour.
a. Identify a domain and range for this situation.

The domain contains the number of hours he works.
The domain is
 to \square hours. The range contains the amount he makes from $\$ 0$. Thus, the range is \square $\square \times \$ 4$ or \square.
b. Draw a graph that shows the relationship between the number of hours worked and the money Mr. Ohms makes.

Check Your Progress
Prom tickets cost $\$ 25$ per person. The prom is limited to 250 people.
a. Identitfy a domain and range for the situation.

b. Draw a graph that shows the relationship between the number of persons attending the prom and total admission price.

STUDY GUIDE

FOLDABlES

Use your Chapter 1 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

1-1
 Variables and Expressions

Write the letter of the algebraic expression that best matches each phrase.

1. three more than a number n
2. five times the difference of x and 4
3. one half the number r
4. the product of x and y divided by 2
5. x to the fourth power

\square
a. $5(x-4)$
b. x^{4}
c. $\frac{1}{2} r$
d. $n+3$
e. $\frac{x y}{2}$

1-2

Order of Operations
For each of the following expressions, write addition, subtraction, multiplication, division, or evaluate powers to tell what operation to use first when evaluating the expression.
6. $400-5[12+9]$
7. $26-8+14$
8. $17+3 \cdot 6$
9. $69+57 \div 3+16 \cdot 4$ \square
10. $\frac{51 \div 729}{9^{2}}$ \square

1-3

Open Sentences

11. How would you read each inequality symbol in words?

Symbol	Words	Symbol	Words
$<$		\leq	
$>$			\geq

1-4

Identity and Equality Properties

Name the property used in each statement.
12. $\frac{5}{7} \cdot \frac{7}{5}=1$

13. $3 \cdot 1=3$ \square
14. $6+0=6$ \square
15. If $2+4=5+1$ and

$5+1=6$, then $2+4=6$.
16. If $n=2$, then $5 n=5 \cdot 2$.

1-5

The Distributive Property
Rewrite using the distributive property.
\square
17. $5(6-4)$
18. $12 m+8 m$

1-6

Commutative and Associative Properties
Write the letter of the term that best matches each equation.
19. $3+6=6+3$
20. $2+(3+4)=(2+3)+4$ \square
21. $2 \cdot(3 \cdot 4)=(2 \cdot 3) \cdot 4$

22. $2 \cdot(3 \cdot 4)=2 \cdot(4 \cdot 3)$ \square
a. Associative Property of Addition
b. Associative Property of Multiplication
c. Commutative Property of Addition
d. Commutative Property of Multiplication

1-7

Logical Reasoning and Counterexamples

Write hypothesis or conclusion to tell which part of the if-then statement is underlined.
23. If it is Tuesday, then it is raining. \square
24. If $3 x+7=13$, then $x=2$. \square

1-8

Number Systems
Complete each statement.
25. The positive square root of a number is called the \square square root of the number.
26. A number whose positive square root is a rational number is a
\square
Write each of the following as a mathematical expression that uses the $\sqrt{ }$ symbol. Then find each square root.
27. the positive square root of 1600 \square
28. the negative square root of 729 \square
29. the principal square root of 3025 \square
30. the irrational numbers and rational numbers together form the set of \square numbers

1-9

Functions and Graphs
31. Identify each part of the coordinate system.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 63 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 58-62 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice on page 63.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldable.
- Then complete the Chapter 1 Study Guide and Review on pages 58-62 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 63.

Solving Linear Equations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with 4 sheets of plain $8 \frac{1}{2}$ " by $11^{\prime \prime}$ paper.

STEP 1 Fold in half along the width.

STEP 2 Open and Fold the bottom to form a pocket Glue edges.

STEP 3 Repeat Steps 1 and 2

 three times and glue all four pieces together.

STEP 4 Label each pocket. Place an index card in each pocket.

NOTE-TAKING TIP: When taking notes, write down a question mark next to anything you do not understand. Before your next quiz, ask your instructor to explain these sections.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
consecutive integers [kuhn•SEH•kyuh•tihv]			
defining a variable			
dimensional analysis [duh•MEHNCH•nuhl]			
equivalent equations [ih•KWIHV•luhnt]			
extremes			
formula			
four-step problem-solving plan			
identity			
means			
mixture problem			

Vocabulary Term	Found on Page	Definition	Description or Example
number theory			
percent of change			
percent of decrease			
percent of increase			
$\underbrace{\text { proportion }}_{\text {[pruh.POHR.shun] }}$			
ratio			
rate			
scale			
solve an equation			
uniform motion problem			
weighted average			

2-1 Writing Equations

MAIN IDEAS

- Translate verbal sentences into equations.
- Translate equations into verbal sentences.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways.
(C) Describe functional relationships for given problem situations and write equations or inequalities to answer questions arising from the situations.
(D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. Also addresses TEKS A.3(A).

KEY CONCEPT

Four-Step Problem-
Solving Plan
Step 1 Explore the problem.

Step 2 Plan the solution.
Step 3 Solve the problem.

Step 4 Examine the solution.
[FOLDABLES Write the fourstep problem-solving plan on an index card.

BUILD YOUR VOGABULARY (pages 30-31)

Choosing a variable to represent an unspecific in a problem is called defining a variable.

EXAMPLE Translate Sentences into Equations

(1) Translate each sentence into an equation.

a. A number b divided by three is equal to six less than c.

The equation is

b. Fifteen more than \boldsymbol{z} times 6 is \boldsymbol{y} times 2 minus eleven.
\square

Check Your Progress
Translate the sentence into an equation: A number c multiplied by six is equal to two more than d.
\square

EXAMPLE Use the Four-Step Plan

2 JELLYBEANS A jellybean manufacturer produces

 $\mathbf{1 , 2 5 0 , 0 0 0}$ jellybeans per hour. How many hours does it take them to produce $10,000,000$ jellybeans?Write an equation. Let h represent the number of hours needed to produce the jellybeans.
$\underbrace{1,250,000}_{1,250,000} \underbrace{\text { times }}_{\square} \underbrace{\text { hours }}_{h} \underbrace{\text { equals }}_{\square} \underbrace{10,000,000 .}_{10,000,000}$
$1,250,000 h=10,000,000$
Find h mentally by asking, "What number times 125 equals 1,000?"
$h=\square$
It will take \square hours to produce $10,000,000$ jellybeans.

Check Your Progress

 A person at the KeyTronic World Invitational Type-Off typed 148 words per minute. How many minutes would it take to type 3552 words?BUILD YOUR VOCABULARY (pages 30-31) A formula is an \square that states a \square for the relationship between certain quantities.

EXAMPLE Write a Formula

3 Translate the sentence into a formula.

The perimeter of a square equals four times the length of the side.

The formula is $\square=\square$
Check Your Progress
Translate the sentence The area of a circle equals the product of π and the square of the radius r into a formula.

EXAMPLE Translate Equations into Sentences

(4) Translate each equation into a verbal sentence.
a. $12-2 x=-5$

b. $a^{2}+3 b=\frac{c}{6}$

Check Your Progress Translate each equation into a verbal sentence.
a. $\frac{12}{b}-4=-1$
b. $5 a=b^{2}+1$
\square
5 Write a problem based on the given information.
$f=$ cost of fries $\quad f+1.50=$ cost of a burger
$4(f+1.50)-f=8.25$
The cost of a burger is \square more than the cost of fries.

Four times the cost of a burger \square the cost of fries equals \square. How much do fries cost?

Check Your Progress
 Write a problem based on the

Homework Assignment

Page(s):
Exercises:
$3 h(h-3)=8262$
\square

2-2 Solving Equations by Using Addition and Subtraction

Main Ideas

- Solve equations by using addition.
- Solve equations by using subtraction.

TEKS A. 1 The
student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. Also addresses TEKS A.1(C).

BUILD YOUR VOGABULARY (pages 30-31)

Equivalent equations have the \square solution.

To solve an equation means to find all values of the
\square that make the equation a \square statement.

EXAMPLE Solve by Adding

(1) Solve each equation. Check your solution.
a. $h-12=-27$

$$
\begin{array}{rlrl}
h-12 & =-27 & & \text { Original equation } \\
h-12+\square & =-27+\square & \begin{array}{l}
\text { Add } \square \\
\text { to each side. }
\end{array} \\
h & =\square & \begin{array}{l}
-12+12=0 \text { and } \\
-27+12=\square
\end{array}
\end{array}
$$

b. $k+63=92$

$$
\begin{array}{rlrl}
k+63 & =92 & \text { Original equation } \\
k+63+\square & =92+\square & \text { Add } \square & \text { to each side. } \\
k=\square & \begin{array}{l}
63+(-63)=0 \text { and } \\
92+(-63)=\square .
\end{array}
\end{array}
$$

EXAMPLE Solve by Subtracting

(2) Solve $c+102=36$.

$$
\begin{array}{cl}
c+102=36 & \text { Original equation } \\
c+102-\square=36-\square & \begin{array}{l}
\text { Subtract } \square \\
\text { each side. }
\end{array} \\
c=\square & \begin{array}{l}
102-102=0 \text { and } \\
\\
\\
\end{array}
\end{array}
$$

Key Concepts

Addition Property of Equality If an equation is true and the same number is added to each side, the resulting equation is true.
Subtraction Property of Equality If an equation is true and the same number is subtracted from each side, the resulting equation is true.

Homework Assignment

Page(s):

Exercises:

3 Solve $y+\frac{4}{5}=\frac{2}{3}$ in two ways.
METHOD 1 Use the Subtraction Property of Equality.

$$
y+\frac{4}{5}=\frac{2}{3}
$$

Original equation
$\begin{aligned} y+\frac{4}{5}-\square \quad & =\frac{2}{3}-\square \\ y & =-\frac{2}{15}\end{aligned} \begin{array}{ll}\text { Subtract } \square & \text { from each side. } \\ \text { Simplify. }\end{array}$
METHOD 2 Use the Addition Property of Equality.

$$
\begin{array}{rlrl}
y+\frac{4}{5} & =\frac{2}{3} & \text { Original equation } \\
y+\frac{4}{5}+\square & =\frac{2}{3}+\square & \begin{array}{l}
\text { Add } \square \\
\text { to each side. } \\
y
\end{array} & =-\frac{2}{15}
\end{array} \begin{aligned}
& \text { Simplify. }
\end{aligned}
$$

Check Your Progress Solve each equation.

a. $a-24=16$

c. $129+k=-42$

b. $t+22=-39$

d. $\frac{2}{3}+y=\frac{5}{6}$

EXAMPLE Write and Solve an Equation

(4) Write and solve an equation for the problem.

Fourteen more than a number is equal to twenty-seven. Find this number.

$$
14+n=27
$$

Original equation
$\begin{aligned} 14+n-\square & =27-\square \\ n & =\square \quad \text { Subtract } \square \quad \text { from each side. } \\ & 14-14=0 \text { and } 27-14=13\end{aligned}$

Check Your Progress Twelve less than a number is equal to negative twenty-five. Find the number.
\square

2-3 Solving Equations by Using Multiplication and Division

EXAMPLE Solve Using Multiplication by a Positive Number

MAIN IDEAS

Solve equations by using multiplication.

- Solve equations by using division.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways.
(D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. Also addresses TEKS A.1(C).

Key Concept

Multiplication Property of Equality If an equation is true, and each side is multiplied by the same number, the resulting equation is true.

FOLDABLES On an index card, write and solve an equation that uses the Multiplication Property of Equality.
(1) Solve $\frac{s}{12}=\frac{3}{4}$. Check your solution.
$\frac{s}{12}=\frac{3}{4} \quad$ Original equation

The solution is

EXAMPLE Solve Using Multiplication by a Fraction

2 Solve each equation

a. $\left(-1 \frac{3}{8}\right) k=\frac{2}{3}$

$$
\left(-1 \frac{3}{8}\right) k=\frac{2}{3} \quad \text { original equation }
$$

$$
\left(-\frac{11}{8}\right) k=\square
$$

The solution is

b. $-75=-15 b$
$-75=-15 b$

The solution is

Multiply by the reciprocal of $-\frac{11}{8}$

Simplify.
Rewrite $-1 \frac{3}{8}$ as an improper fraction.

Original equation
Multiply each side by the reciprocal of -15 .

Simplify.

Check Your Progress
a. $\frac{a}{18}=\frac{2}{3}$

c. $32=-14 c$

EXAMPLE Write and Solve an Equation Using Multiplication

3 SPACE TRAVEL Using information from Example 3 in the Student Edition, what would be the weight of Neil Armstrong's suit and life-support backpack on Mars if three times the Mars weight equals the Earth weight?

$$
3 w=198 \quad \text { Original equation }
$$

The weight of Neil Armstrong's suit and life-support backpacks on Mars would be \square pounds.

Check Your Progress

Refer to Example 3. If Neil
Armstrong weighed 216 pounds on Earth, how much would he weigh on Mars?

Key Concept

Division Property of
Equality If an equation is true, and each side is divided by the same nonzero number, the resulting equation is true.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLE Solve Using Division

4) Solve each equation. Check your solution.
a. $11 w=143$

$$
\begin{aligned}
11 w & =143 & & \text { Original equation } \\
\frac{11 w}{\square} & =\frac{143}{\square} & & \text { Divide each side by } \square . \\
w & =\square & & \frac{11 w}{11}=w \text { and } \frac{143}{11}=13
\end{aligned}
$$

b. $-8 x=96$

$$
\begin{aligned}
-8 x & =96 & & \text { Original equation } \\
\frac{-8 x}{\square} & =\frac{96}{\square} & & \text { Divide each side by } \\
x & =\square & & \frac{-8 x}{-8}=x \text { and } \frac{96}{-8}=-12
\end{aligned}
$$

Check Your Progress

Solve each equation.
a. $35 t=595$
\square
b. $-12 b=276$
\square

EXAMPLE

5 Write an equation for the problem below. Then solve the equation.
Negative fourteen times a number equals 224.
$\underbrace{\text { Negative fourteen }}_{-14} \underbrace{\text { times }}_{\times} \underbrace{\text { a number }}_{n} \underbrace{\text { equals }}_{=} \underbrace{224 .}_{224}$
$-14 n=\square \quad$ Original equation
$\frac{-14 n}{-14}=\frac{224}{-14} \quad$ Divide each side by \square
Check this result.

Check Your Progress

Negative thirty-four times a number equals 578. Find the number.

2-4 Solving Multi-Step Equations

MAIN IDEAS

- Solve problems by working backward.
- Solve equations involving more than one operation.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. Also addresses TEKS A.1(C) and $A .7(B)$.

BUILD YOUR VOGABULARY (pages 30-31)

Work backward is one of the many problem-solving strategies that you can use to solve multi-step equations.

To solve equations with more than one operation, often called multi-step equations, \square operations by working backward.

EXAMPLE Solve Using Addition and Division

(1) Solve $5 q-13=37$.

$$
\begin{array}{rll}
5 q-13 & =37 & \text { Original equation } \\
5 q-13+\square & =37+\square & \text { Add } \square \text { to each side. } \\
\frac{\square}{\square \square} & =\square & \text { Simplify. } \\
q & \text { Divide each side by } \square . \\
q & & \\
\square & \text { Simplify. }
\end{array}
$$

EXAMPLE Solve Using Subtraction and Multiplication

(2) Solve $\frac{s}{12}+9=-11$.

$\frac{s}{12}+9$	$=-11$		Original equation
$\frac{s}{12}+9-\square$	$=-11-\square$		Subtract \square from each side.
$\square \square$	$=\square$		\square.
\square	$=\square$	$=\square$	
$\square(-20)$		Multiply each side by \square.	
		Simplify.	

FOLDABLES

ORGANIZE IT

Explain how to solve multi-step equations on an index card. Include an example.

Check Your Progress

a. $4+\frac{a}{11}=37$

Solve each equation.

b. $4 a-42=14$

BUILD YOUR VOCABULARY (pages 30-31)

Consecutive integers are integers in \square order, such as 7 , \square and 9.

The study of \square and the relationships between them is called number theory.

EXAMPLE

3) SHOPPING Susan had a $\$ 10$ coupon for the purchase of any item. She bought a coat that was $\frac{1}{2}$ its original price. After using the coupon, Susan paid $\mathbf{\$ 1 2 5}$ for the coat before taxes. What was the original price of the coat? Write an equation for the problem. Then solve the equation.

Words One-half of the price minus ten dollars is 125.

Variables
Let $p=$ the original price.

Equation
$\frac{1}{2} p-10=125$

$\frac{1}{2} p-10+10=125+10$

$2\left(\frac{1}{2} p\right)=2(135)$
$p=270$

Original equation

Simplify.

Multiply each side by \square
Simplify.

The solution is \square

Check Your Progress

Three-fourths of seven subtracted from a number is negative fifteen. What is the number?

WRITE IT

What is meant by undoing an equation?
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

EXAMPL:

4 NUMBER THEORY Write an equation for the problem below. Then solve the equation and answer the problem.
Find three consecutive odd integers whose sum is 57.
Let $n=$ the last odd integer.
Let $n+2=$ the next greater odd integer.
Let $n+4=$ the greatest of the three odd integers.

$n+(n+2)+(n+4)=57 \quad$ Original equation

$$
\square+6=57 \quad \text { Simplify }
$$

$$
3 n+6-6=57-6
$$

$$
3 n=\square
$$

$$
n=17
$$

$$
\begin{aligned}
& n+2=17+2 \text { or } \square \\
& n+4=17+4 \text { or } \square
\end{aligned}
$$

The consecutive odd integers are \square

Check Your Progress
Find three consecutive even integers whose sum is 84 .

2-5 Solving Equations with the Variable on Each Side

EXAMPLE Solve an Equation with Variables on Each Side

Main Ideas

- Solve equations with the variable on each side.
- Solve equations involving grouping symbols.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. Also addresses TEKS A.1(C) and $A .7(B)$.

(1) Solve $8+5 s=7 s-2$. Check your solution.

$$
\begin{aligned}
8+5 s & =7 s-2 \\
8+5 s-\square & =7 s-2-\square \\
8-2 s-\square & =-2 \\
-2 s & =\square \\
\frac{-2 s}{\square \square} & =\frac{-10}{\square} \\
s & =5
\end{aligned}
$$

Original equation
Subtract \square from each side.

Simplify.

Subtract \square from each side.

Simplify.
Divide each side by \square

Simplify.

EXAMPLE Solve an Equation with Grouping Symbols

2 Solve $\frac{1}{3}(18+12 q)=6(2 q-7)$. Check your solution.

Review It

Give an example of the Distributive Property. (Lesson 1-5)

FOLDABLES'

Organize it

On an index card, write an equation that has no solution.

Homework Assignment

EXAMPLE No Solutions or Identity

3 Solve each equation.

a. $8(5 c-2)=10(32+4 c)$

There must be at least one c to represent the variable. This equation has no solution.
b. $4(t+20)=\frac{1}{5}(20 t+400)$

$$
4(t+20)=\frac{1}{5}(20 t+400) \quad \text { Original equation }
$$

$\square=\square$ Distributive Property

Since the expression on each side of the equation is the \square, this equation is an identity. The statement $4 t+80=4 t+80$ is \quad for all values of t.

Check Your Progress Solve each equation.

a. $9 f-6=3 f+7$

b. $6(3 r-4)=\frac{3}{8}(46 r+8)$

c. $2(4 a+8)=\left(3 \frac{8 a}{3}-10\right)$

d. $\frac{1}{7}(21 c-56)=3\left(c-\frac{8}{3}\right)$

2-6 Ratios and Proportions

MAIN IDEAS

- Determine whether two ratios form a proportion.
- Solve proportions.

Remember It

A whole number can be written as a ratio with a denominator of 1.

TEKS A. 6 The
student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in realworld and mathematical situations. (G) Relate direct variation to linear functions and solve problems involving proportional change.

FOLDABLES

ORGANIZE IT

On an index card, explain the difference between a ratio and a proportion.

BUILD YOUR VOGABULARY (pages 30-31)

A ratio is a comparison of two numbers by \square
An equation stating that two ratios are \square is called a proportion.

In the proportion $\frac{0.4}{0.8}=\frac{0.7}{1.4}, 0.4$ and 1.4 are called the extremes and 0.8 and 0.7 are called the means.

EXAMPL 5 Determine Whether Ratios Form a Proportion

(1) Determine whether the ratios $\frac{4}{8}$ and $\frac{49}{56}$ form a proportion.

The ratios are \square Therefore, they form a proportion.

Check Your Progress
 Do the ratios $\frac{5}{6}$ and $\frac{40}{49}$ form a

 proportion?
EXAMPLE Use Cross Products

(2) Use cross products to determine whether the pair of ratios below forms a proportion.
a. $\frac{0.25}{0.6}, \frac{1.25}{2}$

Find the cross products.
Simplify.

The cross products are not equal, so $\frac{0.25}{0.6} \neq \frac{1.25}{2}$.
The ratios \square form a proportion.

Key Concept

Means-Extremes Property of Proportion In a proportion, the product of the extremes is equal to the product of the means.
b. $\frac{4}{5}, \frac{16}{20}$

$\square=5(16)$	Write the equation.
Find the cross products.	
Simplify.	
The cross products are \square, so $\frac{4}{5}=\frac{16}{20}$.	
Since the ratios are equal, they form a \square	

Check Your Progress

Use cross products to determine whether each pair of ratios below forms a proportion.
a. $\frac{0.5}{1.3}, \frac{0.45}{1.17}$

b. $\frac{5}{6}, \frac{12}{15}$

EXAMPLE Solve a Proportion

3 Solve the proportion $\frac{n}{12}=\frac{3}{8}$.

$$
8(n)=12(3)
$$

Original equation
Find the cross products.

Simplify.
Divide each side by \square.

$$
n=\square
$$

\square

Check Your Progress
Solve the proportion $\frac{r}{9}=\frac{7}{10}$.

BUILD YOUR VOGABULARY (pages 30-31)

\square of two measurements having \square units of measure is called a rate.

EXAMPLE Use Rates

3 BICYCLING The gear on a bicycle is $8: 5$. This means that for every eight turns of the pedals, the wheel turns five times. Suppose the bicycle wheel turns about 2435 times during a trip. How many times would you have to turn the pedals during the trip?

Homework Assignment

Page(s):
Exercises:

Your Turn Before 1980, Disney created animated movies using cels. These hand drawn cels (pictures) of the characters and scenery represented the action taking place, one step at a time. For the movie Snow White, it took 24 cels per second to have the characters move smoothly. The movie is around 42 minutes long. About how many cels were drawn to produce Snow White?

2-7 Percent of Change

MAIN IDEAS

- Find percents of increase and decrease.
- Solve problems involving percents of change.

TEKS A. 6 The
student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in realworld and mathematical situations. (G) Relate direct variation to linear functions and solve problems involving proportional change.

BUILD YOUR VOGABULARY (pages 30-31)

When an \square or \square is expressed as a percent, the percent is called the percent of change. If the new number is \square than the original number, the percent of change is a percent of increase. If the new number is \square than the original, the percent of change is a percent of decrease.

EXAMPL F Find Percent of Change

(1) State whether each percent of change is a percent of increase or a percent of decrease. Then find each percent of change.
original: 32
new: 40
Find the amount of change. Since the new amount is greater than the original, the percent of change is a percent of

Find the percent using the original number, 32, as the base.
$\begin{aligned} & \text { change } \longrightarrow \\ & \text { original amount }\end{aligned} \frac{8}{32}=\frac{r}{100}$

Divide each side by

The percent of increase is

Check Your Progress
State whether each percent of change is a percent of increase or a percent of decrease. Then find the percent of change.
a. original: 20
new: 18
\square
b. original: 12
new: 48
\square

EXAMPLE Find the Missing Value

2 SALES The price a used-book store pays to buy a book is $\mathbf{\$ 5}$. The store sells the book for $\mathbf{2 8 \%}$ above the price that it pays for the book. What is the selling price of the $\$ 5$ book?

Let $s=$ the selling price of the book. Since 28% is the percent of increase, the amount the used-book store pays to buy a book is less than the selling price. Therefore, $s-5$ represents the amount of change.

change $\longrightarrow$$\frac{s-5}{5}=\frac{28}{100}$			
book store cost \longrightarrow			
$(s-5)(100)$	$=5(28)$		Cross products
$100 s-500$	$=140$		Distributive Property
$100 s-500+\square$	$=140+\square$		Add \square
$100 s$	$=640$		to each side.
s	$=\square$		Simplify.

The selling price of the $\$ 5$ book is \square

Check Your Progress
At one store the price of a pair of jeans is $\$ 26.00$. At another store the same pair of jeans has a price that is 22% higher. What is the price of jeans at the second store?

Homework AssignMent

Page(s):
Exercises:

2-8 Solving Equations and Formulas

EXAMPLES Solve an Equation for a Specific Variable

Main IdeAs

- Solve equations for given variables.
- Use formulas to solve real-world problems.

TEKS A. 1 The
student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways.
(D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations.
(B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.4(A) and $A .7(B)$.
(1) Solve $5 b+12 c=9$ for b.

$$
\begin{array}{rlrl}
5 b+12 c & =9 & & \text { Original e } \\
5 b+12 c-\square & =9-\square & & \text { Subtract. } \\
5 b & =9-12 c & & \text { Simplify. } \\
\frac{5 b}{\square} & =\frac{9-12 c}{\square} & & \text { Divide ea } \\
b & =\frac{9-12 c}{5} & & \text { Simplify. } \\
\text { or } \frac{-12 c+9}{5} & \\
\text { The value of } b \text { is } &
\end{array}
$$

Original equation

Divide each side by \square

Solve $7 x-2 z=4-x y$ for x.

$$
\begin{aligned}
7 x-2 z & =4-x y \\
7 x-2 z+\square & =4-x y+\square \\
7 x-2 z+x y & =4
\end{aligned}
$$

$$
7 x-2 z+x y+\square=4+\square
$$

$$
\square=4+2 z
$$

$$
\square=4+2 z
$$

$$
\square=\frac{4+2 z}{7+y}
$$

Check Your Progress

a. Solve $2 x-17 y=13$ for y.
\square
b. Solve $12 a+3 c=2 a b+6$ for a.

EXAMPLE Use a Formula to Solve Problems

3 a. FUEL ECONOMY A car's fuel economy \boldsymbol{E} (miles per gallon) is given by the formula $E=\frac{m}{g}$, where m is the number of miles driven and g is the number of gallons of fuel used. Solve the formula for m.

$$
E=\frac{m}{g}
$$

Formula for fuel economy

Multiply each side by \qquad

Simplify.
b. FUEL ECONOMY If Claudia's car has an average fuel consumption of 30 miles per gallon and she used 9.5 gallons, how far did she drive?

She drove \square miles.

Check Your Progress

a. Refer to Example 3. Solve the formula for g.
b. If Claudia drove 1477 miles and her pickup has an average fuel consumption of 19 miles per gallon, how many gallons of fuel did she use?

EXAMPLE Use Dimensional Analysis

a. GEOMETRY The formula for the volume of a cylinder is $V=\pi r^{2} h$, where r is the radius of the cylinder and h is the height. Solve the formula for h.
$V=\pi r^{2} h \quad$ Original formula

Divide each side by \square

b. What is the height of a cylindrical swimming pool that has a radius of $\mathbf{1 2}$ feet and a volume of 1810 cubic feet?

$\frac{1810}{\pi 12^{2}}=h$

$=h$

Formula for h

Use a calculator.

The height of the cylindrical swimming pool is about \square

Check Your Progress

a. The formula for the volume of a cylinder is $V=\pi r^{2} h$, where r is the radius of the cylinder and h is the height. Solve the formula for r.

b. What is the radius of a cylindrical swimming pool if the volume is 2010 cubic feet and a height of 6 feet?

Main Ideas

- Solve mixture problems.
- Solve uniform motion problems.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.4(A).

BUILD YOUR VOGABULARY (pages 30-31)

The weighted average M of a set of data is the sum of the product of the number of units and the value per unit divided by the sum of the number of units.

EXAMPLE Solve a Mixture Problem with Prices

(1) PETS Jeri likes to feed her cat gourmet cat food that costs $\$ 1.75$ per pound. However, food at that price is too expensive so she combines it with cheaper cat food that costs $\$ 0.50$ per pound. How many pounds of cheaper food should Jeri buy to go with 5 pounds of gourmet food, if she wants the price to be $\mathbf{\$ 1 . 0 0}$ per pound?
Let $w=$ the number of pounds of cheaper cat food.

Type of Cat Food	Units (lb)	Price per Unit	Price
Gourmet cat food			
Cheaper cat food	w	$\$ 0.50$	$0.5 w$
Mixed cat food		$\$ 1.00$	

Price of gourmet cat food	plus	price of cheaper cat food	equals	price of mixed cat food.
8.75	+	$0.5 w$	$=$	$1.00(5+w)$
$8.75+$	0.5w	$=1.00(5+w)$		Original equation
$8.75+$	$0.5 w$			Distributive Property
$8.75+0.5 w-$		$5.0+1 w-$		Subtract.
	8.75	$=5.0+0.5 w$		Simplify.
8.75	- 5.0	$=5.0+0.5 w-5$		Subtract.
	3.75	$=0.5 w$		Simplify.
	7.5	$=w$		Divide.

FOLDABLES

ORGANIZE IT

On an index card, take notes on mixture problems and uniform motion problems.

Homework
 Assignment

Check Your Progress
A recipe calls for mixed nuts with 50% peanuts. $\frac{1}{2}$ pound of 15% peanuts has already been used. How many pounds of 75% peanuts needs to be added to obtain the required 50% mix?
\square

EXAMPLE Solve for an Average Speed

2 AIR TRAVEL Mirasol took a non-stop flight from Newark to Austin to visit her grandmother. The 1500 -mile trip took three hours and 45 minutes. Because of bad weather, the return trip took four hours and 45 minutes. What was her average speed for the round trip?

To find the average speed for each leg of the trip, rewrite
$d=r t$ as $r=\frac{d}{t}$.
Going
$r=\frac{d}{t}=\frac{1500 \text { miles }}{\square \text { hours }}$ or \square miles per hour
Returning
$r=\frac{d}{t}=\frac{1500 \text { miles }}{\square \text { hours }}$ or \square miles per hour
Round trip
$M=\frac{400(1)+315.79(2)}{1+2} \quad \begin{aligned} & \text { Definition of weighted } \\ & \text { average }\end{aligned}$
\square
The average speed was about \square miles per hour.

Check Your Progress

In the morning, when traffic is light, it takes 30 minutes to get to work. The trip is 15 miles through towns. In the afternoon when traffic is a little heavier, it takes 45 minutes. What is the average speed for the round trip?

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 2 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 2, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 30-31) to help you solve the puzzle.

2-1

Writing Equations

Translate each sentence into an equation.

1. Two times the sum of x and three minus four equals four times x
\square
2. The difference of k and 3 is two times k divided by five.
\square

2-2

Solving Equations by Using Addition and Subtraction

Complete each sentence.

3. To solve $y-9=-30$ using the Addition Property of Equality, you would add \square to each side.
4. Write an equation that you could solve by subtracting 32 from each side.
\square

2-3

Solving Equations by Using Multiplication or Division

Complete the sentence after each equation to tell how you would solve the equation.
5. $\frac{x}{7}=16$ \square each side by \square
6. $5 x=125$ \square each side by \square or multiply each side by

2-4

Solving Multi-Step Equations

Suppose you want to solve $\frac{x+3}{5}=6$.
7. What is the grouping symbol in the equation $\frac{x+3}{5}=6$?
\square
8. What is the first step in solving the equation?
\square
9. What is the next step in solving the equation?
\square

2-5

Solving Equations with the Variable on Each Side

10. When solving $2(3 x-4)=3(x+5)$, why is it helpful first to use the Distributive Property to remove the grouping symbols?

The solutions of three equations are shown in Exercises 11-13. Write a sentence to describe each solution.
11. $x=24$
12. $6 m=6 m$

13. $12=37$ \square

2-6

Ratios and Proportions

14. A jet flying at a steady speed traveled 825 miles in 2 hours. If you solved the proportion $\frac{825}{2}=\frac{x}{1.5}$, what would the answer tell you about the jet?

Solve each proportion.

15. $\frac{10}{a}=\frac{60}{108}$
16. $\frac{b}{32}=\frac{12}{8}$
17. $\frac{3}{7}=\frac{x-2}{6}$

2-7

Percent of Change
Match the problem on the left with its answer on the right.
18. Original Amount $=10$

New Amount $=13$

a. 30% increase
19. Original Amount $=10$

New Amount = 7

20. Original Amount $=50$

New Amount $=42$

21. Original Amount $=50$

New Amount $=58$

2-8

Solving Equations and Formulas

Solve each equation or formula for the variable specified.
22. $7 f+g=5$ for f
23. $\frac{r x+9}{5}=h$ for r
24. $3 y+w=5+5 y$ for y

2-9

Weighted Averages
25. Suppose Clint drives at 50 miles per hour for 2 hours. Then he drives at 60 miles per hour for 3 hours. Write his speed for each hour of the trip.

Speed	\square	\square	\square	\square	\square
Hour	1	2	3	4	5

26. What is his average speed? \square
27. How many grams of sugar must be added to 60 grams of a solution that is 32% sugar to obtain a solution that is 50% sugar?

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 133 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 128-132 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 135.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldable.
- Then complete the Chapter 2 Study Guide and Review on pages 128-132 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 133.

Student Signature

Parent/Guardian Signature

Functions and Patterns

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with four sheets of grid paper.

STEP 1 Fold each sheet of grid paper in half from top to bottom.

STEP 2 Cut along fold. Staple the eight half-sheets together to form a booklet.

STEP 4 Label each of the tabs with a lesson number.

The top tab is 4 lines wide, the next tab is 8 lines wide, and so on.

NOTE-TAKING TIP: When you take notes, be sure to listen actively. Always think before you write, but don't get behind in your note-taking. Remember to enter your notes legibly.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
arithmetic sequence			
common difference			
function			
function notation			
function value			
inverse			
linear equation			
mapping			

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Vocabulary Term	Found on Page	Definition sequence	
standard form			Description or Example
verms			
vertical line test			
y-intercept			
x-intercept			

3-1 Representing Relations

MAIN IDEAS

- Represent relations as sets of ordered pairs, tables, mappings, and graphs.
- Find the inverse of a relation.

TEKS A. 1 The
student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways.
(D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities.
A. 2 The student uses the properties and attributes of functions.
(B) Identify mathematical domains and ranges and determine reasonable domain and range values for given situations, both continuous and discrete.

BUILD YOUR VOGABULARY (pages 60-61)

A mapping illustrates how each element of the \square is paired with an element in the \square
The inverse of any relation is obtained by switching the

EXAMPLE Represent a Relation

1 Express the relation $\{(4,3),(-2,-1),(-3,2),(2,-4)$, $(0,-4)\}$ as a table, a graph, and a mapping.

Table

List the set of x-coordinates in the first column and the corresponding y-coordinates in the second column.

Graph

Graph each ordered pair on a coordinate plane.

Mapping

List the x values in set X and the y values in set Y. Draw an arrow from each x value in X to the corresponding y value in Y.

Check Your Progress

Express the relation $\{(3,-2),(4,6)$, $(5,2),(-1,3)\}$ as a table, a graph, and a mapping.

EXAMPLE Use a Relation

2) OPINION POLLS The table shows the percent of people satisfied with the way things were going in the U.S. at the time of the survey.
a. Determine the domain and range of the relation.

The domain is

Year	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 8}$	$\mathbf{2 0 0 1}$
Percent Satisfied	21	32	60	51

\square
The range is \square
b. Graph the data.

The values of the x-axis need to go from 1992 to 2001. Begin at 1992 and extend to 2001 to include all of the data. The units can be 1 unit per grid square.
The values on the y-axis need to go from 21 to 60. Begin at 0 and extend to 70 . You can use units of 10 .

c. What conclusions might you make from the graph of the data?

Americans became more satisfied with the country
from \square , but the percentage dropped from

Check Your Progress
The table shows the approximate world population of the Indian Rhinoceros from 1982 to 1998.

Indian Rhinoceros Population					
Year	1982	1986	1990	1994	1998
Population	1000	1700	1700	1900	2100

a. Determine the domain and range of the relation.

Key Concept

Inverse of a Relation

Relation Q is the inverse of relation S if and only if for every ordered pair (a, b) in S, there is an ordered pair (b, a) in Q.

FOLDABLES Under the tab for Lesson 3-1. Write a relation with four ordered pairs. Then find the inverse of the relation.

Homework Assignment

Page(s):

Exercises:

3-2 Representing Functions

EXAMPLE Identify Functions

MAIN IdeAs

Determine whether a relation is a function.

- Find function values.

Key Concept

A function is a relation in which each element of the domain is paired with exactly one element of the range.

FOLDABLES Use the tab for Lesson 3-2. Explain two ways to determine whether a relation is a function.

TEKS A. 4 The
student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (C) Connect equation notation with function notation, such as $y=x+1$ and $f(x)=x+1$. A. 5 The student understands that linear functions can be represented in different ways and translates among their various representations. (C) Use, translate, and make connections among algebraic, tabular, graphical, or verbal descriptions of linear functions.

1) a. Determine whether each relation is a function.

 Explain.

This is a function because the mapping shows each element of the
\square paired with exactly one member of the \square
b.

x	\boldsymbol{y}
-7	-12
-4	-9
2	-3
5	0

This table represents a function because the table shows each element of the domain paired with \square element of the range.

Check Your Progress Determine whether each relation is a function. Explain.
a.

b.

x	y
3	2
1	-2
2	-4
3	-1

EXAMPLE Function Values

2. a. If $f(x)=3 x-4$, find $f(4)$.

Replace x with 4 .
$=12-4$
$=\square$

Multiply.
Subtract.
b. If $f(x)=3 x-4$, find $f(-5)$.

$f(\square)$	$=3(\square)-4$		Replace x with -5.
	$=\square-4$		Multiply.
	$=-19$		Subtract.

Check Your Progress

If $f(x)=2 x+5$, find each value.
a. $f(-8)$
b. $f(x+3)$

EXAMPLE

3 PHYSICS The function $h(t)=160 t+16 t^{2}$ represents the height of an object ejected downward from an airplane at a rate of 160 feet per second.
a. Find the value $h(3)$.

$=480+144 \quad$ Multiply.
$=\square$
Simplify.
b. Find the value $\boldsymbol{h}(2 z)$.

$$
\begin{aligned}
h(2 z) & =160(2 z)+16(2 z)^{2} \\
& =\square+\square
\end{aligned}
$$

\square
Multiply.

Check Your Progress The function $h(t)=180-16 t^{2}$ represents the height of a ball thrown from a cliff that is 180 feet above the ground. Find each value.
a. $h(2)$

b. $h(3 z)$

3-3 Linear Functions

TEKS A. 5 The student understands that linear functions can be represented in different ways and translates among their various representations. (B) Determine the domain and range for linear functions in given situations.

MAIN IDEAS

- Determine whether an equation is linear.
- Graph linear equations.

Key Concept

Standard Form of a Linear Equation The standard form of a linear equation is $A x+B y=C$, where $A \geq 0, A$ and B are not both zero, and A, B, and C are integers whose greatest common factor is 1 .

Foldables On the Lesson 3-3 tab, write an example of a linear equation and one that is not linear. Draw a graph of the linear equation.

TEKS A. 6 The

 student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations.(B) Interpret the meaning of slope and intercepts in situations using data, symbolic representations, or graphs. (E) Determine the intercepts of the graphs of linear functions and zeros of linear functions from graphs, tables, and algebraic representations. Also addresses TEKS A.5(A), A.5(C), A.7(B), and A.7(C).

BUILD YOUR VOGABULARY (pages 60-61)

A linear equation is the equation of a line. When an equation is written in the form $A x+B y=C$, it is said to be in standard form.

EXAMPLE Identifying Linear Equations

(1) Determine whether each equation is a linear equation. If so, write the equation in standard form.
a. $5 x+3 y=z+2$

Rewrite the equation with the variables on one side.

$$
\begin{aligned}
5 x+3 y & =z+2 & & \text { Original equation } \\
5 x+3 y-z & =z+2-z & & \text { Subtract. } \\
5 x+3 y-z & =2 & & \text { Simplify. }
\end{aligned}
$$

Since there are \square different variables on the left side of the equation, it \square be written in the form
$A x+B y=\mathrm{C}$. This is not a \square
b. $\frac{3}{4} x=y+8$

Rewrite the equation with the variables on one side.

$$
\begin{aligned}
\frac{3}{4} x & =y+8 \\
\frac{3}{4} x-y & =y+8-y \\
\frac{3}{4} x-y & =8
\end{aligned}
$$

Original equation

$$
\text { Subtract } y \text { from each side. }
$$

Simplify.

Write the equation with integer coefficients.

$$
\begin{aligned}
\frac{3}{4} x-y & =8 \\
x)-4(y) & =8(4 \\
3 x-4 y & =32
\end{aligned}
$$

$$
4\left(\frac{3}{4} x\right)-4(y)=8(4) \quad \text { Multiply each side by } 4
$$

Simplify.

The equation is now in standard form where $A=$ \square $B=\square$, and $C=\square$. This is a \square equation.

EXAMPLE

(2) WATER STORAGE A storage tank contains water. A valve is opened, and the water is drained, as shown in the graph.

a. Determine the x-intercept, y-intercept, and zero.

The x-intercept is \square because it is the coordinate where the line crosses the x-axis. The zero of the function is also 4 . The y-intercept is \square because it is the coordinate of the point where the line crosses the y-axis.
b. Describe what the intercepts mean.

The x-intercept 4 means that after 4 minutes, there are
\square gallons of water left in the tank.
The y-intercept of 200 means that at time 0 , or before any water was drained, there were \square gallons of water in the tank.

Check Your Progress BANKING Janine has money in a checking account. She begins withdrawing a constant amount of money each month as shown in the graph.

a. Determine the x-intercept, y-intercept, and zero.

b. Describe what the intercepts mean.

EXAMPLE Graph Using Intercepts

(3) Graph $4 x-y=4$ using the x-intercept and y-intercept.

To find the x-intercept, let $y=0$.

$$
4 x-y=4
$$

$$
\begin{aligned}
4 x-\square & =4 \\
4 x & =4
\end{aligned}
$$

$$
x=\square
$$

The x-intercept is 1 , so the graph intersects the x-axis at \square The y-intercept is -4 , so the graph intersects the y-axis at \square Plot these points. Then draw a line To find the y-intercept, let $x=0$.

$$
4 x-y=4
$$

\square

$$
-y=4
$$

$$
-y=4
$$

$$
y=\square
$$ x-intercept and y-intercept.

Homework

 AssignmentPage(s):
Exercises:

3-4 Arithmetic Sequences

TEKS A. 3 The student understands how algebra can be used to express generalizations and recognizes and uses the power of symbols to represent situations. (B) Look for patterns and represent generalizations algebraically.

EXAMPLES Identify Arithmetic Sequences

Main IdeAs

Recognize arithmetic sequences.

- Extend and write formulas for arithmetic sequences.

Key Concept

Arithmetic Sequence An arithmetic sequence is a numerical pattern that increases or decreases at a constant rate or value called the common difference.
(1) Determine whether each sequence is arithmetic. Explain.
a. $-15,-13,-11,-9, \ldots$

This an arithmetic sequence because the difference between terms is

b. $\frac{7}{8}, \frac{5}{8}, \frac{1}{8},-\frac{5}{8}, \ldots$

This \square an arithmetic sequence because the difference is \square

2 MONEY The arithmetic sequence $1,10,19,28, \ldots$ represents the total number of dollars Erin has in her account after her weekly allowance is added.
a. Write an equation for the nth term of the sequence. In this sequence, the first term, a_{1}, is 2 . Find the common difference.

The common difference is

Use the formula for the nth term to write an equation.
$a_{n}=a_{1}+(n-1) d \quad$ Formula for the nth term
$a_{n}=1+(n-1)(9) \quad a_{1}=\square, d=\square$
$a_{n}=1+9 n-9 \quad$ Distributive Property
$a_{n}=\square \quad$ Simplify.

Key Concept

nth Term of an Arithmetic Sequence The nth term a_{n} of an arithmetic sequence with first term a_{1} and common difference d is given by $a_{n}=a_{1}+(n-1) d$, when n is a positive integer.

FOLDABLES Use the tab for Lesson 3-4. Write the general form for an arithmetic sequence. Explain what each of the variables means.

Key Concept

Writing Arithmetic Sequences Each term of an arithmetic sequence after the first term can be found by adding the common difference to the preceding term.

HoMEWORK ASSIGNMENT

Page(s):

Check: For $n=1,9(1)-8=$ \square

$$
\begin{aligned}
& \text { For } n=2,9(2)-8=\square . \\
& \text { For } n=3,9(3)-8=\square \text {, and so on. }
\end{aligned}
$$

b. Find the 12 th term in the sequence.

Replace n with 12 in the equation written in part \mathbf{a}.
$a_{n}=9 n-8 \quad$ Equation for the nth term
$a_{25}=9(12)-8$
$a_{25}=$
Replace n with \square
Simplify.
c. Graph the first five terms of the sequence.

\boldsymbol{n}	$9 \boldsymbol{n}-\mathbf{8}$	$\boldsymbol{a}_{\boldsymbol{n}}$	$\left(\boldsymbol{n}, \boldsymbol{a}_{\boldsymbol{n}}\right)$
1	$9(1)-8$	1	$(1,1)$
2	$9(2)-8$	10	$(2,10)$
3	$9(3)-8$	19	$(3,19)$
4	$9(4)-8$	28	$(4,28)$
5	$9(5)-8$	37	$(5,37)$

The points fall on a line. The graph of an arithmetic sequence is \square

Check Your Progress
MONEY The arithmetic sequence $2,7,12,17 \ldots$ represents the total number of pencils Claire has in her collection after she goes to her school store each week.
a. Write an equation for the nth term of the sequence.
\square
b. Find the 12 th term in the sequence
\square
c. Graph the first five terms of the sequence.

3-5 Proportional and Nonproportional Relationships

EXAMPLE Proportional Relationships

Main Ideas

- Look for a pattern.
- Write an equation given some of the solutions.

I
TEKS A. 3 The
student understands how algebra can be used to express generalizations and recognizes and uses the power of symbols to represent situations. (B) Look for patterns and represent generalizations algebraically. A. 5 The student understands that linear functions can be represented in different ways and translates among their various representations. (C) Use, translate, and make connections among algebraic, tabular, graphical, or verbal descriptions of linear functions.

FOLDABLES

ORGANIZE IT

On the tab for Lesson 3-5, write two ways you can decide what a pattern is in a sequence.

(1) ENERGY The table

 shows the number of miles driven for each hour of driving.| Hours | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Miles | 50 | 100 | 150 | 200 |

a. Graph the data. What conclusion can you make about the relationship between the number of hours driving and the number of miles driven?

This graph shows a
\square relationship
between the number of hours h and the number of miles driven m.

b. Write an equation to describe this relationship.

Look at the relationship between the domain and the range to find a pattern that can be described as an equation.

The difference of the values for h is \square and the difference of the values for m is \square. This suggests that $m=\square$. Since the relation is also a \square we can write the equation as $f(h)=$ \square , where $f(h)$ represents the number of \square

Check Your Progress
The table below shows the number of miles walked for each hour of walking.

Hours	1	2	3	4	5
Miles	1.5	3	4.5	6	7.5

a. Graph the data. What conclusion can you make about the relationship between the number of miles and the time spent walking?

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
b. Write an equation to describe the relationship.

EXAMPLE

(2) Write an equation in function notation for the relation graphed below.

Make a table of ordered pairs for several points of the graph.

(continued on the next page)

Homework ASSIGNMENT

Page(s):
Exercises:
The difference in the x values is \square and the difference in the y values is \square The difference in y values is

the difference of the x values. This suggests that \square Check this equation.
Check If $x=1$, then $y=\square$ or 3. But the y value for $x=1$ is 1 . This is a difference of \square. Try some other values in the domain to see if the same difference occurs.

\boldsymbol{x}	1	2	3	4	5
$3 \boldsymbol{x}$	3			12	
\boldsymbol{y}		4	7		13

y is always \square less than $3 x$.
This pattern suggests that 2 should be \square from one side of the equation in order to correctly describe the relation. Check $y=3 x-2$.
If $x=2$, then $y=\square$.
If $x=3$, then $y=\square$.
\square correctly describes this relation. Since this
relation is also a \square , we can write the equation in function notation as \square
Check Your Progress Write an equation in function notation for the relation graphed below.

STUDY GUIDE

Foldables

Use your Chapter 3 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 60-61) to help you solve the puzzle.
2. Write the inverse of the relation $\{(1,2),(2,4),(3,6),(4,8)\}$.
\square

3-2
Representing Functions
3. Describe how the mapping shows that the relation represented is a function.

\square

3-3

Linear Functions

Determine whether each equation is a linear equation. If so, write the equation in standard form.

Equation	Linear or nonlinear?	Standard Form
$4 x y+2 y=7$	\square	\square
5.	\square	
$\frac{x}{5}-\frac{4 y}{3}=2$		

3-4

Arithmetic Sequences

Complete the table.
6.

Pattern	Is the sequence increasing or decreasing?	Is there common difference? If so, what is it?
$55,50,45,40, \ldots$	\square	\square
$1,2,4,9,16, \ldots$		\square
$\frac{1}{2}, 0,-\frac{1}{2},-1, \ldots$		\square

3-5
Proportional and Nonproportional Relationships
9. Explain why Figure 5 does not follow the pattern below.

1

2

3

4

5

10. Write the next 3 terms of the sequence $1,5,25,125, \ldots$.
\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 179 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 175-178 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 179.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 175-178 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 179.

Student Signature

Parent/Guardian Signature

Teacher Signature

Analyzing Linear Equations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with ten sheets of grid paper.

STEP 1 Fold each sheet of grid paper in half along the width. Then cut along the crease.

STEP 2 Staple the eight half-sheets together to form a booklet.

STEP 3 Cut seven lines from the bottom of the top sheet, six lines from the second sheet, and so on.

STEP 4 Label each of the tabs with a lesson number. The last tab is for the vocabulary

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
best-fit line			
constant of variation			
direct variation			
family of graphs			
line of fit			
linear extrapolation [ihk•stra•puh•LAY•shun]			
linear intrapolation [ihn•tuhr•puh•LAY•shun]			
negative correlation [kawr•uh•LAY•shun]			
parallel lines			
parent graph			

Vocabulary Term	Found on Page	Definition	Description or Example
perpendicular lines [puhr•puhn•DIH•kyuh•luhr]			
point-slope form			
positive correlation			
rate of change			
scatter plot			
slope			
slope-intercept form [IHN•tuhr•sehpt]			

4-1 Rate of Change and Slope

Main Ideas

- Use rate of change to solve problems.
- Find the slope of a line.

Key Concept

Slope of a Line The slope of a line is the ratio of the rise to the run.

Foldables

Write the formula for finding the slope of a line under the tab for Lesson 4-1.

TEKS A. 6 The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in realworld and mathematical situations. (A) Develop the concept of slope as rate of change and determine slopes from graphs, tables, and algebraic representations. (B) Interpret the meaning of slope and intercepts in situations using data, symbolic representations, or graphs. Also addresses TEKS A.3(B).

BUILD YOUR VOCABULARY (pages 80-81)

The rate of change tells, on average, how a quantity is changing over time.

The slope of a line is a number determined by any two points on the line.

EXAMPLE

(1) DRIVING TIME The table shows how the distance traveled changes with the number of hours driven. Use the table to find the rate of change. Explain the meaning if the rate of change.

Time Driving (h) \boldsymbol{x}	Distance Traveled (mi) \boldsymbol{y}
2	76
4	152
6	228

Each time x increases by \square hours, y increases by \square miles. rate of change $=\frac{\text { change in } y}{\text { change in } x}$

$$
=\frac{152-76}{4-2}
$$

The rate of change is $\frac{38}{1}$. This means the speed traveled is

Check Your Progress

CELL PHONE The table shows how the cost changes with the number of minutes used. Use the table to find the rate of change. Explain the meaning of the rate of change.

Minutes Used \boldsymbol{x}	Cost (\$) \boldsymbol{y}
20	1
40	2
60	3

A rate of change is $\frac{.05}{1}$; This means that it costs $\$ 0.05$ per minute to use the cell phone.
B rate of change is $\frac{5}{1}$; This means that it costs $\$ 5$ per minute to use the cell phone.

C rate of change is $\frac{.05}{1}$; This means that it costs $\$ 0.50$ per minute to use the cell phone.
D rate of change is $\frac{.20}{1}$; This means that it costs $\$ 0.20$ per minute to use the cell phone.

EXAMPLE

2. TRAVEL The graph to the right shows the number of U.S. passports issued in 2000, 2002, and 2004.
a. Find the rates of change for 2000-2002 and 2002-2004.
Use the formula for slope.

The number of passports issued decreased by 1 million in a

Review It

Describe how you find cross products. (Lesson 2-6)
\qquad
\qquad
\qquad
\qquad
Check Your Progress
AIRLINES The graph shows the number of airplane departures in the United States in recent years.
a. Find the rates of change for 1990-1995 and 1995-2000.

U.S. Airline Departures

b. Explain the meaning of the slope in each case.

c. How are the different rates of changes shown on the graph?
\square

EXAMPLE Finding Slope

(3) Find the slope of the line that passes through ($-3,-4$) and ($-2,-8$).

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \frac{\text { rise }}{\text { run }}
$$

Check Your Progress
Find the slope of the line that passes through $(-3,4)$ and $(4,4)$.

4-2 Slope and Direct Variation

MAIN IDEAS

- Write and graph direct variation equations.
- Solve problems involving direct variation.

TEKS A. 6 The
student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in realworld and mathematical situations. (F) Interpret and predict the effects of changing slope and y-intercept in applied situations. (G) Relate direct variation to linear functions and solve problems involving proportional change. Also addresses TEKS A.5(C) and A.7(A).

BUILD YOUR VOGABULARY (pages 80-81)

A direct variation is described by an equation of the form \square , where $\mathrm{k} \neq 0$.

In the equation $y=k x$, \square is the constant of variation.

A family of graphs includes graphs and equations of graphs that have at least \square characteristic in common.

EXAMPLE Graph a Direct Variation

(1) Graph each equation.

a. $y=x$

Recall that the slope of the graph of $y=k x$ is k.
Step 1 Write the slope as a ratio.

$$
1=\square \quad \frac{\text { rise }}{\text { run }}
$$

Step 2 Graph (0,0).
Step 3 From the point (0,0), move up

Draw a dot.
Step 4 Draw a line containing the points.
b. $y=-\frac{3}{2} x$

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Step 1 Write the slope as a ratio.

$$
-\frac{3}{2}=\square \frac{\text { rise }}{\text { run }}
$$

Step 2 Graph (0,0).
Step 3 From the point $(0,0)$, move
 3 units and right
units. Draw a dot.
Step 4 Draw a line containing the points.

FOLDABLES'

Organize IT

Under the tab for Lesson 4-2, give an example of a direct variation equation and its graph.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

HoMEWORK

 ASSIGNMENTPage(s):
Exercises:

Check Your Progress
Graph each equation.
a. $y=2 x$
b. $y=-\frac{2}{3} x$

EXAMPLE Write and Solve a Direct Variation Equation

2) Suppose y varies directly as x, and $y=9$ when $x=-3$.
a. Write a direct variation equation that relates \boldsymbol{x} and \boldsymbol{y}.

$$
y=k x \quad \text { Direct variation formula }
$$

$\frac{9}{-3}=\frac{k(-3)}{-3}$

Divide each side by \square Simplify.

Therefore $y=$ \square
b. Use the direct variation equation to find x when $y=15$.

Check Your Progress
 Suppose y varies directly as x,

 and $y=15$ when $x=5$.a. Write a direct variation equation that relates x and y.
b. Use the direct variation equation to find x when $y=-45$.

4-3 Graphing Equations in Slope-Intercept Form

BUILD YOUR VOGABULARY (pages 80-81)

MAIN IDEAS

Write and graph linear equations in slopeintercept form.

- Model real-world data with an equation in slope-intercept form.

TEKS A. 1 The
student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verbal descriptions, equations, and inequalities. A. 6 The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations.
(D) Graph and write equations of lines given characteristics such as two points, a point and a slope, or a slope and y-intercept. Also addresses TEKS A.5(C), A.7(A), A.7(B), and A.7(C)

Key Concept

Slope-Intercept Form The linear equation $y=m x+b$ is written in slope-intercept form, where m is the slope and b is the y-intercept.

An equation of the form \square is in the
slope-intercept form.

EXAMPLE Write an Equation Given Slope and y-intercept

1) Write an equation of the line whose slope is $\frac{1}{4}$ and whose \boldsymbol{y}-intercept is $\mathbf{- 6}$.
$y=m x+b \quad$ Slope-intercept form
$y=\frac{1}{4} x-6 \quad$ Replace m with \square and b with \square.
Check Your Progress Write an equation of the line whose slope is 4 and whose y-intercept is 3 .

EXAMPLE Write an Equation from a Graph

2 Write an equation in slopeintercept form of the line shown in the graph.
Step 1 You know the coordinates of two points on the line. Find the slope. Let
$\left(x_{1}, y_{1}\right)=(0,-3)$ and
$\left(x_{2}, y_{2}\right)=(2,1)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\frac{\text { rise }}{\text { run }}$

Step 2 The line crosses the y-axis at \square
So, the y-intercept is \square

Step 3 Finally, write the equation.

$$
\begin{array}{ll}
y=m x+b & \text { Slope-intercept form } \\
y=2 x-3 & \text { Replace } m \text { with } \square \text { and } b \text { with } \square .
\end{array}
$$

The equation of the line is $y=$ \square

Check Your Progress

Write an equation of the line shown in the graph.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Write It

Which type of lines, vertical or horizontal, can be written in slope-intercept form?
\qquad
\qquad

EXAMPLE Graph Equations

(3) Graph each equation.
a. $y=0.5 x-7$

Step 1 The y-intercept is

So graph \square

Step 2 The slope is 0.5 or

From ($0,-7$), move up

Draw a dot.
Step 3 Draw a line connecting the points.

FOLDABLES

ORGANIZE IT

On the tab for Lesson 4-3, write the slopeintercept form of a linear equation. Under the tab, describe how to use the slope and intercept to graph of $y=4 x+3$.

Homework Assignment

Page(s):
Exercises:
b. $5 x+4 y=8$

Step 1 Solve for y to find the slope-intercept form.

$$
5 x+4 y=8
$$

Original Equation
$5 x+4 y-\square=8-\square$ Subtract \square from each side.

$$
4 y=8-5 x \quad \text { Simplify }
$$

$4 y=-5 x+8$
$8-5 x=8+(-5 x)$ or $-5 x+8$

Divide each side by

$\frac{4 y}{4}=\frac{-5 x}{4}+\frac{8}{4} \quad \begin{aligned} & \text { Divide each term in the } \\ & \text { numerator by } 4 .\end{aligned}$

Step 2 The y-intercept of

Step 3 The slope is

From (0, 2), move
 5 units and \square 4 units. Draw a dot.

Step 4 Draw a line connecting the points.

Check Your Progress

Graph each equation.
a. $y=2 x-4$

b. $3 x+2 y=6$

4-4 Writing Equations in Slope-Intercept Form

MAIN IDEAS

- Write an equation of a line given the slope and one point on a line.
- Write an equation of a line given two points on the line.

TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (D) Represent relationships among quantities using concrete models, tables, graphs, diagrams, verba descriptions, equations, and inequalities. A. 6 The student understands the meaning of the slope and linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in real-world and mathematical situations. (D) Graph and write equations of lines given characteristics such as two points, a point and a slope, or a slope and y-intercept. Also addresses TEKS A.7(B).

BUILD YOUR VOGABULARY (pages 80-81)

When you use a linear equation to \square values that are beyond the range of the data, you are using linear extrapolation.

EXAMPLE Write an Equation Given Slope and One Point

(1) Write an equation of a line that passes through $(2,-3)$

 with slope $\frac{1}{2}$.Step 1 The line has slope $\frac{1}{2}$. To find the y-intercept, replace m with $\frac{1}{2}$ and (x, y) with $(2,-3)$ in the slope-intercept form. Then, solve for b.

y	$=m x+b$		Slope-intercept form
-3	$=\frac{1}{2}(2)+b$	Replace m with $\frac{1}{2}, y$ with -3, and x with 2.	
-3	$=\square+b$	\square.	
$-3-\square$	$=1+b-\square$	Subtract \square from each side.	
\square	$=b$		Simplify.

Step 2 Write the slope-intercept form using $m=$ and b with

$y=m x+b \quad$ Slope-intercept form
$y=\square$

The equation is $y=$ \square
Check Your Progress
Write an equation of a line that passes through $(1,4)$ and has a slope of -3 .

Organize IT

Under the tab for Lesson 4-4, explain how to write an equation given slope and one point and given two points. Include examples.

Homework
 Assignment

EXAMPLE Write an Equation Given Two Points

2. The table of ordered pairs shows the coordinates of two points on the graph of a function. Write an equation that describes that function.

x	y
-3	-4
-2	-8

The table represents the ordered pairs
\square
Step 1 Find the slope of the line containing the points.
$\operatorname{Let}\left(x_{1}, y_{1}\right)=(-3,-4)$ and $\left(x_{2}, y_{2}\right)=(-2,-8)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$x_{1}=-3, x_{2}=-2$,
$y_{1}=-4, y_{2}=-8$
$m=\square$ or \square
Simplify.
Step 2 You know the slope and two points. Choose one point and find the y-intercept. In this case, we chose $(-3,-4)$.

$$
\begin{aligned}
y & =m x+b \\
-4 & =-4(-3)+b
\end{aligned}
$$

Slope-intercept form

$$
\text { Replace } m \text { with } \square, x \text { with }
$$

 and y with \square

$$
\begin{array}{cll}
-4=12+b & \text { Multiply. } \\
-4-\square=12+b-\square & \text { Subtract. } \\
\square=b & \text { Simplify. }
\end{array}
$$

Simplify.

Step 3 Write the slope-intercept form using

$$
\begin{aligned}
& m=\square \text { and } b=\square . \\
& y=m x+b \\
& y=\square
\end{aligned}
$$

Slope-intercept form
Replace m with -4 and b with -16.
The equation is $y=\square$.
Check Your Progress The table of ordered pairs shows the coordinates of two points on the graph of a function. Write an equation that describes the function.

x	y
-1	4
2	6

4-5 Writing Equations in Point-Slope Form

EXAMPLE Write an Equation Given Slope and a Point

Main Ideas

Write the equation of a line in point-slope form.

- Write linear equations in different forms.

!TEKS A. 6 The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in realworld and mathematical situations. (A) Develop the concept of slope as rate of change and determine slopes from graphs, tables, and algebraic representations. A. 7 The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, graphs, and the properties of equality, select a method, and solve the equations and inequalities.

(1) Write the point-slope form of an

 equation for a line that passesthrough $(-2,0)$ with slope $-\frac{3}{2}$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-0 & =-\frac{3}{2}[x-(-2)]
\end{aligned}
$$

Point-slope form
$\left(x_{1}, y_{1}\right)=(-2,0)$

Simplify.

The equation is $y=$ \square

EXAMPLE Write an Equation Given Slope and a Point

(2) Write the point-slope form of an equation for a horizontal line that passes through (0,5).

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Point-slope form

$$
\left(x_{1}, y_{1}\right)=(0,5)
$$

\square
$=0$

The equation is \square

Check Your Progress

a. Write the point-slope form of an equation for a line that passes through $(4,-3)$ with slope -2 .
\square
b. Write the point-slope form of an equation for a horizontal line that passes through $(-3,-4)$.

EXAMPLE Write an Equation in Standard Form

Key Concept

Point-Slope Form

The linear equation $y-y_{1}=m\left(x-x_{1}\right)$ is written in point-slope form, where $\left(x_{1}, y_{1}\right)$ is a given point on a nonvertical line and m is the slope of the line.

FOLDABLES Under the tab for Lesson 4-5, draw a graph that goes through $(3,-3)$ and has slope of -5 . Explain how to find the equation of this line.

ReVIEW IT

Write the standard form of a linear equation.
(Lesson 3-3)
\qquad
\qquad
\qquad

Homework
 Assignment

3 Write $y=\frac{3}{4} x-5$ in standard form.
In standard form, the variables are on the left side of the equation. A, B, and C are all integers.

Check Your Progress Write $y-3=2(x+4)$ in standard form.

EXAMPLE Write an Equation in Slope-Intercept Form

4. Write $y-5=\frac{3}{4}(x-3)$ in slope-intercept form.

In slope-intercept form, y is on the left side of the equation. The constant and x are on the right side.

$y-5$	$=\frac{4}{3}(x-3)$		Original equation
$y-5$	$=\square$		Distributive Property
$y-5+\square$	$=\frac{4}{3} x-4+\square$	Add \square to each side.	
y	$=\square$	Simplify.	

Check Your Progress
Write $3 x+2 y=6$ in slopeintercept form.
\square

4-6 Statistics: Scatter Plots and Lines of Fit

Main Ideas

- Interpret points on a scatter plot.
- Write equations for lines of fit.

$\stackrel{I}{2}$
TEKS A. 1 The student understands that a function represents a dependence of one quantity on another and can be described in a variety of ways. (E) Interpret and make decisions, predictions, and critical judgments from functional relationships.
A. 2 The student uses the properties and attributes of functions. (D) Collect and organize data, make and interpret scatterplots (including recognizing positive, negative, or no correlation for data approximating linear situations), and model, predict, and make decisions and critical judgments in problem situations. Also addresses TEKS A.3(B) and $A .6(D)$.

FOLDABLES

Organize it

Write the definitions of the vocabulary builder words under the vocabulary tab.

BUILD YOUR VOGABULARY (pages 80-81)

A scatter plot is a graph in which two sets of data are plotted as ordered pairs in a coordinate plane.
\square correlation exists when as x increases, y increases. A \square correlation exists when as x increases, y decreases.

A line of fit describes the trend of the data.

EXAMPLE

(1) TECHNOLOGY Determine whether the graph shows a positive correlation, a negative correlation, or no correlation. If there is a positive or negative correlation, describe it.

The graph shows a \square correlation. With each year, \square Computer Sharing in Maria's School
 computers are in Maria's school, making the students per computer rate \square

Check Your Progress

Determine whether the graph shows a positive correlation, a negative correlation, or no correlation. If there is a positive or negative correlation, describe it.

Mail-Order Prescriptions

\square

Remember It

When graphing, the line of fit is only an approximation.

EXAMPL $:$ Make and Evaluate Predictions

2 The table shows the world's population growing at a rapid rate.

Year	Population (millions)
1650	500
1850	1000
1930	2000
1975	4000
1998	5900

a. Draw a scatter plot and determine what relationship exists, if any, in the data.

Let the independent variable x be the year and let the dependent variable y be the population (in millions).

The scatter plot seems to indicate that as the year

b. Draw a line of fit for the scatter plot.

No one line will pass through all of the data points. Draw a \square that passes \square to the points. A line is shown in the scatter plot.
c. Write the slope intercept form of an equation for the equation for the line of fit.

The line of fit shown passes through the data points (1850, 1000) and (1998, 5900).

Step 1 Find the slope.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Slope formula
$m=\square$
Let $\left(x_{1}, y_{1}\right)=(1850,1000)$ and $\left(x_{2}, y_{2}\right)=(1998,5900)$.
$m=\square$ or $\approx 33.1 \quad$ Simplify.

Step 2 Use $m=33.1$ and either the point-slope form or the slope-intercept form to write the equation. You can use either data point. We chose (1850, 1000).

Point-slope form

$$
\begin{array}{rlrl}
y-y_{1} & =m\left(x-x_{1}\right) & y & =m x+b \\
y-1000 & \approx 33.1(x-1850) & 1000 & \approx 33.1(1850)+b \\
y-1000 & \approx 33.1 x-61,235 & 1000 & \approx 61,235+b \\
y & \approx \square-60,235 \approx b \\
y & \approx \square
\end{array}
$$

The equation of the line is $y \approx$

Slope-intercept form

\square

Check Your Progress
The table shows the number of bachelor's degrees received since 1988.

Years since 1998	2	4	6	8	10
Bachelor's Degrees Received (thousands)	1051	1136	1169	1165	1184

Source: National Center for Education Statistics
a. Draw a scatter plot and determine what relationship exists, if any, in the data.
b. Draw a line of best fit for the scatter plot.
c. Write the slope-intercept form of an equation for the line of fit.

Bachelor's Degrees

 Received

4-7
 Geometry: Parallel and Perpendicular Lines

BUILD YOUR VOCABULARY (pages 80-81)

MAIN IDEAS

Write an equation of the line that passes through a given point, parallel to a given line.

- Write an equation of the line that passes through a given point, perpendicular to a given line.

Key Concept

Parallel Lines in a Coordinate Plane Two nonvertical lines are parallel if they have the same slope. All vertical lines are parallel.

TEKS A. 6 The student understands the meaning of the slope and intercepts of the graphs of linear functions and zeros of linear functions and interprets and describes the effects of changes in parameters of linear functions in realworld and mathematical situations. (F) Interpret and predict the effects of changing slope and y-intercept in applied situations.

EXAMPLE Parallel Line Through a Given Point

(1) Write the slope-intercept form of an equation for the line that passes through $(4,-2)$ and is parallel to the graph of $y=\frac{1}{2} x-7$.
The line parallel to $y=x-7$ has the same slope, $\frac{1}{2}$. Replace m with $\frac{1}{2}$ and (x, y) with $(4,-2)$ in the point-slope form.

$$
\begin{array}{rlrl}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-2) & =\frac{1}{2}(x-4) & & \text { Replace } m \text { with } \frac{1}{2}, y \text { with }-2, \\
& \text { and } x \text { with } 4 .
\end{array}
$$

Simplify.

Check Your Progress Write the slope-intercept form of an equation for the line that passes through $(2,3)$ and is parallel to the graph of $y=\frac{1}{2} x-1$.

Key Concept

Perpendicular Lines in a Coordinate Plane Two nonvertical lines are perpendicular if the product of their slopes is -1 . That is, the slopes are opposite reciprocals of each other. Vertical lines and horizontal lines are also perpendicular.

EXAMPLE Determine Whether Lines are Perpendicular
2) GEOMETRY The height of a trapezoid is measured on a segment that is perpendicular to a base. In a trapezoid ARTP, $\overline{\boldsymbol{R T}}$ and $\overline{\boldsymbol{A P}}$ are bases. Can $\overline{E Z}$ be used to measure the height of the trapezoid? Explain.

Find the slope of each segment.

Slope of $\overline{R T}: m=\frac{-3-1}{-5-(-1)}$ or \square
Slope of $\overline{A P}: m=\square$ or \square
Slope of $\overline{E Z}: m=\square$ or

The slope of $\overline{R T}$ and $\overline{A P}$ is \square and the slope of $\overline{E Z}$ is \square. $-7 \cdot 1 \neq \square . \overline{E Z}$ is not \square to $\overline{R T}$ and $\overline{A P}$, so
it cannot be used to measure height.

Check Your Progress

The graph
shows the diagonals of a rectangle.
Determine whether $\overline{J L}$ is perpendicular to $\overline{K M}$.

EXAMPLE Perpendicular Line Through a Given Point

3 Write the slope-intercept form for an equation of a line that passes through $(4,-1)$ and is perpendicular to the graph of $7 x-2 y=3$.

Step 1 Find the slope of the given line.

$$
\begin{array}{rlrl}
7 x-2 y & =3 & & \text { Original equation } \\
7 x-2 y-7 x & =3-7 x & & \text { Subtract } \square \text { from } \\
\square & =-7+3 & & \text { each side. } \\
\frac{-2 y}{-2} & =\frac{-7 x+3}{-2} & & \text { Simplify. } \\
y & =\square \square & \text { Simplify. }
\end{array}
$$

Step 2 The slope of the given line is \square So, the slope of the line perpendicular to this line is the opposite reciprocal of $\frac{7}{2}$, or $-\frac{2}{7}$.

Step 3 Use the point-slope form to find the equation.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-(-1) & =-\frac{2}{7}(x-4) & & \left(x_{1}, y_{1}\right)=(4,-1), m= \\
y+1 & =-\frac{2}{7} x+\frac{8}{7} & & \text { Distributive Property } \\
y+1 \square & =-\frac{2}{7} x+\frac{8}{7} \square & & \text { Subtract. } \\
y & =\square & & \text { Simplify. }
\end{aligned}
$$

Check Your Progress Write the slope-intercept form for an equation of a line that passes through $(-3,6)$ and is perpendicular to the graph of $3 x+2 y=6$.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 4 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 80-81) to help you solve the puzzle.

4-1
 Rate of Change and Slope

Describe each type of slope.

Type of Slope	Description of Graph
1.	positive
2.	\square
negative	
3.	zero

4-2
 Slope and Direct Variation

For each situation, write an equation with the proper constant of variation.
4. The distance d varies directly as time t, and a cheetah can
travel 88 feet in 1 second. \square
5. The perimeter p of a pentagon with all sides of equal length varies directly as the length s of a side of the pentagon. A pentagon has 5 sides. \square

4-3

Graphing Equations in Slope-Intercept Form

6. Fill in the boxes with the correct words to describe what m and b represent.

7. What are the slope and y-intercept of a vertical line?
\square
8. What are the slope and y-intercept of a horizontal line?
\square

4-4

Writing Equations in Slope-Intercept Form
9. Suppose you are given that a line goes through $(2,5)$ and has a slope of -2 . Use this information to complete the following equation.

10. What must you first do if you are not given the slope in the problem?
\square
Write an equation of the line that passes through each pair of points.
11. $(-5,4), m=-3$

12. $(-2,-3),(4,5)$

4-5

Writing Equations in Point-Slope Form

13. In the formula $y-y_{1}=m\left(x-x_{1}\right)$, what do x_{1} and y_{1} represent?

Complete the chart.

Form of Equation	Formula	Example
14.	slope-intercept	
$y=3 x+2$		
	point-slope	
15.		$y-2=4(x+3)$
standard		$3 x-5 y=15$

4-6

Statistics: Scatter Plots and Lines of Fit

17. What is a line of fit? How many data points fall on the line of fit?

4-7

Geometry: Parallel and Perpendicular Lines
Write the slope-intercept form for an equation of the line that passes through the given point and is either parallel or perpendicular to the graph of the equation.
18. $(-2,2), y=4 x-2$ (parallel)

19. $(4,2), y=\frac{1}{2} x+1$ (perpendicular)

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 4 Practice Test on page 245 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 240-244 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 245.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldable.
- Then complete the Chapter 4 Study Guide and Review on pages 240-244 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 245.

5

Solving Systems of Linear Equations and Inequalities

GOLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of grid paper.

STEP 1 Fold each sheet in half along the width.

STEP 2 Unfold and cut four rows from left side of each sheet, from the top to the crease.

STEP 3 Stack the sheets and staple to form a booklet.

STEP 4 Label each page with a lesson number and title.

NOTE-TAKING TIP: Before going to class, look over your notes from the previous class, especially if the day's topic builds from the last one.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition [kuhn•SIHS•tuhnt]	

Vocabulary Term	Found on Page	Definition	Description or Example
independent			
inconsistent			
system of equations			
substitution			

5-1 Graphing Systems of Equations

MAIN IDEAS

- Determine whether a system of linear equations has 0,1 , or infinitely many solutions.
- Solve systems of equations by graphing.

1 TEKS A. 8 The

 student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (A) Analyze situations and formulate systems of linear equations in two unknowns to solve problems.(B) Solve systems of linear equations using concrete models, graphs, tables, and algebraic methods. (C) Interpret and determine the reasonableness of solutions to systems of linear equations.

FOLDABLES'

ORGANIZE IT

In Lesson 5-1 of your booklet, draw the graph of a system of equations that has no solutions.

Check Your Progress
Use the graph to determine whether each system has no solution, one solution, or infinitely many solutions.
a. $2 y+3 x=6$
$y=x-1$

b. $y=x+4$
$y=x-1$

c. $y=-\frac{3}{2} x+3$
$2 y+3 x=6$
\square

EXAMPLE Solve a System of Equations

(2) Graph the system of equations. Then determine whether the system has no solution, one solution, or infinitely many solutions. If the system has one solution, name it.
$2 x-y=-3$
$8 x-4 y=-12$
The graphs of the equations

There are
 solutions
of this system of equations.

Check Your Progress

Graph the system of equations. Then determine whether the system has no solution, one solution, or infinitely many solutions. If the system has one solution, name it.

$$
\begin{aligned}
& y=2 x+3 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

Review It

Describe the graph of a linear equation. (Lesson 3-3)
\qquad
\qquad

Homework

 ASSIGNMENTPage(s):
Exercises:

5-2 Substitution

Main Ideas

- Solve systems of equations by using substitution.
- Solve real-world problems involving systems of equations.

TEKS A. 8 The student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (A) Analyze situations and formulate systems of linear equations in two unknowns to solve problems.
(B) Solve systems of linear equations using concrete models, graphs, tables, and algebraic methods. (C) Interpret and determine the reasonableness of solutions to systems of linear equations.

FOLDABLES

ORGANIZE IT

In Lesson 5-2 of your booklet, explain why it might be easier to solve a system of equations using substitution rather than graphing.

BUILD YOUR VOGABULARY (pages 106-107)

The \square solution of a system of equations can be found by using algebraic methods. One such method is called substitution.

EXAMPLE Solve Using Substitution

1) Use substitution to solve each system of equations.

a. $x=4 y$
$4 x-y=75$
Since $x=4 y$, substitute $4 y$ for x in the second equation.

$$
4 x-y=75 \quad \text { Second equation }
$$

$4(\square)-y=75 \quad x=4 y$
$\square=75 \quad$ Simplify.
$15 y=75 \quad$ Combine like terms.

Use $x=4 y$ to find the value of x.
$x=4 y \quad$ First equation
$x=4(\square) \quad y=\square$
$x=\square$
Simplify.

The solution is

b. $4 x+y=12$
$-2 x-3 y=14$
Solve the first equation for y since the coefficient of y is 1 .

$$
4 x+y=12
$$

First equation
$4 x+y \square=12 \square$

$$
y=\square
$$

Simplify.

Subtract $4 x$ from each side.

Find the value of x by substituting $12-4 x$ for y in the second equation.

$-2 x-3 y$	$=14$		Second equation
$-2 x-3 \square$	$=14$		$y=12-4 x$
$-2 x \square+\square$	$=14$		Distributive Property
$10 x-36$	$=14$		\square
$10 x-36+36$	$=14+36$		Add 36 to each side.
$\square \square$	$=50$		Simplify.
$\frac{10 x}{10}$	$=\frac{50}{10}$		Divide each side by \square.
x	$=\square$		Simplify.

Substitute 5 for x in either equation to find the value of y.

The graph verifies the solution.

Check Your Progress
 Use substitution to solve each system of equations.

a. $y=2 x$ and $3 x+4 y=11$
b. $x+2 y=1$ and $5 x-4 y=-23$

Review It

Describe the first step when using the Distributive Property. (Lesson 1-5)

Homework

 AssignmentPage(s):
Exercises:

112

EXAMPLE Infinitely Many or No Solutions

(2) $2 x+2 y=8$
$x+y=-2$
Solve the second equation for y.
$x+y=-2 \quad$ Second equation
$x+y \square=-2 \square \quad$ Subtract x from each side.
$y=$ \square Simplify.

Substitute \square for y in the first equation.

$$
2 x+2 y=8 \quad \text { First equation }
$$

$\begin{aligned} 2 x+2(\square) & =8 \\ 2 x-4-2 x & =8\end{aligned} \quad \begin{array}{ll} & y=-2-x \\ 2 x-4 \text { Dributive Property }\end{array}$

$$
\square=8 \quad \text { Simplify. }
$$

The statement $\square=8$ is \square. This means there are \square solutions of the system of equations. The graphs of the lines are \square

Check Your Progress
Use substitution to solve the system of equations $3 x-2 y=3$ and $-6 x+4 y=-6$.

5-3 Elimination Using Addition and Subtraction

MAIN IDEAS

- Solve systems of equations by using elimination with addition.
- Solve systems of equations by using elimination with subtraction.

TEKS A. 8 The student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (A) Analyze situations and formulate systems of linear equations in two unknowns to solve problems. (B) Solve systems of linear equations using concrete models, graphs, tables, and algebraic methods. (C) Interpret and determine the reasonableness of solutions to systems of linear equations.

BUILD YOUR VOGABULARY (pages 106-107)

Sometimes adding two equations together will eliminate one variable. Using this step to solve a system of equations is called elimination.

EXAMPLE Elimination Using Addition

(1) Use elimination to solve the system of equations.

$$
-3 x+4 y=12
$$

$$
3 x-6 y=18
$$

Since the coefficients of the x terms, -3 and 3, are additive inverses, you can eliminate the x terms by adding the equations.

$$
\begin{array}{r}
-3 x+4 y=12 \\
(+) 3 x-6 y=18 \\
\hline
\end{array}
$$

Write the equation in column form and add.

$$
-2 y=30
$$

Notice that the \square value is eliminated.
Divide each side by \square

$$
y=\square
$$

Simplify.
Now substitute \square for y in either equation to find x.

$$
\begin{aligned}
-3 x+4 y & =12 & & \text { First equation } \\
-3 x+4(\square) & =12 & & \text { Replace } y \text { with } \square . \\
-3 x-\square & =12 & & \text { Simplify. } \\
-3 x-60+\square & =12+\square & & \text { Add } \square \text { to each side. } \\
-3 x & =72 & & \text { Divide each side by } \square . \\
x & =\square & & \text { Simplify. }
\end{aligned}
$$

FOLDABLES

ORGANIZE IT

In Lesson 5-3 of your booklet, write an example of a system that can be solved by subtracting the equations. Then solve your system.

Homework

Assignment
Page(s):
Exercises:

Check Your Progress
Use elimination to solve $3 x-5 y=1$ and $2 x+5 y=9$.

EXAMPLE Elimination Using Subtraction

2 Use elimination to solve the system of equations.

$4 x+2 y=28$
$4 x+3 y=18$
Since the coefficients of the x terms, 4 and 4, are the \square you can eliminate the x terms by subtracting the equations.

$$
\begin{aligned}
4 x+2 y=28 & \text { Write the equation in column } \\
(-) 4 x-3 y=18 & \text { form and subtract. }
\end{aligned}
$$

Notice that the x value is eliminated.

Divide each side by \square

Simplify.

Now substitute for y in either equation.

$$
\begin{aligned}
4 x-3 y & =18 & & \text { Second equation } \\
4 x-3(\square) & =18 & & \text { Replace } y \text { with } \square . \\
4 x-6 & =18 & & \text { Simplify. } \\
4 x-6+6 & =18+6 & & \text { Add } 6 \text { to each side. } \\
4 x & =24 & & \text { Simplify. } \\
\square \square & =\square & & \begin{array}{l}
\text { Divide each side by } 4 . \\
\text { Simplify. }
\end{array}
\end{aligned}
$$

The solution is \square
Check Your Progress
Use elimination to solve each system of equations.
a. $\begin{aligned} 3 x-5 y & =1 \\ 2 x-5 y & =8\end{aligned}$
$2 x-5 y=8$

b. $9 x-2 y=30$
$x-2 y=14$

5-4 Elimination Using Multiplication

EXAMPLE Multiply One Equation to Eliminate

Main Ideas

- Solve systems of equations by using elimination with multiplication.
- Solve real-world problems involving systems of equations.

TEKS A. 8 The student formulates systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations and formulate systems of linear equations in two unknowns to solve problems. (B) Solve systems of linear equations using concrete models, graphs, tables, and algebraic methods. (C) Interpret and determine the reasonableness of solutions to systems of linear equations.

FOLDABLES

ORGANIZE IT

In Lesson 5-4 of your booklet, list the 5 different methods for solving a system of equations. Be sure to tell when it is best to use each one.

(1) Use elimination to solve the system of equations.

$2 x+y=23$
$3 x+2 y=37$
Multiply the first equation by \square so the coefficients of the y terms are additive inverses. Then add the equations.
$2 x+y=23 \rightarrow \square-2 y=\square \quad$ Multiply by \square.
$3 x+2 y=37 \quad(+) 3 x+2 y=37$

Add the equations.

Divide.

Simplify.
Now substitute \square for x in either equation to find the value of y.

$$
2 x+y=23
$$

$$
y=5
$$

First equation

Simplify.
 each side.

Simplify.

The solution is \square

Check Your Progress

Use elimination to solve $x+7 y=12$ and $3 x-5 y=10$.

Remember IT

When solving a system of equations by elimination, you can choose to eliminate either variable. See Example 2 on page 271 of your textbook.

EXAMPLE Multiply Both Equations to Eliminate

2 Use elimination to solve the system of equations.

$4 x+3 y=8$
$3 x-5 y=-23$
Choose either variable to eliminate. Let's eliminate x.
$4 x+3 y=8 \rightarrow \quad \square+9 y=24 \quad$ Multiply by \square.
$3 x-5 y=-23 \rightarrow \underline{(+)-12 x+\square}=92 \quad$ Multiply by \square.

Add the equations.

$$
\frac{29 y}{29}=\frac{166}{29}
$$

Divide each side by

$$
y=\square \text { Simplify. }
$$

Now substitute \square for y in either equation to find x.

$$
\begin{array}{rlr}
4 x+3 y=8 & \text { First equation } \\
4 x+3 \square=8 & y=\square
\end{array}
$$

$$
\square+\square=8
$$

Simplify.

$$
4 x=\square
$$

$$
\frac{4 x}{4}=\frac{-4}{4}
$$

$$
\text { Divide each side by } 4 .
$$

$$
x=\square
$$

Simplify.

The solution is \square

Check Your Progress Use elimination to solve $3 x+2 y=10$ and $2 x+5 y=3$.

5-5 Applying Systems of Linear Equations

EXAMPLE Determine the Best Method

Main Ideas

- Determine the best method for solving systems of equations.
- Apply systems of linear equations.
I. TEKS A. 8 The systems of linear equations from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (A) Analyze situations and formulate systems of linear equations in two unknowns to solve problems.
(B) Solve systems of linear equations using concrete models, graphs, tables, and algebraic methods. (C) Interpret and determine the reasonableness of solutions to systems of linear equations.

FOLDAbles

Organize It

In Lesson 5-5 of your booklet, explain when graphing would be the method that should be used to solve a system of equations.

(1) FUND-RAISING At a Boy Scout fund-raising dinner,

 Mr. Jones bought 2 adult meals and 3 child meals for $\$ 23$. Mrs. Gomez bought 4 adult meals and 2 child meals for $\$ 34$. All adult meals are the same price and all child meals are the same price. The following system can be used to represent this situation. Determine the best method to solve the system of equations. Then solve the system.$2 x+3 y=23$
$4 x+2 y=34$

- For an exact solution, an algebraic method is best.
- Since neither the coefficients of \square nor the coefficients of \square are 1 or -1 , you cannot use the substitution method.
- Since the coefficients are not the same for either x or y, you will need to use \square with multiplication.
Multiply the first equation by -2 so the coefficients of the x-terms are additive inverses. Then add the equations.

$$
\begin{aligned}
2 x+3 y & =23 & & \text { Multiply by } \square . \\
-4 x-6 y & =-46 & & \\
(+) 4 x+2 y & =34 & & \text { Add the equations. } \\
\hline-4 y & =-12 & & \\
y & =\square & & \text { Divide each side by } \square .
\end{aligned}
$$

Now substitute 3 for y in either equation to find the value of x.

$$
\begin{aligned}
4 x+2 y & =34 & & \text { Second equation } \\
4 x+2(\square) & =34 & & y=3 \\
4 x+\square & =34 & & \text { Simplify. } \\
4 x & =28 & & \text { Subtract } 6 \text { from each side. } \\
x & =7 & & \text { Divide each side by } \square .
\end{aligned}
$$

The solution is \square. So, adult meals cost $\$ 7$ and child meals cost \$3.

Check Your Progress
POOL PARTY At the school pool party, Mr. Lewis bought 1 adult ticket and 2 child tickets for $\$ 10$. Mrs. Vroom bought 2 adult tickets and 3 child tickets for $\$ 17$. All adult tickets are the same price and all child tickets are the same price. The following system can be used to represent this situation. Determine the best method to solve the system of equations. Then solve the system.
$x+2 y=10$
$2 x+3 y=17$

EXAMPLE Solve Systems of Equations to Solve Problems

2. CAR RENTAL Ace Car Rental rents a car for $\mathbf{\$ 4 5}$ a day and $\mathbf{\$ 0 . 2 5}$ per mile. Star Car Rental rents a car for $\$ 35$ per day and $\mathbf{\$ 0 . 3 0}$ per mile. After how many miles will the cost of renting a car at Ace Car Rental be the same as the cost of renting a car at Start Car Rental?

EXPLORE You know the cost to rent a car for each company.
PLAN Write an equation to represent the

SOLVE
Let $x=$ the number of
 and $y=$ the \square of renting a car. Ace Car Rental: $\quad y=45+0.25 x$ Star Car Rental: $y=35+0.30 x$

You can use elimination to solve.

$$
\begin{aligned}
y & =45+0.25 x \\
(-) y & =35+0.30 x \\
\hline 0 & =10-\square x \\
-10 & =-0.05 x \\
\square & =x
\end{aligned}
$$

This means that after 200 miles, the cost will be
\square
CHECK Check by sketching a graph of the equations. The

Check Your Progress

VIDEO GAMES The cost to rent a video game from Action Video is $\$ 2$ plus $\$ 0.50$ per day. The cost to rent a video game at TeeVee Rentals is $\$ 1$ plus $\$ 0.75$ per day. After how many days will the cost of renting a video game at Action Video be the same as the cost of renting a video game at TeeVee Rentals?

STUDY GUIDE

OLDABLES

Use your Chapter 5 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 5, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 106-107) to help you solve the puzzle.

5-1
 Graphing Systems of Equations

Each figure shows the graph of a system of two equations.
Write the letter(s) of the figures that illustrate each statement
A.

B.

C.

D.

1. A system of two linear equations can have an infinite number of solutions. \square
2. If two graphs are parallel, there are no ordered pairs that satisfy both equations. \square
3. If a system of equations has exactly one solution, it is independent. \square
4. If a system of equations has an infinite number of solutions, it is dependent. \square

5-2

Substitution

Solve each system using substitution.
5. $y=-2 x$
$x+3 y=15$
6. $3 x-2 y=12$
$x=2 y$

7. $-3 x+5 y=81$
$2 x+y=24$

5-3

Elimination Using Addition and Subtraction

Write addition or subtraction to tell which operation it would be easiest to use to eliminate a variable of the system. Explain your choice.

8. | System of
 Equations | Operation | Explanation |
| :---: | :---: | :---: |
| $3 x+5 y=12$
 $-3 x+2 y=6$ | | |
| $3 x+5 y=7$
 $3 x-2 y=8$ | | |

Use elimination to solve each system of equations.
10. $7 x+2 y=10$
$-7 x+y=-16$

11. $2 x+5 y=-22$
$10 x+3 y=22$
\square

5-4
 Elimination Using Multiplication

Three methods for solving systems of linear equations are summarized below. Complete the table.
12.

Method	The Best Time to Use
Graphing	to \square
usually does not give an $\square \square$	
	if one of the variables in either equation has a coefficient
of 1 or \square	
	if none of the coefficients are \square variables can be eliminated by simply adding or subtracting the equations
Elimination Using Multiplication	

5-5

Applying Systems of Linear Equations

Determine the best method to solve each system of equations. Then solve the system.

1. $\begin{aligned}-2 x+3 y & =0 \\ -1 x+5 y & =7\end{aligned}$
\square
2. $-3 x-4 y=-65$ $3 x+2 y=43$
\square
3. $6 x-2 y=22$ $4 x+1 y=24$
\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 287 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 283-286 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 287.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 283-286 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 287.

Student Signature

Teacher Signature

Solving Linear Inequalities

FOODABETS

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

NOTE-TAKING TIP: When you take notes, write down the math problem and each step in the solution using math symbols. Next to each step, write down, in your own words, exactly what you are doing.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
absolute value			
boundary			
compound inequality			
half-plane			

Vocabulary Term	Found on Page	Definition	Description or Example
intersection			
set-builder notation			
system of inequalities			

6-1 Solving Inequalities by Addition and Subtraction

EXAMPIE Solve by Adding

Main Ideas

Solve linear inequalities by using addition.

- Solve linear inequalities by using subtraction.

Key Concept

Addition Property of Inequalities If any number is added to each side of a true inequality, the resulting inequality is also true.

TEKS A. 7 The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, graphs, and the properties of equality, select a method, and solve the equations and inequalities. Also addresses TEKS A.1(C), A.1(D), and A.7(C).

(1) Solve $s-12>65$. Then check your solution.

Check Substitute 77, a number less than 77, and a number greater than 77 .
Let $s=77$.
Let $s=64$.
Let $s=80$.
$77-12>65$
$64-12>65$
$80-12>65$
$65 \ngtr 65$
$52 \ngtr 65$
$68>65$ レ
The solution is the set \square
Check Your Progress
Solve $k-4<10$. Check your solution.

EXAMPLE Solve by Subtracting

2. TEMPERATURE By 5:00 P.M. the temperature in Fairbanks had risen 23 degrees to a temperature of $14^{\circ} \mathrm{F}$. What was the temperature at the beginning of the day?

Solve $q+24<14$. Then graph the solution.

$q+23$	<14	Original inequality
$q+23 \square$	$<14 \square$	
$q<-9$	Subtract \square Simplify.	from each side.

The solution set is \square

Check Your Progress The temperature at the end of the day in Cleveland had risen $15^{\circ} \mathrm{F}$ to a temperature of $13^{\circ} \mathrm{F}$. What was the temperature at the beginning of the day? Solve $m+15>13$. Then graph the solution

EXAMPLE Variables on Each Side

Key Concept

Subtraction Property of Inequalities If any number is subtracted from each side of a true inequality, the resulting inequality is also true.

FOLDABLES Include the Addition and Subtraction Properties of Inequalities in your Foldable. Be sure to show examples.

Homework ASSIGNMENT

Solve $12 n-4 \leq 13 n$. Then graph the solution.

Check Your Progress
Solve $3 p-6 \geq 4 p$. Graph the solution.

ENTERTAINMENT Alicia wants to buy season passes to two theme parks. If one season pass cost $\$ 54.99$, and Alicia has $\$ 100$ to spend on passes, the second season pass must cost no more than what amount?

Solve the inequality.

Check Your Progress Michael scored 30 points in the four rounds of the free throw contest. Randy scored 11 points in the first round, 6 points in the second round, and 8 in the third round. How many points must he score in the final round to surpass Michael's score?

6-2 Solving Inequalities by Multiplication and Division

EXAMPLE Write and Solve an Inequality

MAIN IDEAS

Solve linear inequalities by using multiplication.

- Solve linear inequalities by using division.

Key Concepts

Multiplying by a Positive Number If each side of a true inequality is multiplied by the same positive number, the resulting inequality is also true.

Multiplying by a Negative Number If each side of a true inequality is multiplied by the same negative number, the direction of the inequality symbol must be reversed so that the resulting inequality is also true.

TEKS A. 7 The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, the properties of equality, select a method, and solve the equations and inequalities. Also addresses TEKS A.1(C), A.1(D), and A.7(C).
(1) HIKING Bob is walking at a rate of $\frac{3}{4}$ mile per hour. He knows that it is at least 9 miles to Onyx Lake. How long will it take Bob to get there? Write and solve an inequality to find the length of time.

$$
\frac{3}{4} t \geq 9 \quad \text { Original inequality }
$$

$t \geq 12$
Simplify

The solution set is \square

Check Your Progress SCHOOL At Midpark High School, $\frac{2}{3}$ of the junior class attended the dance. There were at least 200 juniors at the dance. How many students are in the junior class?
\square

EXAMPLE Multiply by a Negative Number

Solve $-\frac{3}{5} d \geq 6$.

$$
-\frac{3}{5} d \geq 6 \quad \text { Original inequality }
$$

The solution set is

Check Your Progress Solve $-\frac{1}{3} x>10$.

EXAMPLE Divide to Solve an Inequality

3
 Solve each inequality.

a. $12 s \geq 60$

$$
12 s \geq 60 \quad \text { Original inequality }
$$

 change the direction of the inequality sign. Simplify.

The solution set is \square

Key Concepts

Dividing by a Positive Number If each side of a true inequality is divided by the same positive number, the resulting inequality is also true.
Dividing by a Negative Number If each side of a true inequality is divided by the same negative number, the direction of the inequality symbol must be reversed so that the resulting inequality is also true.

FOlDABLIS Be sure to write the Multiplication and Division Properties of Inequalities in your Foldable.

Homework Assignment
Page(s):

6-3 Solving Multi-Step Inequalities

EXAMPLE Multi-Step Inequality

Main Ideas

Solve linear inequalities involving more than one operation.

- Solve linear inequalities involving the Distributive Property.

TEKS A. 7 The
student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, the properties of equality, select a method, and solve the equations and inequalities. Also addresses TEKS A.1(C), A.1(D), and A.7(C).

Remember It

You only change the direction of the inequality sign when multiplying or dividing both sides by a negative number.
(1) SCIENCE The inequality $F>212$ represents the temperature in degrees Fahrenheit for which water is a gas (steam). Similarly, the inequality $\frac{9}{5} C+32>212$ represents the temperature in degrees Celsius for which water is a gas. Find the temperature in degrees Celsius for which water is a gas.

$$
\frac{9}{5} C+32>212 \quad \text { Original inequality }
$$

$\frac{9}{5} C+32-\square>212-\square$ Subtract \square from each side. Simplify.

Multiply each side by

Simplify.
Water will be a gas for all temperatures greater than $100^{\circ} \mathrm{C}$.

EXAMPLE Inequality Involving a Negative Coefficient

(2) Solve $13-11 d \geq 79$.

FOLDABLES

Organize it

In Lesson 6-3 of your Foldable, explain how solving an inequality is different from solving an equation.

Remember It

If solving an inequality results in a statement that is

- true, the solution is all real numbers.
- false, the solution is the empty set, \varnothing.

Homework Assignment

Page(s):
Exercises:

132

Check Your Progress

a. The boiling point of helium is $-452^{\circ} \mathrm{F}$. Solve $\frac{9}{5} C+32>-452$ to find the temperatures in degrees Celsius for which helium is a gas.
b. Solve $-8 y+3>-5$
\square

3 Define a variable, write an inequality, and solve the problem below. Check your solution.
Four times a number plus twelve is less than a number minus three.

The solution set is \square

Check Your Progress
Write an inequality for the sentence below. Then solve the inequality.

6 times a number is greater than 4 times the number minus 2

6-4 Solving Compound Inequalities

Main IdeAs

- Solve compound inequalities containing the word and and graph their solution sets.
- Solve compound inequalities containing the word or and graph their solution sets.

Write It

Use words to describe the compound inequality $25<x>30$.

TEKS A. 7 The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, the properties of equality, select a method, and solve the equations and inequalities. Also addresses TEKS A.1(C), A.1(D), and A.7(C).

BUILD YOUR VOGABULARY (pages 125-126)

Two or more inequalities connected by the words \square or \square are a compound inequality.

The graph of a compound inequality containing \square is the intersection of the graphs of the two inequalities.

The graph of a compound inequality containing \square is the union of the graphs of the two inequalities.

EXAMPL: Graph an Intersection

(1) Graph the solution set of $y \geq 5$ and $y<12$.

Graph $y \geq 5$.

Graph $y<12$.

Find the \square

The solution set is \square Note that the graph of $y \geq 5$ includes the point 5 . The graph of $y<12$ does not include \square

Check Your Progress
Graph the solution set of $y>6$ and $y \leq 10$.

FOLDABLES

Organize IT

In Lesson 6-4 of your Foldable, explain how the solution of an intersection is different from the solution of a union.

EXAMPLE Solve and Graph an Intersection

2) Solve $7<z+2 \leq 11$. Then graph the solution set.

First express $7<z+2 \leq 11$ using and. Then solve each inequality.

$$
7<z+2 \quad \text { and } \quad z+2 \leq 11
$$

$7 \square<z+2 \square$

$$
z+2 \square \leq 11
$$

\square
\square

$$
z \leq \square
$$

The solution set is the \square of the two graphs.

Graph $5<z$ or $z>5$

Graph $z \leq 9$

Find the \square

The solution set is \square

Check Your Progress
Solve $-3<x-2<5$. Then graph the solution set.

EXAMPLE Solve and Graph a Union

(3) Solve $4 k-7 \leq 25$ or $12-9 k \geq 30$. Then graph the solution set.
$4 k-7 \leq 25$
or
$12-9 k \geq 30$
$4 k-7 \square \leq 25 \square$

$4 k \leq 32$
$-9 k \geq 18$

$$
\begin{aligned}
\frac{4 k}{4} & \leq \frac{32}{4} \\
k & \leq \square
\end{aligned}
$$

$$
\frac{-9 k}{-9} \leq \frac{18}{-9}
$$

$$
k \leq \square
$$

Graph $k \leq 8$.

Graph $k \geq-2$.

Notice that the graph of $k \leq 8$ contains \square point in the graph of $\mathrm{k} \leq-2$. So, the \square is the graph of $k \leq 8$. The solution set is \square

Check Your Progress Solve $-2 x+5<15$ or $5 x+15>20$.
Then graph the solution set.

Homework AssignMent

Page(s):
Exercises:

6-5 Solving Open Sentences Involving Absolute Value

EXAMPLS Solve an Absolute Value Equation

MAIN IDEAS

Solve absolute value equations.

- Solve absolute value inequalities.

ReVIew IT

Why is the absolute value of a number always greater than or equal to zero? (Lesson 2-1).

TEKS A. 7 The student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, the properties of equality, select a method, and solve the equations and inequalities. Also addresses TEKS A.1(C) and A.1(D).
a. WEATHER The average January temperature in a northern Canadian city is 1 degree Fahrenheit. The actual January temperature for that city may be about 5 degrees Fahrenheit warmer or colder. Solve $|t-1|=5$ to find the range of temperatures.

METHOD 1 Graphing

$|t-1|=5$ means that the distance between t and 1 is 5 units. To find t on the number line, start at 1 and move 5 units in either direction.

The distance from 1 to 6 is 5 units. The distance from 1 to -4 is 5 units. The solution set is $\{-4,6\}$.
 METHOD 2 Compound Sentence
Write $|t-1|=5$ as $t-1=5$ or $t-1=-5$.

Case 1

Case 2

$$
t-1=5
$$

$$
t-1+1=5+1 \quad \text { Add } 1 \text { to each side. } \quad t-1+1=-5+1
$$

$$
t=\square \quad t=\square
$$

The solution set is \square The range of temperatures is $-4^{\circ} \mathrm{F}$ to $6^{\circ} \mathrm{F}$.
b. Solve $|x+2|=-1$. $|x+2|=-1$ means that the distance between x and -2 is \square Since distance cannot be negative, the solution is \square.

Check Your Progress

a. WEATHER The average temperature for Columbus on Tuesday was $45^{\circ} \mathrm{F}$. The actual temperature for anytime during the day may have actually varied from the average temperature by $15^{\circ} \mathrm{F}$. Solve $|t-45|=15$ to find the range of temperatures.
\square
b. Solve $|x-3|=-5$.

Write It

Will the solution to $|x+7|<11$ require finding the intersection or union of the two cases? Explain.
\qquad
\qquad
\qquad
\qquad

FOLDABLES

Organize It
In Lesson 6-5 of your Foldable, write your own absolute value inequality. Then solve and graph it. Explain the steps you use.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLE Solve an Absolute Value Inequality (<)

2. Solve $|s-3| \leq 12$. Then graph the solution set.

Write $|s-3| \leq 12$ as $s-3 \leq 12$ and $s-3 \geq-12$.

EXAMPLE Solve an Absolute Value Inequality ($>$)

Case 1

Case 2

$s-3 \leq 12$
Original inequality
Add 3 to each side.

The solution set is \square

3 Solve $|3 y-3|>9$.
Write $|3 y-3|>9$ as $3 y-3>9$ or $3 y-3<-9$.

Case 1

Case 2

$$
3 y-3>9 \quad \text { Original inequality }
$$

$3 y-3+3>9+3$
Add 3
$3 y-3<-9$ to each side.

Simplify.

$\frac{3 y}{3}>\frac{12}{3}$
Divide each side by 3 .
$\frac{3 y}{3}<\frac{-6}{3}$
$y>\square$
Simplify.

$$
y<\square
$$

The solution set is \square

Check Your Progress

Solve each open sentence. Then graph the solution set.
a. $|p+4|<6$

b. $|2 m-2|>6$

6-6 Graphing Inequalities in Two Variables

BUILD YOUR VOGABULARY (pages 125-126)

MAIN IDEAS

- Graph inequalities on the coordinate plane.
- Solve real-world problems involving linear inequalities.

Key Concept

Half-Planes and Boundaries Any line in the plane divides the plane into two regions called half-planes. The line is called the boundary of each of the two half-planes.

TEKS A. 7 The

student formulates equations and inequalities based on linear functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.
(A) Analyze situations involving linear functions and formulate linear equations or inequalities to solve problems. (B) Investigate methods for solving linear equations and inequalities using concrete models, the properties of equality, select a method, and solve the equations and inequalities. Also addresses TEKS A.1(C), A.1(D), and A.7(C).

The region of the graph of an inequality on one side of the
\square is called a half-plane.
\square defines the boundary or edge for each half-plane.

EXAMPLE Graph an Inequality

(1) Graph $2 y-4 x>6$.

Step 1 Solve for y in terms of x.

Step 2 Graph $y=2 x+3$.
Since $y>2 x+3$ does not include values when $y=2 x+3$, the boundary is \square in the solution set. The boundary should be drawn as a

Step 3 Select a point in one of the half-planes and test it.
Let's use (0,0).
$y>2 x+3 \quad$ Original inequality
$0>2(0)+3 \quad x=0, y=0$
$0>3$
False

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc
Since the statement is false, the \square containing the origin is \square part of the solution. Shade the other half-plane.

Remember It

A dashed line indicates that the boundary is not part of the solution set. A solid line indicates that the boundary line is part of the solution set.

FOLDABLES

ORGANIZE IT

In Lesson 6-6 of your Foldable, explain how to check the solution to an inequality in two variables.

Check Test a point in the other half-plane, for example, $(-3,1)$.

$$
\begin{array}{ll}
y>2 x+3 & \text { Original inequality } \\
1>2(-3)+3 & x=-3, y=1 \\
1>-3 \checkmark &
\end{array}
$$

Since the statement is true, the half-plane containing $(-3,1)$ should be \square
Check Your Progress
Graph $y-3 x<2$.

EXAMPLE Write and Solve an Inequality

2) JOURNALISM Lee Cooper writes and edits short articles for a local newspaper. It generally takes her an hour to write an article and about a half-hour to edit an article. If Lee works up to 8 hours a day, how many articles can she write and edit in one day?
Step 1 Let x equal the number of articles Lee can write. Let y equal the number of articles that Lee can edit. Write an open sentence representing the situation.

Step 2 Solve for y in terms of x.

$$
\begin{aligned}
x+\frac{1}{2} y & \leq 8 \\
x+\frac{1}{2} y-\square & \leq \square+8 \\
\square & \leq-x+8
\end{aligned}
$$

Original inequality
Subtract \square from each side.
Simplify.

Multiply each side by 2.
Simplify.

Homework AssignMent

Page(s):
Exercises:

Step 3 Since the open sentence includes the equation, graph $y=-2 x+16$ as a \square line. Test a \square in one of the half-planes, for example, $(0,0)$. Shade the halfplane containing $(0,0)$ since $0 \leq-2(0)+16$ is true.

Step 4 Examine the situation

- Lee cannot work a negative number of hours. Therefore, the domain and range contain only \square numbers.
- Lee only wants to count articles that are completely written or completely edited. Thus, only points in the half-plane whose x - and y-coordinates are \square numbers are possible solutions.
- One solution is $(2,3)$. This represents \square written articles and \square edited articles.

Check Your Progress You offer to go to the local deli and pick up sandwiches for lunch. You have $\$ 30$ to spend. Chicken sandwiches cost $\$ 3.00$ and tuna sandwiches are $\$ 1.50$ each. How many sandwiches can you purchase for $\$ 30$?
\square

6-7 Graphing Systems of Inequalities

Main Ideas

- Solve systems of inequalities by graphing.
- Solve real-world problems involving systems of inequalities.

Preparation for
TEKS 2A. 3 The student formulates systems of equations and inequalities from problem situations, uses a variety of methods to solve them, and analyzes the solutions in terms of the situations.
(A) Analyze situations and formulate systems of equations in two or more unknowns or inequalities in two unknowns to solve problems.
(B) Use algebraic methods, graphs, tables, or matrices, to solve systems of equations or inequalities.
(C) Interpret and determine the reasonableness of solutions to systems of equations or inequalities for given contexts.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 6-7, write a description of how to graph the solution of a system of inequalities.

BUILD YOUR VOGABULARY (pages 123-124)

To solve a system of inequalities, you need to find

involved.

EXAMPL: Solve by Graphing

(1) Solve the system of inequalities by graphing.
a. $y<2 x+2$
$y \geq-x-3$
The solution includes the ordered pairs in the intersection of the graphs of $y<2 x+2$ and $y \geq-x-3$. The region is shaded in dark grey. The graphs $y=2 x+2$ and $y=-x-3$ are \square of this region.

The graph \square is dashed

and is not \square in the graph
of $y<2 x+2$. The graph of $y=-x-3$ is included in the graph of $y \geq-x-3$.
b. $y \geq-3 x+1$
$y \leq-3 x-2$
The graphs of $y=-3 x+1$ and
$y=-3 x-2$ are \square lines.
Because the two regions have no points in common, the system of inequalities has \square.

WRITE IT

Describe the graph of a system of inequalities that has no solution.
\qquad
\qquad
\qquad
\qquad

Check Your Progress
Solve each system of inequalities by graphing.
a. $2 x+y \leq 4$
$x+2 y<-4$

b. $y>4 x$
$y<4 x-3$

EXAMPLE Use a System of Inequalities to Solve a Problem

SERVICE A college service organization require that its members maintain at least a 3.0 grade point average, and volunteer at least 10 hours a week. Graph these requirements.
If $g=$ the grade point average and $v=$ the number of volunteers, the following inequalities represent these requirements.

The grade point average is at least 3.0.

The number of volunteer hours is at least 10.

The solution is the set of \square ordered pairs whose graphs are in the \square of the graphs of these inequalities.

Check Your Progress blood drive. Anyone who wishes to give blood must be at least 17 years old and weigh at least 110 pounds. Graph these requirements.

STUDY GUIDE

FOLDABLES

Use your Chapter 6 Foldable to help you study for your chapter test.

VOCABULARY

 PUZZLEMAKERTo make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 125-126) to help you solve the puzzle.

6-1
 Solving Inequalities by Addition and Subtraction

Write the letter of the graph that matches each inequality.

1. $x \leq-1$ \square
a.

2. $x>-1$ \square
b.

3. $x<-1$ \square
c.

4. According to the Subtraction Property of Inequalities, if any number is \square from each side of a \square inequality, the resulting inequality is also \square
6-2

Solving Inequalities by Multiplication and Division

Write an inequality that describes each situation.

5. A number n divided by 8 is greater than 5 . \square
6. Twelve times a number k is at least 7 . \square
Use words to tell what each inequality says.
7. $12<6 n$ \square
8. $\frac{t}{-3} \geq 14$ \square

6-3

Solving Multi-Step Inequalities

Solve each inequality. Then check your solution.
9. $5 \leq 11+3 h$

10. $5-2 n \leq 3-n$

Define a variable, write an inequality, and solve each problem. Then check your solution.
11. Six plus four times a number is no more than the number.
\square
12. Three times a number plus eight is at least ten less than four times the number.
\square
13. Six times a number is greater than twelve less than 8 times the number.
\square

6-4
 Solving Compound Inequalities

14. When is a compound inequality containing and true?
\square
15. The graph of a compound inequality containing and is the
\square of the graphs of the two inequalities.
16. When is a compound inequality containing or true?
\square
17. The graph of a compound inequality containing or is the \square of the graphs of the two inequalities.

6-5

Solving Open Sentences Involving Absolute Value

Complete each compound sentence by writing and or or in the blank.
Use the result to help you graph the absolute value sentence.

	Absolute Value Sentence	Compound Sentence	Graph
18.	$\|2 x+2\|=8$	$2 x+2=8 \quad 2 x+2=-8$	$\underset{-6}{\underset{-5}{\mid}-4}$
19.	$\|x-5\| \leq 4$	$x-5 \leq 4 \square x-5 \geq-4$	
20.	$\|2 x-3\|>5$	$2 x-3>5 \square 2 x-3<-5$	

21. A thermometer is guaranteed to give a temperature no more than $2.1^{\circ} \mathrm{F}$ from the actual temperature. If the thermometer reads $58^{\circ} \mathrm{F}$, what is the range for the actual temperature?

6-6

Graphing Inequalities in Two Variables
22. Complete the chart to show which type of line is needed for each symbol.

Symbol	Type of Line	Boundary Part of Solution?
$<$	\square	\square
$>$	\square	\square
\geq	\square	\square
\leq	\square	\square

23. If a test point results in a false statement, what do you know about the graph?
\square
24. If a test point results in a true statement, what do you know about the graph?
\square

6-7
Graphing Systems of Inequalities
Write the inequality symbols that you need to get a system whose graph looks like the one shown. Use $<, \leq,>$, or \geq.
25.

$y \square-2 x-1$
26.

$$
y \square x+2
$$

$$
y \square-2 x-1
$$

27.

28.

$y \square x+2$

$$
y \square x+2
$$

$$
y \square-2 x-1
$$

29. The solution of a \square is the set of all ordered pairs that satisfy both inequalities. If you graph the inequalities in the same coordinate plane, the
 the region where the graphs \square
30. Describe how you would explain the process of using a graph to solve a system of inequalities to a friend who missed Lesson 6-7.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 6 Practice Test on page 345 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 340-344 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 345.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 340-344 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 345.

Polynomials

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of 11 " by 17 " paper.

STEP 1 Fold in thirds lengthwise.

STEP 2 Open and fold a 2" tab along the width. Then fold the rest in fourths.

NOTE-TAKING TIP: It is helpful to read through your notes before beginning your homework. Look over any page referenced material.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
$\underbrace{\text { binOH•mee•uhl] }}_{\text {binomial }}$			
constant			
degree of monomial			
degree of polynomial			
difference of squares			

Vocabulary Term	Found on Page	Definition	Description or Example
FOIL method			
$\underbrace{\text { monomial }}_{[\mathrm{mah} \cdot \mathrm{NOH} \cdot \mathrm{mee} \cdot \mathrm{uhl}]}$			
negative exponent			
$\underbrace{\text { polynomial }}_{[\mathrm{PAH} \cdot \mathrm{luh} \cdot \mathrm{NOH}-\text { mee } \cdot \mathrm{uhl}]}$			
$\underbrace{\text { trinomial }}_{[\text {try } \cdot \mathrm{NOH} \cdot \text { mee-uhl }]}$			
zero exponent			

7-1 Multiply Monomials

Main Ideas

- Multiply monomials.
- Simplify expressions involving powers of monomials.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. A. 11 The student understands there are situations modeled by functions that are neither linear nor quadratic and models the situations. (A) Use patterns to generate the laws of exponents and apply them in problemsolving situations.

BUILD YOUR VOGABULARY (pages 150-151)

A monomial is a number, a \square, or a product of a number and one or more variables.

Monomials that are \square numbers are called constants.

EXAMPLES Identify Monomials

(1) Determine whether each expression is a monomial. Explain your reasoning.

	Expression	Monomial?	Reason
a.	$17-s$	no	The expression involves subtraction, not the product, of two variables.
b.	$8 f^{2} g$	\square	The expression is the product of a number and two variables.
c.	$\frac{3}{4}$	yes	$\frac{3}{4}$ is a real number and an example of a constant.
d.	$x y$	\square	The expression is the product of two variables.

Check Your Progress Determine whether each expression is a monomial. Explain your reasoning.

	Expression	Monomial?	Reason
a.	x^{5}	\square	
b.	$3 p-1$	\square	
c.	$\frac{9 x}{y}$	\square	
d.	$\frac{c d}{8}$	\square	

EXAMPLE Product of Powers

(2)
a. Simplify $\left(r^{4}\right)\left(-12 r^{7}\right)$.

$$
\begin{array}{rlr}
\left(r^{4}\right)\left(-12 r^{7}\right) & =(1)(-12)\left(r^{4}\right)\left(r^{7}\right) &
\end{array} \begin{aligned}
& \text { Commutative and } \\
& \text { Associative Properties }
\end{aligned}
$$

b. Simplify $\left(6 c d^{5}\right)\left(5 c^{5} d^{2}\right)$.

$$
\begin{aligned}
\left(6 c d^{5}\right)\left(5 c^{5} d^{2}\right) & =(6)(5)\left(c \cdot c^{5}\right)\left(d^{5} \cdot d^{2}\right) & & \begin{array}{l}
\text { Commutative and } \\
\text { Associative Properties }
\end{array} \\
& =30(c \square)(d \square) & & \text { Product of Powers } \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

Key Concepts

Product of Powers
To multiply two powers that have the same base, add the exponents.

Power of a Power To find the power of a power, multiply the exponents.
Power of a Product To find the power of a product, find the power of each factor and multiply.

Check Your Progress Simplify each expression.

a. $\left(5 x^{2}\right)\left(4 x^{3}\right)$
b. $3 x y^{2}\left(-2 x^{2} y^{3}\right)$

EXAMPLE Power of a Power

(3) Simplify $\left(\left(2^{3}\right)^{3}\right)^{2}$.
$\left(\left(2^{3}\right)^{3}\right)^{2}=\left(2^{3 \cdot 3}\right)^{2}$

Simplify.

Simplify.

EXAMPLE Power of a Product

4) GEOMETRY Find the volume of a cube with a side length $s=5 x y z$.
Volume $=s^{3} \quad$ Formula for volume of a cube
$=(5 x y z)^{3}$
$=5^{3} x^{3} y^{3} z^{3}$
$=\square$
$s=\square$
Power of a Product
Simplify.

Check Your Progress
Express the surface area of the cube as a monomial.

FOLDABLES

Organize IT

In your Foldable, in the box for monomial multiplication, write the name of each exponent rule and an example illustrating the rule.

	+	-	\times	\div
$\stackrel{\dot{D}}{\square}$				
$\frac{2}{0}$				

Homework ASSIGNMENT

Page(s):

Exercises:

7-2 Dividing Monomials

Main Ideas

Simplify expressions involving the quotient of monomials.

- Simplify expressions containing negative exponents.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. A. 11 The student understands there are situations modeled by functions that are neither linear nor quadratic and models the situations. (A) Use patterns to generate the laws of exponents and apply them in problemsolving situations.

Key Concepts

Quotient of Powers To divide two powers that have the same base, subtract the exponents.

Power of a Quotient To find the power of a quotient, find the power of the numerator and the power of the denominator.

Zero Exponent Any nonzero number raised to the zero power is 1 .

EXAMPLE Quotient of Powers

(1) Simplify $\frac{x^{7} y^{12}}{x^{6} y^{3}}$. Assume that no denominator is equal to zero.

$$
\begin{aligned}
\frac{x^{7} y^{12}}{x^{6} y^{3}} & =\left(\frac{x^{7}}{x^{6}}\right)\left(\frac{y^{12}}{y^{3}}\right) \\
& =\left(x^{7-6}\right)\left(y^{12-3}\right) \\
& =x \square y
\end{aligned}
$$

have the same base.

Quotient of Powers

Simplify.

EXAMPLE Power of a Quotient

(2) Simplify $\left(\frac{4 c^{3} d^{2}}{5 e^{4} f^{7}}\right)^{3}$. Assume that no denominator is equal to zero.
$\left(\frac{4 c^{3} d^{2}}{5 e^{4} f^{7}}\right)^{3}=\frac{\left(4 c^{3} d^{2}\right)^{3}}{\left(5 e^{4} f^{7}\right)^{3}}$ Power of a \square

$$
=\frac{4^{3}\left(c^{3}\right)^{3}\left(d^{2}\right)^{3}}{5^{3}\left(e^{4}\right)^{3}\left(f^{7}\right)^{3}}
$$

\square

\square

Check Your Progress
Simplify each expression. Assume that a, b, p and q are not equal to zero.
a. $\frac{a^{3} b^{9}}{a b^{2}}$
b. $\left(\frac{3 m^{3} n^{2}}{4 p^{5} q}\right)^{3}$

EXAMPLE Zero Exponent

(3) Simplify $\left(\frac{12 m^{8} n^{7}}{8 m^{5} n^{10}}\right)^{0}$. Assume that no denominator is equal to zero.
$\left(\frac{12 m^{8} n^{7}}{8 m^{5} n^{10}}\right)^{0}=1 \quad a^{0}=1$

EXAMPLE Negative Exponent

Key Concept

Negative Exponent For any nonzero number a and any integer n, a^{-n} is the reciprocal of a^{n}. In addition, the reciprocal of a^{-n} is a^{n}.

FOLDABLES In your Foldable, in the monomial division box, write the name of each exponent rule in the lesson and an example illustrating the rule.

Homework Assignment

Page(s):
Exercises:
o
a. Simplify $\frac{x^{-4} y^{9}}{z^{-6}}$. Assume that no denominator is equal to zero.

$$
\begin{aligned}
\frac{x^{-4} y^{9}}{z^{-6}} & =\left(\frac{x^{-4}}{1}\right)\left(\frac{y^{9}}{1}\right)\left(\frac{1}{z^{-6}}\right) \\
& =\left(\frac{1}{x^{4}}\right)\left(\frac{y^{9}}{1}\right)\left(\frac{z^{6}}{1}\right) \\
& =\frac{y^{\square} z^{6}}{\square}
\end{aligned}
$$

Multiply fractions.
b. Simplify $\frac{75 p^{3} q^{-5}}{15 p^{5} q^{-4} r^{-8}}$. Assume that no denominator is not equal to zero.

$$
\begin{aligned}
\frac{75 p^{3} q^{-5}}{15 p^{5} q^{-4} r^{-8}} & =\left(\frac{75}{15}\right)\left(\frac{p^{3}}{p^{5}}\right)\left(\frac{q^{-5}}{q^{-4}}\right)\left(\frac{1}{r^{-8}}\right) \\
& =\square \begin{array}{l}
\text { Group powers with } \\
\text { the same base. }
\end{array} \\
& \begin{array}{l}
\text { Quotient of } \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { Nowers and } \\
\text { Properties Exponent }
\end{array}
\end{aligned}
$$

Multiply fractions.

Check Your Progress

Simplify each expression. Assume that no denominator is equal to zero.
a. $\left(\frac{3 x^{2} y^{9}}{5 z^{12}}\right)^{0}$
b. $\frac{x^{0} k^{5}}{k^{3}}$

c. $\frac{a^{-2} b^{3}}{c^{-5}}$

d. $\frac{36 x^{5} y^{8} z^{2}}{9 x^{4} y^{2} z^{6}}$

Main Ideas

Find the degree of a polynomial.

- Arrange the terms of a polynomial in ascending or descending order.

TEKS A. 4 The
student understands
the importance of the skills
required to manipulate
symbols in order to solve
problems and uses the
necessary algebraic
skills required to simplify
algebraic expressions
and solve equations and
inequalieq in problem
situations. (A) Find specific
function values, simplify
polynomial expressions,
transform and solve
equations, and factor as
necessary in problem
situations. A.11 The
student understands there
are situations modeled by
functions that are neither
linear nor quadadratic and
models the situations. (A)
Use patterns to generate
the laws of exponents and
apply them in problem-
solving situations.

Review It

Define like terms. (Lesson 1-5)
\qquad
\qquad
\qquad

BUILD YOUR VOGABULARY (pages 150-151)

A polynomial is a monomial or a sum of monomials. A binomial is the sum of \square monomials, and a trinomial is the sum of \square monomials. The degree of a monomial is the \square of the exponents of all its variables. The degree of a polynomial is the greatest \square of any term in the polynomial.

EXAMPLE Identify Polynomials

(1) State whether each expression is a polynomial. If it is a polynomial, identify it as a monomial, binomial, or trinomial.
a. 6-4

Yes, $6-4$ is the difference of two real numbers.
It is a \square
b. $x^{2}+2 x y-7$

Yes, $x^{2}+2 x y-7$ is the sum and difference of three monomials.

It is a \square
c. $\frac{14 d+19 c^{2}}{5 d^{4}}$

No, $\frac{14 d}{5 d^{4}}$ and $\frac{19 c^{2}}{5 d^{4}}$ are not monomials.

Check Your Progress State whether each expression

 is a polynomial. If it is a polynomial, identify it as a monomial, binomial, or trinomial.a. $3 x^{2}+2 y+z \square$
b. $4 a^{2}-b^{-2}$
c. $8 r-5 s$
\square

EXAMPLE Degree of a Polynomial
2 Find the degree of each polynomial.

	Polynomial	Terms	Degree of Each Term	Degree of Polynomial
a.	$12+5 b+6 b c+8 b c^{2}$	$12,5 b$, $6 b c, 8 b c^{2}$	$0,1,2,3$	\square
b.	$9 x^{2}-2 x-4$	$9 x^{2},-2 x$, -4	\square	\square
c.	$14 g^{2} h^{5} i$	\square	\square	\square

Check Your Progress
Find the degree of each polynomial.

	Polynomial	Terms	Degree of Each Term	Degree of Polynomial
a.	$11 a b+6 b+2 a c^{2}-7$			\square
b.	$3 r^{3}+5 r^{2} s^{2}-s^{3}$			\square
c.	$2 x^{5} y z-x^{2} y z^{2}$			\square

EXAMPLE Arrange Polynomials in Ascending Order

(3) Arrange the terms of each polynomial so that the powers of x are in ascending order.
a. $16+14 x^{3}+2 x-x^{2}$

$$
\begin{aligned}
& =16 x^{0}+\square+\square-\square \\
& =\square
\end{aligned}
$$

b. $7 y^{2}+4 x^{3}+2 x y^{3}-x^{2} y^{2}$

EXAMPLE Arrange Polynomials in Descending Order
(4) Arrange the terms of each polynomial so that the powers of x are in descending order.
a. $8+7 x^{2}-12 x y^{3}-4 x^{3} y$

$$
\begin{aligned}
& =8 x^{0}+7 x^{2}-12 x^{1} y^{3}-4 x^{3} y \quad x^{0}=1 \text { and } x=x^{1} \\
& =\square
\end{aligned}
$$

b. $a^{4}+a x^{2}-2 a^{3} x y^{3}-9 x^{4} y$

$$
\begin{aligned}
& =a^{4} x^{0}+a^{1} x^{2}-2 a^{3} x^{1} y^{3}-9 x^{4} y^{1} \quad x^{0}=1 \text { and } x=x^{1} \\
& =\square
\end{aligned}
$$

Check Your Progress Arrange the terms of each polynomial so that the powers of \boldsymbol{x} are in descending order.
a. $6 x^{2}-3 x^{4}-2 x+1$
b. $3-2 x y^{4}+4 x^{3} y z-x^{2}$
c. $3 x^{3}+4 x^{4}-x^{2}+2$
d. $2 y^{5}-7 y^{3} x^{2}-8 x^{3} y^{2}-3 x^{5}$

7-4 Adding and Subtracting Polynomials

EXAMPLE Add Polynomials

MAIN IDEAS

- Add polynomials.
- Subtract polynomials.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.11(A).

FOLDABLES

ORGANIZE IT

In your Foldable, write examples that involve adding and subtracting polynomials.

(1) Find $\left(7 y^{2}+2 y-3\right)+\left(2-4 y+5 y^{2}\right)$.

METHOD 1 Horizontal
Group like terms together.
$\left(7 y^{2}+2 y-3\right)+\left(2-4 y+5 y^{2}\right)$
$=\left(7 y^{2}+5 y^{2}\right)+\square+[(-3)+2] \quad$ Associative and Commutative Properties.
\square Add like terms.

METHOD 2 Vertical
Align the like terms in columns and add.

Notice that terms are in descending order with like terms aligned.

EXAMPLE Subtract Polynomials

2) Find $\left(6 y^{2}+8 y^{4}-5 y\right)-\left(9 y^{4}-7 y+2 y^{2}\right)$.

METHOD 1 Horizontal
Subtract $9 y^{4}-7 y+2 y^{2}$ by adding its additive inverse.
$\left(6 y^{2}+8 y^{4}-5 y\right)-\left(9 y^{4}-7 y+2 y^{2}\right)$
$=\left(6 y^{2}+8 y^{4}-5 y\right)+$ \square
The additive inverse of $9 y^{4}-7 y+2 y^{2}$ is

$=\left[8 y^{4}+\left(-9 y^{4}\right)\right]+\square+(-5 y+7 y)$
Group like terms.
$=\square$

METHOD 2 Vertical
Align like terms in columns and subtract by adding the additive inverse.

\square

Check Your Progress
a. Find $\left(3 x^{2}+2 x-1\right)+\left(-5 x^{2}+3 x+4\right)$.

b. Find $\left(3 x^{3}+2 x^{2}-x^{4}\right)-\left(x^{2}+5 x^{3}-2 x^{4}\right)$.

7-5 Multiplying a Polynomial by a Monomial

EXAMPLE Multiply a Polynomial by a Monomial

Main IdeAs

- Find the product of a monomial and a polynomial.
- Solve equations involving polynomials.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.11(A).

ReVIew IT

Explain how to write an expression in simplest form. (Lesson 1-5)
\qquad
\qquad
\qquad
\qquad
\qquad
(1) Find $6 y\left(4 y^{2}-9 y-7\right)$.
$6 y\left(4 y^{2}-9 y-7\right)$
$=6 y(\square)-6 y(\square)-6 y(\square) \quad$ Distributive Property $=\square \quad$ Multiply.

Check Your Progress Find $3 x\left(2 x^{2}+3 x+5\right)$.
\square

EXAMPLE Simplify Expressions

2. Simplify $3\left(2 t^{2}-4 t-15\right)+6 t(5 t+2)$.

$$
\begin{array}{rll}
3 & \left(2 t^{2}-4 t-15\right)+6 t(5 t+2) & \\
& =3\left(2 t^{2}\right)-3(4 t)-3(15)+6 t(5 t)+6 t(2) & \\
=\square & & \text { Distributive Property } \\
=\left(6 t^{2}+30 t^{2}\right)+[(-12 t)+12 t]-45 & \begin{array}{l}
\text { Commutative } \\
\text { and Associative } \\
\text { Properties }
\end{array} \\
=\square & \text { Combine like terms. }
\end{array}
$$

Check Your Progress

Simplify $5\left(4 y^{2}+5 y-2\right)+$ $2 y(4 y+3)$.
\square

EXAMPLE Polynomials on Both Sides
(3) Solve $b(12+b)-7=2 b+b(-4+b)$.

$$
\begin{aligned}
b(12+b)-7=2 b+b(-4+b) & \text { Original equation } \\
12 b+b^{2}-7=\square & \text { Distributive Property } \\
12 b+b^{2}-7=\square & \text { Combine like terms. }
\end{aligned}
$$

$$
\square=\square
$$

Subtract b^{2} from each side.

$$
12 b=-2 b+7
$$

each side.

each side.

Divide each side

7-6 Multiplying Polynomials

EXAMPLE The Distributive Property

Main Ideas

- Multiply two binomials by using the FOIL method.
- Multiply two polynomials by using the Distributive Property.

TEKS A. 4 The
student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.11(A).

Key Concept

FOIL Method for
Multiplying Binomials
To multiply two
binomials, find the sum
of the products of
F the First terms,
O the Outer terms,
I the Inner terms, and
L the Last terms.

FOIL Method for Multiplying Binomials

To multiply two binomials, find the sum of the products of

F the First terms,
O the Outer terms,
the Last terms.

1 Find $(y+8)(y-4)$.

$(y+8)(y-4)=y(y-4)+8(y-4)$
Distributive Property
$=\square$
$=\square \quad$ Multiply.

Distributive Property

Combine like terms.

Check Your Progress
Find $(c+2)(c-4)$.

BUILD YOUR VOCABULARY (pages 150-151)

The shortcut of the Distributive Property is called the FOIL method, which can be used when multiplying two binomials.

EXAMPLE FOIL Method

2) a. Find $(z-6)(z-12)$.

Remember IT
 When multiplying

 binomials, you can check your answer by reworking the problem using the Distributive Property.
FOLDABLES

Organize IT

In your Foldable, in the box for polynomial multiplication, write examples of multiplying binomials using the Distributive Property and the FOIL method.

	+	-	\times	\div
$\dot{\grave{O}}$				
$\frac{2}{2}$				
$\dot{\grave{O}}$				

b. Find $(5 x-4)(2 x+8)$.

$$
(5 x-4)(2 x+8)
$$

Check Your Progress
Find each product.
a. $(x+2)(x-3)$

b. $(3 x+5)(2 x-6)$

EXAMPLE Foil Method

(3) GEOMETRY The area A of a triangle is one-half the height h times the base b. Write an expression for the
 area of the triangle.
The height is $x-7$ and the base is $6 x+4$. Write and apply the formula.
$A=\frac{1}{2} h b$
Original formula
$A=\frac{1}{2}$

$A=\frac{1}{2}[x(6 x)+x(4)-7(6 x)-7(4)]$
$A=\frac{1}{2}$

$A=\frac{1}{2}$

\square
Substitution

FOIL method

Multiply.

Combine like terms.

Distributive Property
The area of the triangle is \square square units.

Homework Assignment

EXAMPLE The Distributive Property

4) Find $(3 a+4)\left(a^{2}-12 a+1\right)$.
$(3 a+4)\left(a^{2}-12 a+1\right)$

Check Your Progress
 Find each product.

a. $(3 z+2)\left(4 z^{2}+3 z+5\right)$

Check Your Progress
The area of a rectangle is the measure of the base times the height. Write an expression for the area of the rectangle.

a. $(3 z+2)\left(4 z^{2}+3 z+5\right)$
b. $\left(3 x^{2}+2 x+1\right)\left(4 x^{2}-3 x-2\right)$

7-7 Special Products

EXAMPLE Square of a Sum

Main IDEAS

- Find squares of sums and differences.
- Find the product of a sum and a difference.

TEKS A. 4 The
student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.11(A).

Key Concepts

Square of a Sum The square of $a+b$ is the square of a plus twice the product of a and b plus the square of b.

Square of a Difference

 The square of $a-b$ is the square of a minus twice the product of a and b plus the square of b.
(1) Find each product.

a. $(7 z+2)^{2}$

$$
\begin{array}{rll}
(a+b)^{2} & =\square & \text { Square of a Sum } \\
(7 z+2)^{2} & =\square & a=7 z \text { and } b=2 \\
& =\square & \text { Simplify. }
\end{array}
$$

EXAMPLE Square of a Difference

2 Find each product.

a. $(3 c-4)^{2}$

$$
\begin{aligned}
(a-b)^{2} & =\square \\
(3 c-4)^{2} & =\square-\square \begin{array}{l}
\text { Square of a } \\
\text { Difference }
\end{array} \\
& =\square a=3 c \text { and } b=4
\end{aligned}
$$

Check Your Progress

Find each sum.

a. $(3 x+2)^{2}$
\square
b. $(4 x+2 y)^{2}$
\square
c. $(3 m-2)^{2}$
\square
d. $(2 p-2 q)^{2}$

EXAMPLE Product of a Sum and a Difference

3 Find each product.

a. $(9 d-4)(9 d+4)$

$$
\left.\begin{array}{rll}
(a+b)(a-b) & =a^{2}-b^{2} & \begin{array}{l}
\text { Product of a Sum } \\
\text { and a Difference }
\end{array} \\
(9 d-4)(9 d+4) & =\square & a=9 d \text { and } b=4
\end{array}\right] \begin{array}{ll}
\text { Simplify. }
\end{array}
$$

b. $\left(10 g+13 h^{3}\right)\left(10 g-13 h^{3}\right)$

$$
\begin{aligned}
(a+b)(a-b)=a^{2}-b^{2} & \begin{array}{l}
\text { Product of a } \\
\text { Sum and a } \\
\text { Difference }
\end{array} \\
\left(10 g+13 h^{3}\right)\left(10 g-13 h^{3}\right)=(10 g)^{2}-\left(13 h^{3}\right)^{2} & \begin{array}{l}
a=10 \mathrm{~g} \text { and } \\
b=13 h^{3}
\end{array} \\
=\square & \text { Simplify } .
\end{aligned}
$$

Check Your Progress Find each product.

e. $(3 y+2)(3 y-2)$

f. $\left(4 y^{2}+5 z\right)\left(4 y^{2}-5 z\right)$

Exercises:

STUDY GUIDE

Foldables

Use your Chapter 7 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 150-151) to help you solve the puzzle.

7-1

Multiplying Monomials

Simplify.

1. $3^{5} \cdot 3^{2}$

2. $\left(a^{3}\right)^{4}$

3. $(-4 x y)^{5}$

4. $y\left(y^{3}\right)\left(y^{5}\right)$

5. $\left(3 c^{2} d^{5}\right)\left(c d^{2}\right)$

6. $\left(3 m^{5} n^{3}\right)^{2}$

7-2

Dividing Monomials

Simplify. Assume that no denominator is equal to zero.
7. $\frac{12 x^{5}}{36 x}$
8. $\frac{y^{4}}{y^{-8}}$
9. $\frac{-5 w^{2}}{25 w^{7}}$

10. $\frac{m^{-2} n^{-5}}{\left(m^{4} n^{3}\right)^{-1}}$
11. $\left(\frac{x^{-5} y^{4}}{5^{-2}}\right)$
12. $\frac{(3 q)^{3}}{q^{4}}$

7-3
Polynomials
13. Complete the table.

	monomial	binomial	trinomial	polynomial with more than three terms
Example	$3 r^{2} t$	$2 x^{2}+3 x$	$5 x^{2}+3 x+2$	$7 s^{2}+s^{4}+2 s^{3}-s+5$
Number of Terms	\square	\square	\square	\square

14. What is the degree of the polynomial $4 x^{4}+2 x^{3} y^{3}+y^{2}+14$? Explain how you found your answer.
\square
15. Use a dictionary to find the meaning of the terms ascending and descending. Write their meanings and then describe a situation in your everyday life that relates to them.

7-4

Adding and Subtracting Polynomials
Find each sum or difference.
16. $(3 k-8)+(7 k+12)$

18. $\left(7 h^{2}+4 h-8\right)-\left(3 h^{2}-2 h+10\right)$

17. $\left(w^{2}+w-4\right)+\left(7 w^{2}-4 w+8\right)$

19. $\left(17 n^{4}+2 n^{3}\right)-\left(10 n^{4}+n^{3}\right)$

7-5

Multiplying a Polynomial by a Monomial
Find each product.
20. $2 y^{2}\left(3 y^{2}+2 y-7\right)$

21. $-3 x^{3}\left(x^{3}-2 x^{2}+3\right)$

22. Let n be an integer. What is the product of five times the integer added to two times the next consecutive integer?

7-6

Multiplying Polynomials
Find each product.
23. $(x+5)(x-3)$

25. $(7 x-4)(7 x+4)$

7-7

Special Products

Find each product. Then identify the special product.
27. $(x-4)^{2}$

28. $(x+11)(x-11)$

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 409 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 404-408 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 7 Practice Test on page 409.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 404-408 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 409.

Factoring

Use the instructions below to make a Foldable to help you organize your note as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of plain $8 \frac{1}{2}$ " by 11 "paper.

STEP 1 Fold in thirds and then in half along the width.

STEP 2 Open. Fold lengthwise, leave a $\frac{1}{2}$ " tab on the right.

STEP 3 Open. Cut short side along folds to make tabs.

STEP 4 Label each tab as shown.

NOTE-TAKING TIP: As soon as possible, go over your notes. Clarify any ideas that were not complete.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
$\underbrace{\text { composite number }}_{\text {[kahm•PAH•zeht] }}$			
factored form			
factoring			
factoring by grouping			
greatest common factor			
(GCF)			

Vocabulary Term	Found on Page	Definition	Description or Example
perfect square trinomial try•NOH•mee•uhl			
prime factorization FAK•tuh•ruh•ZAY•shuhn			
prime number			
prime polynomial			
Zero Products Property			

8-1 Monomials and Factoring

MAIN IDEAS

- Find prime factorizations of integers and monomials.
- Find the greatest common factors of integers and monomials.

Key Concept

Prime and Composite
Numbers A whole number greater than 1 whose only factors are 1 and itself is called a prime number.

A whole number, greater than 1 that has more than two factors is called a composite number.

$\sqrt{1}$
TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations.

BUILD YOUR VOGABULARY (pages 174-175)

When a whole number is expressed as a product of \square that are all \square numbers, the expression is called the prime factorization of the number.

A monomial is in factored form when it is expressed as the product of \square numbers and \square and no variable has an exponent greater than 1.

EXAMPLE Prime Factorization of a Monomial

(1) Factor $18 x^{3} \boldsymbol{y}^{3}$ completely.

Check Your Progress
Factor each monomial completely.
a. $15 \mathrm{a}^{3} \mathrm{~b}^{2}$
b. $-45 x y^{2}$

KEY Concept

Greatest Common
Factor (GCF)

- The GCF of two or more monomials is the product of their common factors when each monomial is in factored form.
- If two or more integers or monomials have a GCF of 1, then the integers or monomials are said to be relatively prime.

FOLDABLES

Organize IT

Under the tab for Lesson 8-1, write a monomial that can be factored. Then factor the monomial.

$8-1$	a
$8-2$	c
$8-3$	+
$8-4$	r
$8-5$	n
$8-6$	9

Homework AssignMent

Page(s):
Exercises:

BUILD YOUR VOGABULARY (pages 174-175)

The greatest common factor \square) of two or more integers is the product of the \square common to the integers.

EXAMPLE Finding GCF

2 GEOMETRY The sides of a trianlge are $12 w z^{2}, 8 w z$, and $16 w^{2} z$. Find the GCF of the three sides.
Find the factors of $12 w z^{2}, 8 w z$, and $16 w^{2} z$.
The factors of $12 w z^{2}$, are

The factors of $8 w z$ are \square
The factors of $16 w^{2} z$ are \square
So, the GCF is \square

EXAMPLE GCF of a set of Monomials

3 Find the GCF of $27 a^{2} b$ and $15 a b^{2} c$.

$27 a^{2} b=(3 \cdot 3 \cdot 3 \cdot(a) a \cdot(b)$ Factor each number.
$15 a b^{2} c=(3) \cdot 5 \cdot @ \cdot(b) \cdot b \cdot c \quad$ Circle the common prime factors.
The GCF of $27 a^{2} b$ and $15 a b^{2} c$ is \square

Check Your Progress

Find the GCF of each set of monomials.
a. 15 and 35
b. $39 x^{2} y^{3}$ and $26 x y^{4}$

8-2 Factoring Using the Distributive Property

MAIN IDEAS

- Factor polynomials by using the Distributive Property.
- Solve quadratic equations of the form $a x^{2}+b x=0$.

TEKS A. 4 The
student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.10(A).

Key Concept

Factoring by Grouping A polynomial can be factored by grouping if all the following situations exist.

- There are four or more terms.
- Terms with common factors can be grouped together.
- The two common factors are identical or are additive inverses of each other.

Foldables Under the tab for Lesson 8-2, list the steps to factor a polynomial grouping.

BUILD YOUR YOCABULARY (pages 174-175)

Factoring a polynomial means to find its \square factored form. The \square Property can also be used to factor some polynomials having
 more terms. This method is called factoring by grouping.

EXAMPLE Use the Distributive Property

(1) Use the Distributive Property to factor $15 x+25 x^{2}$.

First, find the GCF of $15 x$ and $25 x^{2}$.

Then use the Distributive Property to factor out the GCF.

$$
15 x+25 x^{2}=5 x(3)+5 x(5 \cdot x) \quad \text { Rewrite each term }
$$ using the GCF.

Simplify remaining factors.

$$
=\square(3+5 x)
$$

Distributive Property

EXAMPLE Use Grouping

(1) Factor $2 x y+7 x-2 y-7$.
$2 x y+7 x-2 y-7$

Factor the GCF from each grouping.

EXAMPLE Use the Additive Inverse Property

(3) $15 a-3 a b+4 b-20$
$15 a-3 a b+4 b-20$

Distributive Property

Check Your Progress
Factor each polynomial.
a. $3 x^{2} y+12 x y^{2}$
b. $6 a b^{2}+15 a^{2} b^{2}+27 a b^{3}$

EXAMPLE Solve an Equation

KEY Concept

Zero Product Property If the product of two factors is 0 , then at least one of the factors must be 0 .

Homework AssignMent

Page(s):
Exercises:

Write the equation so that it is of the form $a b=0$.

$4 y=0$ or $1-3 y=0$

The solution set is

Original equation
 each side.
Factor the GCF of $4 y$ and $12 y^{2}$, which is $4 y$.
Zero Product Property
Solve each equation.

Check Your Progress the solutions.
a. $(s-3)(3 s+6)=0$
b. $5 x-40 x^{2}=0$

Solve each equation. Then check

8-3 Factoring Trinomials: $x^{2}+b x+c$

EXAMPLE b is Negative and c is Negative

Main Ideas

- Factor trinomials of the form $x^{2}+b x+c$.
- Solve equations of the form $x^{2}+b x+c=0$.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A.10(A).

KEY CONCEPT

Factoring $x^{2}+b x+c$ To factor quadratic trinomials of the form $x+b x+c$, find two integers, m and n, whose sum is equal to b and whose product is equal to c. Then write $x^{2}+b x+$ c using the pattern ($x+$ $m)(x+n)$.

FOLDABLES Take notes

 explaining how to factor trinomials in the form $x^{2}+b x+c$. Include examples.(1) Factor $x^{2}-12 x+27$.

In this trinomial, $b=\square$ and $\mathrm{c}=\square$. This means $m+n$ is negative and $m n$ is positive. So m and n must both be negative. Make a list of the negative factors of \square, and look for the pair whose sum is \square
Factors of 27 Sum of Factors

$-1,-27$	\square
$-3,-9$	\square

$x^{2}-12 x+27=(x+m)(x+n)$
$=\square$

The correct factors are

Write the pattern $m=\square$ and $n=\square$

EXAMPLE c is Negative

(2) a. Factor $x^{2}+3 x-18$.

In this trinomial, $b=3$ and $c=-18$. This means $m+n$ is positive and $m n$ is negative, so either m or n is negative, but not both. Make a list of the factors of -18 . Look for the pair of factors whose sum is 3 .

Factors of $\mathbf{2 7}$		Sum of Factors
1,	\square	-17
-1,	\square	17
2,	\square	-7
-2,	9	\square
3,	-6	\square
-3,	6	\square

The correct factors are
\square
$x^{2}+3 x-18=(x+m)(x+n)$

Remember IT

Before factoring, rewrite the equation so that one side equals 0 .
b. Factor $x^{2}-x-20$.

Since $b=\square$ and $c=\square, m+n$ is negative and $m n$ is negative. So either m or n is negative, but not both.

Factors of $\mathbf{- 2 0}$	Sum of Factors	
$\mathbf{1 ,}$	-20	\square
-1,	20	\square
2,		
	10	-8
	-5	-1

The correct factors are 4 and -5 .

$$
\begin{aligned}
x^{2}-x-20 & =(x+m)(x+n) & & \text { Write the pattern. } \\
& =\square & & m=4 \text { and } n=-5
\end{aligned}
$$

Check Your Progress

Factor each trinomial.
a. $x^{2}+3 x+2$

b. $x^{2}-10 x+16$

c. $x^{2}+4 x-5$

d. $x^{2}-5 x-24$

EXAMPLE Solve an Equation by Factoring

3) Solve $x^{2}+2 x-15=0$. Check your solutions.
$x^{2}+2 x=15 \quad$ Original equation

$\square=0$	Subtract 15 from each side.
$\square=0$	Factor.
$\square=0$ or \square	Zero Product Property
$x=\square$	$x=\square \quad$
Solve each equation.	

The solution is \square.

Check Your Progress
 Solve $x^{2}-20=x$.

8-4 Factoring Trinomials: $a x^{2}+b x+c$

EXAMPLE Factor $a x^{2}+b x+c$

MAIN IDEAS

Factor trinomials of the form $a x^{2}+b x+c$.

- Solve equations of the form $a x^{2}+b x+c=0$.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. (B) Use the commutative, associative, and distributive properties to simplify algebraic expressions. Also addresses TEKS A. 10 (A).

ReView It

Which property is applied when factoring by grouping?
(Lesson 8-2)
\qquad
\qquad
\qquad
a. Factor $5 x^{2}+27 x+10$.

In this trinomial, $a=\square, b=\square$, and $c=\square$. Find two numbers whose sum is 27 and whose product is $5 \cdot 10$ or 50. Make a list of factors of 50 and look for a pair of factors whose sum is 27 .

b. Factor $24 x^{2}-22 x+3$.

In this trinomial, $a=\square, b=\square$, and $c=\square$.
Since b is negative, $m+n$ is negative. Since c is positive, $m n$ is positive. So m and n must both be negative. Make a list of the negative factors of $24 \cdot 3$ or 72 , and look for the pair of factors whose sum is -22 .

Factors of $-\mathbf{2 0}$	
-1,	\square
-2,	Sum of Factors
-73	
\square	-38
\square	-24
-27	
\square	-22

The correct factors are $-4,-18$

Write It

Before trying to factor a trinomial, what should you check for?
\qquad
\qquad
\qquad
\qquad
$24 x^{2}-22 x+3=24^{2}+m x+n x+3 \quad$ Write the pattern

$$
\begin{aligned}
=\square & m=\square \text { and } \\
n & =\square
\end{aligned}
$$

$$
=(\square)+(-18 x+3)
$$

$$
=\square(6 x-1)+(\square)(6 x-1)
$$

$$
=\square
$$

Factor the GCF from each grouping.

Distributive Property
c. Factor $4 x^{2}+24 x+32$.

Notice that the GCF of the terms $4 x^{2}, 24 x$, and 32 is \square When the GCF of the terms of a trinomial is an integer other than 1, you should first factor out this GCF.
$4 x^{2}+24 x+32=\square\left(x^{2}+6 x+8\right) \quad$ Distributive Property Now factor $x^{2}+6 x+8$. Since the lead coefficient is 1 , find the two factors of 8 whose sum is 6 .

Factors of 8	Sum of Factors	
	9	The correct factors are
	6	and

So, $x^{2}+6 x+4=(x+2)(x+4)$. Thus, the complete factorization of $4 x^{2}+24 x+32$ is \square

Check Your Progress

Factor each trinomial.
a. $3 x^{2}+26 x+35$
b. $3 x^{2}-17 x+10$

BUILD YOUR VOCABULARY (pages 174-175)

A polynomial that cannot be written as a product of two polynomials with \square coefficients is called a prime polynomial.

FOLDABLES

Organize IT

Under the tab for Lesson 8-4, list the steps you use to solve equations by factoring.

$8-1$	F
$8-2$	c
$8-3$	+
$8-4$	r
$8-5$	n
$8-6$	9

Homework

Assignment

Page(s):
Exercises:

8-5 Factoring Differences of Squares

EXAMPLE Factor the Difference of Squares

Main Ideas

Factor binomials that are the difference of squares.

- Solve equations involving the differences of squares.

Key Concept

Difference of Squares $a^{2}-b^{2}=(a+b)(a-b)$ or $(a-b)(a+b)$

FOLDABLES Under the tab for Lesson 8-5, write a binomial that is the difference of squares. Then factor the binomial.

(1) Factor each binomial.

a. $16 y^{2}-81 z^{2}$

Write in the form $a^{2}-b^{2}$.

b. $\mathbf{3} b^{2}-\mathbf{2 7 b}$

$$
\begin{aligned}
3 b^{2}-27 b & =3 b\left(b^{2}-9\right) \\
& =3 b\left(b^{2}-3^{2}\right) \\
& =\square
\end{aligned}
$$

The GCF is $3 b$.
$b^{2}=b \cdot b$ and $9=3 \cdot 3$.
Factor the difference of squares.

EXAMPLE Apply a Factoring Technique More Than Once

(2) Factor $y^{4}-625$.
equations using concrete models, tables, graphs, and algebraic methods.

$y^{4}-625$	$=\square-\square$
	$=\square$
	$=\left(y^{2}+25\right)\left(y^{2}-5^{2}\right)$
	$=$$y^{4}=y^{2} \cdot y^{2}$ and $625=25 \cdot 25$
	Factor the difference of squares. $y^{2}=y \cdot y$ and $25=5 \cdot 5$
	Factor the difference of squares.

Check Your Progress

Factor each polynomial.
a. $b^{2}-9$
b. $36 k^{2}-144 m^{2}$

c. $5 x^{3}-20 x$
d. $3 y^{4}-48$
\square
\square

EXAMPLE Apply Several Different Factoring Techniques

(3) Factor $6 x^{3}+30 x^{2}-24 x-120$.

$$
\begin{aligned}
6 x^{3} & +30 x^{2}-24 x-120 \\
& =\square\left(x^{3}+5 x^{2}-4 x-20\right) \\
& =\square \square+\left(5 x^{2}-20\right) \\
& =\square+\square] \\
& =6\left(x^{2}-4\right)(x-5)
\end{aligned}
$$

$$
=\square
$$

Original polynomial
Factor out the GCF.
Group terms with common factors.

Factor each grouping.
$x^{2}-4$ is the common factor.

Factor the difference of squares.

Check Your Progress
Factor $5 x^{3}+25 x^{2}-45 x-225$

EXAMPLE

4. TEST EXAMPLE In the equation $q^{2}-\frac{4}{25}=y$, which is a value of q when $y=0$?
A $\frac{2}{25}$
B $\frac{4}{25}$
C 0
D $\frac{-2}{5}$
$q^{2}-\frac{4}{25}=\square$
Replace y wtih

$$
q^{2}-\left(\frac{2}{5}\right)^{2}=0 \quad q^{2}=q \cdot q \text { and } \frac{4}{25}=\frac{2}{5} \cdot \frac{2}{5}
$$

$(q+\square)(q-\square)=0 \quad$ Factor the difference of squares.
$q+\frac{2}{5}=0$ or $q-\frac{2}{5}=0 \quad$ Zero Product Property
$q=\square \quad q=\square$ Solve each equation.
Homework Assignment

Page(s):
Exercises: \qquad \square
Exercises.

8-6 Perfect Squares and Factoring

MAIN IDEAS

Factor perfect square trinomials.

- Solve equations involving perfect squares.

Key Concept

Factoring Perfect Square Trinomials If a trinomial can be written in the form $a^{2}+2 a b+b^{2}$ or $a^{2}-2 a b+b^{2}$, then it can be factored as $(a+b)^{2}$ or as $(a-b)^{2}$, respectively.

TEKS A. 4 The student understands the importance of the skills required to manipulate symbols in order to solve problems and uses the necessary algebraic skills required to simplify algebraic expressions and solve equations and inequalities in problem situations. (A) Find specific function values, simplify polynomial expressions, transform and solve equations, and factor as necessary in problem situations. A. 10 The student understands there is more than one way to solve a quadratic equation and solves them using appropriate methods.
(A) Solve quadratic equations using concrete models, tables, graphs, and algebraic methods.

BUILD YOUR VOGABULARY (pages 174-175)
Perfect Square Trinomials are trinomials that are the

EXAMPLE Factor Perfect Square Trinomials

(1) Determine whether each trinomial is a perfect square trinomial. If so, factor it.

a. $25 x^{2}-30 x+9$

1. Is the first term a perfect square?

2. Is the last term a perfect square? \square $9=3^{2}$.
3. Is the middle term equal to

$25 x^{2}-30 x+9 \square$ a perfect square trinomial.
$25 x^{2}-30 x+9=(5 x)^{2}-2(5 x)(3)+3^{2}$ Write as $a^{2}-2 a b+b^{2}$

Factor using the pattern.
b. $49 y^{2}+42 y+36$

1. Is the first term a perfect square? $\square, 49 y^{2}=(7 y)^{2}$.
2. Is the last term a perfect square?

3. Is the middle term equal to $2(7 y)(6)$? \square , $42 y \neq 2(7 y)(6)$ $49 y^{2}+42 y+36$ \square a perfect square trinomial.

FOLDABLES'

ORGANIZE IT

Under the tab for Lesson 8-6, use your own words to explain why equations with perfect square trinomials only have one solution.

$8-1$	
a	
$8-2$	c
$8-3$	t
$8-4$	0
$8-5$	n
$8-6$	

Check Your Progress

Determine whether each

 trinomial is a perfect square trinomial. If so, factor it.a. $9 x^{2}-12 x+16$
b. $16 x^{2}+16 x+4$

EXAMPLE Factor Completely

(2) Factor each polynomial.

a. $6 x^{2}-96$

First check for a GCF. Then, since the polynomial has two terms, check for the difference of squares.

$$
\begin{array}{rll}
6 x^{2}-96 & =6 \square & \\
& =6 \text { is the GCF. } \\
& =\square & \\
& x^{2}=x \cdot x \text { and } 16=4 \cdot 4 \\
& \begin{array}{l}
\text { Factor the difference } \\
\text { of squares. }
\end{array}
\end{array}
$$

b. $16 y^{2}+8 y-15$

This polynomial has three terms that have a GCF of 1.
While the first term is a perfect square, $16 y^{2}=\square$, the last term is not. Therefore, this is not a perfect square trinomial.
This trinomial is in the form $a x^{2}+b x+c$. Are there two numbers m and n whose product is $16 \cdot-15$ or -240 and whose sum is 8 ? Yes, the product of \square and \square is -240 and their sum is 8.

Check Your Progress

a. $3 x^{2}-3$

Factor each polynomial.

b. $4 x^{2}+10 x+6$

EXAMPLE Solve Equations with Repeated Factors

(3) Solve $4 x^{2}+36 x+81=0$.

$$
\begin{aligned}
& 4 x^{2}+36 x+81=0 \quad \text { Original equation } \\
& (\square)^{2}+2 \square+\square{ }^{2}=0 \quad \text { Recognize } \\
& 4 x^{2}+36 x+81 \text { as } \\
& \text { a perfect square } \\
& \text { trinomial. } \\
& \text { Set the repeated } \\
& \text { factor equal to zero. } \\
& x=\square \text { Solve for } x \text {. } \\
& \text { Thus, the solution set is } \\
& \text { Factor the perfect } \\
& \text { square trinomial. } \\
& \begin{array}{l}
=0 \quad \begin{array}{l}
\text { Set the repeated } \\
\text { factor equal to zero. }
\end{array}
\end{array}
\end{aligned}
$$

Check Your Progress Solve $9 x^{2}-30 x+25=0$.

BUILD YOUR VOGABULARY (pages 174-175)

The square root property states that for any number $n>0$, if $x^{2}=n$, then $x=\square \sqrt{n}$.

EXAMPIE Use the Square Root Property To Solve Equations

(4) a. Solve $(b-7)^{2}=36$.

$$
\begin{array}{rlrl}
(b-7)^{2} & =36 & & \text { Original equation } \\
b-7 & =\square & & \text { Square Root Property } \\
b-7 & = \pm 6 & & 36=\square \\
b=7 \pm 6 & & \text { Add } \square \text { to each side. } \\
b=7+6 \text { or } b=7-6 & & \text { Separate into two equations. } \\
=\square & =\square & & \text { Simplify. }
\end{array}
$$

The roots are \square and \square. Check each solution in the original equation.
b. Solve $(x+9)^{2}=8$.

$$
(x+9)^{2}=8 \quad \text { Original equation }
$$

Square Root Property
Subtract 9 from each side.
Since 8 is not a perfect square, the solution set is
\square . Using a calculator, the approximate
 about \square

Check Your Progress

Solve each equation. Check your solutions.
a. $(x-4)^{2}=25$

Homework Assignment

Page(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 8 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 174-175) to help you solve the puzzle.

8-1

Factors and Greatest Common Factors

Choose the letter of the term that best matches each phrase.

1. the number 14
2. a monomial that is expressed as the product of prime numbers and variables, with no variable having an exponent greater than 1
\square a. composite number
b. prime number
c. factored form
3. the number 5 \square
Find the GCF of each set of monomials.
4. $12,30,114$ \square
5. $6 a^{2}, 8 a$ \square
6. $24 x y^{5}, 56 x^{3} y$ \square

8-2

Factoring Using the Distributive Property

7. Complete.

$$
\begin{aligned}
d^{2} & =-2 d \\
d^{2}+2 d & =0 \\
\square(d+2) & =0 \\
d & =\square \text { or } d+2=0 \\
d & =\square
\end{aligned}
$$

The solution set is \square

8-3

Factoring Trinomials: $x^{2}+b x+c$

Tell what sum and product m and n must have in order to use the pattern $(x+m)(x+n)$ to factor the given trinomial.
8. $x^{2}+10 x+24$
sum:

product: \square
9. $x^{2}-12 x+20$
sum: \square
\square
product:
10. $x^{2}-4 x-21$
sum:

product: \square
11. $x^{2}+6 x-16$
sum:

product: \square
12. Find two consecutive even integers whose product is 168 .
\square

8-4

Factoring Trinomials: $a x^{2}+b x+c$

Factor each trinomial, if possible. If the trinomial cannot be factored using integers, write prime.
13. $2 b^{2}+10 b+12$

15. $12 x^{2}-4 y-5$

14. $4 y^{2}+4 y-3$

16. $10 x^{2}-9 x+6$

17. Explain how you know that the trinomial $2 x^{2}-7 x+4$ is a prime polynomial.

8-5

Factoring Differences of Squares
Factor each polynomial.
18. $4 x^{2}-25$

19. $49 a^{2}-64 b^{2}$

20. Explain what is done in each step to factor $4 x^{4}-64$.

$$
\begin{aligned}
& 4 x^{4}-64 \\
& =4\left(x^{4}-16\right) \\
& \left.=4\left[\left(x^{2}\right)^{2}-4^{2}\right)\right] \\
& =4\left(x^{2}+4\right)\left(x^{2}-4\right) \\
& =4\left(x^{2}+4\right)\left(x^{2}-2^{2}\right) \\
& =4\left(x^{2}+4\right)(x+2)(x-2)
\end{aligned}
$$

8-6

Perfect Squares and Factoring
Match each polynomial from the first column with a factoring technique in the second column. Some of the techniqes may be used more than once. If none of the techniques can be used to factor the polynomial, write none.
21. $9 x^{2}-64$
a. factor as $x^{2}+b x+c$
22. $9 x^{2}+12 x+4$
b. factor as $a x^{2}+b x+c$
23. $x^{2}-5 x+6$
c. difference of squares
24. $4 x^{2}+13 x+9$ \square d. perfect square trinomial
25. The area of a circle is given by the formula $A=\pi r^{2}$, where r is the radius. If increasing the radius of a circle by 3 inches gives the resulting circle an area of 81π square inches, what is the radius of the original circle?

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 8 Practice Test on page 459 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 455-458 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 459.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldable.
- Then complete the Chapter 8 Study Guide and Review on pages 455-458 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 459.

9
 Quadratic and Exponential Functions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with ten sheets of notebook paper.

STEP 1 Fold each sheet in half along the width.

STEP 2 Unfold each sheet and tape to form one long piece.

STEP 3 Label each page with the lesson number as shown. Refold to form a booklet.

NOTE-TAKING TIP: If you find it difficult to write and pay attention at the same time, ask your instructor if you may record the classes with a tape recorder.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
axis of symmetry [SIH•muh•tree]			
completing the square			
compound interest			
discriminant			
double root			
exponential decay			
[EHK•spuh•NEHN•chuchl]			
exponential function			

Vocabulary Term	Found on Page	Definition	Description or Example
maximum			
minimum			
$\underbrace{\text { parabola }}$ [puh•RA•buh•lh]			
quadratic equation [kwah•dra•tihk]			
Quadratic Formula			
quadratic function			
roots			
symmetry			
vertex			
zeros			

9-1 Graphing Quadratic Functions

MAIN IDEAS

- Graph quadratic functions.
- Find the equation of the axis of symmetry and the coordinates of the vertex of a parabola.

TEKS A. 2 The student uses the properties and attributes of functions. (A) Identify and sketch the general forms of linear $(y=x)$ and quadratic $\left(y=x^{2}\right)$ parent functions. A. 9 The student understands that the graphs of quadratic functions are affected by the parameters of the function and can interpret and describe the effects of changes in the parameters of quadratic functions. (A) Determine the domain and range for quadratic functions in given situations. (D) Analyze graphs of quadratic functions and draw conclusions.

Key Concept

Quadratic Function A quadratic function can be described by an equation of the form $y=a x^{2}+b x+c$, where $a \neq 0$.

FOLDABLES On the page for Lesson 9-1, write an example of a quadratic function that opens upward. Then write an example of a quadratic function that opens downward.

BUILD YOUR YOGABULARY (pages 196-197)

The graph of a \square function is called a parabola. When graphing a parabola the \square point is called the
minimum and the \square point is called the maximum. The \square or \square point of a parabola is called the vertex.

EXAMPLE Graph Opens Upward

(1) Use a table of values to graph $y=x^{2}-x-2$.
Graph these ordered pairs and connect them with a smooth curve.

x	\boldsymbol{y}
-2	\square
-1	0
0	\square
1	\square
2	0
3	

Check Your Progress
Use a table of values to graph $y=x^{2}+2 x+3$.

EXAMPLE Graph Opens Downward

2) ARCHERY The equation $y=-x^{2}+6 x+4$ represents the height y of an arrow x seconds after it is shot into the area.
a. Use a table of values to graph $y=-x^{2}+6 x+4$.

\boldsymbol{x}	\boldsymbol{y}
-2	-12
-1	-3
0	\square
1	9
2	12
3	13
4	\square
5	\square

Key CONCEPT

Equation of the Axis of Symmetry of a Parabola The equation of the axis of symmetry for the graph of $y=a x^{2}+b x+c$, where $a \neq 0$, is $x=-\frac{b^{\prime}}{2 a}$.
2a

BUILD YOUR VOCABULARY (pages 196-197)

Parabolas possess a geometric property called symmetry.
The axis of symmetry \square the parabola into two
\square halves.

EXAMPLE Vertex and Axis of Symmetry

(3) Consider the graph of $y=-2 x^{2}-8 x-2$.
a. Write the equation of the axis of symmetry.

$$
\text { In } y=-2 x^{2}-8 x-2, a=\square \text { and } b=\square .
$$

$$
x=-\frac{b}{2 a}
$$

$$
x=-\frac{\square}{2 \square}
$$

symmetry of a parabola

$$
a=\square \text { and } b=\square
$$

$$
=\square
$$

The equation of the axis of symmetry is $x=\square$.
Check Your Progress The equation $y=-x^{2}+4$ represents the shape of a jump rope when it is positioned above the jumper's head.
a. Use a table of values to graph $y=-x^{2}+4$.

b. What are the domain and range of this function?
\square

b. Find the coordinates of the vertex.

Since the equation of the axis of symmetry is $x=-2$ and the vertex lies on the axis, the x-coordinate for the vertex is -2 .
$y=-2 x^{2}-8 x-2$
Original Equation
$y=-2 \square-8 \square^{2}-2 \quad x=-2$
$y=\square$ Simplify.
$y=\square$
Add.

The vertex is at \square
c. Identify the vertex as a maximum or minimum.

Since the coefficient of the x^{2} term is \square
the parabola opens \square and the vertex is a
\square

d. Graph the function.

You can use the symmetry of the parabola to help you draw its graph. On a coordinate plane, graph the vertex and the axis of symmetry.
Choose a value for x other than -2 . For example, choose -1 and find the y-coordinate that satisfies the equation.
$y=-2 x^{2}-8 x-2$
Original equation
$y=-2(\square)^{2}-8(\square)-2 \quad x=\square$
$y=4$

> Simplify.

Since the graph is symmetrical about its axis of symmetry
$x=\square$, you can find another point on the other side of the axis of symmetry. The point at is 1 unit to the right

of the axis. Go 1 unit to the right of the axis. Go 2 unit to the left of the axis and plot the
point \square
Repeat this for several other points. Then sketch the parabola.

Check Your Progress
Consider the graph of $y=3 x^{2}-6 x+1$.
a. Write the equation of the axis of symmetry.
\square
b. Find the coordinates of the vertex.
\square
c. Identify the vertex as a maximum or minimum.

d. Graph the function.

Homework Assignment

Page(s):
Exercises:

9-2 Solving Quadratic Equations by Graphing

MAIN IDEAS

- Solve quadratic equations by graphing.
- Estimate solutions of quadratic equations by graphing.

TEKS A. 10 The student understands there is more than one way to solve a quadratic equation and solves them using appropriate methods.
(A) Solve quadratic equations using concrete models, tables, graphs, and algebraic methods.
(B) Make connections among the solutions (roots) of quadratic equations, the zeros of their related functions, and the horizontal intercepts (x-intercepts) of the graph of the function.

BUILD YOUR VOGABULARY (pages 196-197)

In a quadratic equation, the value of the related quadratic function is \square
The \square of a quadratic equation are called the roots of the equation. They can be found by the
\square or zeros of the related quadratic function.

EXAMPLE Two Roots

(1) Solve $x^{2}-3 x-10=0$ by graphing.

Graph the related function $f(x)=x^{2}-3 x-10$.
The equation of the axis of symmetry is $x=-\frac{-3}{2(1)}$ or $x=\frac{3}{2}$.
When $x=\frac{3}{2}, f(x)$ equals $\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)-10$ or \square. So the coordinates of the vertex are \square
Make a table of values to find other points to sketch the graph.

To solve $x^{2}-3 x-10=0$, you need
to know where the value of $f(x)$ is
 This occurs at the x-intercepts. The x-intercepts of the parabola

x	\boldsymbol{y}
-3	8
-1	
0	-10
1	-12
2	
3	-10
4	
6	

9-2

EXAMPLE A Double Root

(2) $x^{2}-6 x=-9$

First rewrite the equation so one side is equal to zero.

$$
\begin{aligned}
x^{2}-6 x & =-9 & & \text { Original equation } \\
x^{2}-6 x \square & =-9 \square & & \text { Add } \square \text { to each side. } \\
x^{2}-6 x+9 & =\square & & \text { Simplify. }
\end{aligned}
$$

Graph the related function $f(x)=x^{2}-6 x+9$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
1	4
2	\square
3	\square
4	\square
5	\square

Notice that the vertex of the parabola is the x-intercept.
Thus, one solution is \square. What is the other solution?

Check Your Progress

Solve each equation by graphing.

b. $x^{2}+2 x=-1$

EXAMPLE Rational Roots

3 Solve $x^{2}-4 x+2=0$ by graphing. If integral roots cannot be found, estimate the roots by stating the consecutive integers between which the roots lie.

Graph the related function $f(x)=x^{2}-4 x+2$.

\boldsymbol{x}	$\boldsymbol{f}(x)$
0	2
1	\square
2	\square
3	\square
4	2

FOLDABLES

ORGANIZE IT

On the page for Lesson 9-2, write how you solve a quadratic equation by graphing.

Copyright \odot Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework AssignMent

Page(s):
Exercises:

9-3 Solving Quadratic Equations by Completing the Square

EXAMPLE Irrational Roots

MAIN IDEAS

- Solve quadratic equations by finding the square root.
- Solve quadratic equations by completing the square.

TEKS A. 10 The student understands there is more than one way to solve a quadratic equation and solves them using appropriate methods. (A) Solve quadratic equations using concrete models, tables, graphs, and algebraic methods.

Remember IT

When taking a square root of a positive number, there are two roots, one positive and one negative.
(1) Solve $x^{2}+6 x+9=5$ by taking the square roots of each side. Round to the nearest tenth if necessary.

$$
\begin{aligned}
x^{2}+6 x+9=5 & \text { Original equation } \\
(x+3)^{2}=5 & x^{2}+6 x+9 \text { is a } \square \\
& \text { trinomial. }
\end{aligned}
$$

Take the square root of each side.
Simplify.
Definition of absolute value
$x+3-\square= \pm \sqrt{5}-\square$ Subtract \square from each side.
$x=\square$ Simplify.
Use a calculator to evaluate each value of x.
$x=-3+\sqrt{5}$ or $\quad x=-3-\sqrt{5}$

$$
\approx \square
$$

The solution set is \square

Check Your Progress

Solve $x^{2}+8 x+16=3$ by taking the square root of each side. Round to the nearest tenth if necessary.

BUILD YOUR YOCABULARY (pages 196-197)

 so that the resulting trinomial is a \qquad is referred to as completing the square.

EXAMPLE Complete the Square

2. Find the value of c that makes $x^{2}+12 x+c$ a perfect square.

Key Concept

Completing the Square To complete the square for a quadratic expression of the form $x^{2}+b x$, you can follow the steps below.
Step 1 Find $\frac{1}{2}$ of b, the coefficient of x.

Step 2 Square the result of Step 1.

Step 3 Add the result of Step 2 to $x^{2}+b x$, the original expression.

FOldables On the page for Lesson 9-3, write the steps for completing the square.

Complete the square.
Step 1 Find $\frac{1}{2}$ of -12 .

$$
\begin{aligned}
-\frac{12}{2} & =\square \\
(\square)^{2} & =\square
\end{aligned}
$$

Step 2 Square the result of Step 1.
Step 3 Add the result of Step 2 to $x^{2}-12 x$.

$$
x^{2}-12 x
$$

Thus, $c=\square$. Notice that $x^{2}-12 x+36=$ \square

Check Your Progress
Find the value of c that makes $x^{2}+14 x+c$ a perfect square.

EXAMPLE Solve an Equation by Completing the Square

3) Solve $x^{2}-18 x+5=-12$ by completing the square.

Step 1 Isolate the x^{2} and x terms.

$$
\begin{array}{rlrl}
x^{2}-18 x+5 & =-12 & & \text { Original equation } \\
x^{2}-18 x+5-\square & =-12-\square & \text { Subtract. } \\
x^{2}-18 x & =\square & \text { Simplify. }
\end{array}
$$

Check Substitute each value for x in the original equation.

$$
x^{2}-18 x+5=-12
$$

$$
x^{2}-18 x+5=-12
$$

$$
(17)^{2}-18(17)+5 \stackrel{?}{=}-12
$$

$$
(1)^{2}-18(1)+5 \stackrel{?}{=}-12
$$

$$
\begin{aligned}
\square-\square+5 & \stackrel{?}{=}-12 \\
\square & =-12 \checkmark
\end{aligned}
$$

$$
\square-\square+5 \stackrel{?}{=}-12
$$

$$
\square=-12 \checkmark
$$

The solution set is \square

Homework

 Assignment
Page(s):

Exercises:

9-4 Solving Quadratic Equations by Using the Quadratic Formula

Main Ideas

- Solve quadratic equations by using the Quadratic Formula.
- Use the discriminant to determine the number of solutions for a quadratic equation.

Key Concept

The Quadratic Formula The solutions of a quadratic equation in the form $a x^{2}+b x+c=0$, where $a \pm 0$, are given by the Quadratic Formula.

FOLDABLES Write this formula in your Foldable. Be sure to explain the formula.

I TEKS A. 10 The student understands there is more than one way to solve a quadratic equation and solves them using appropriate methods.
(A) Solve quadratic equations using concrete models, tables, graphs, and algebraic methods. (B) Make connections among the solutions (roots) of quadratic equations, the zeros of their related functions, and the horizontal intercepts (x-intercepts) of the graph of the function.

BUILD YOUR VOGABULARY (pages 196-197)

When solving the standard form of the \square equation for \square, the result produces the Quadratic Formula.

EXAMPLE Solve Quadratic Equations

(1) Solve each equation. Round to the nearest tenth if necessary.
a. Solve $x^{2}-2 x-35=0$

For this equation, $a=1, b=-2$, and $c=-35$.

b. $15 x^{2}-8 x=4$

Step 1 Rewrite the equation in standard form.

$$
\begin{array}{rll}
15 x^{2}-8 x & =4 & \text { Original equation } \\
15 x^{2}-8 x-\square & =4-\square & \begin{array}{l}
\text { Subtract } \square \\
\text { each side. }
\end{array} \\
\text { from } \\
15 x^{2}-8 x-4 & =\square & \text { Simplify. }
\end{array}
$$

Step 2 Apply the Quadratic Formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{array}{ll}
\text { Quadratic } \\
& \text { Formula }
\end{array}
$$

$a=15, b=-8$, and $c=-4$

Multiply.

$$
=\frac{8 \pm \sqrt{\square}}{30}
$$

Add.

The approximate solution set is \square

Check Your Progress

 Solve each equation by using the Quadratic Formula. Round to the nearest tenth if necessary.a. $x^{2}+x-30=0$

b. $20 x^{2}-4 x=8$

KEy Concept

Using the Discriminant
Negative Discriminant:
There are no real roots since no real number can be the square root of a negative number.
Zero Discriminant: There is a double root.

Positive Discriminant: There are two roots.

EXAMPLE Use the Discriminant

2 State the value of the discriminant. Then determine the number of real roots of the equation.
a. $3 x^{2}+10 x=12$

Step 1 Rewrite the equation in standard form.

$$
\begin{aligned}
3 x^{2}+10 x=12 & \text { Original equation } \\
3 x^{2}+10 x \square=12 \square & \begin{array}{l}
\text { Subtract } \square \text { from } \\
\text { each side. }
\end{array} \\
3 x^{2}+10 x-12=0 & \text { Simplify. }
\end{aligned}
$$

Step 2 Find the discriminant.

$$
\begin{array}{rlr}
b^{2}-4 a c & =(10)^{2}-4(3)(-12) & \begin{array}{l}
a=3, b=10, \\
\text { and } c=-12 \\
\text { Simplify. }
\end{array} \\
& =\square
\end{array}
$$

The discriminant is \square Since the discriminant is positive, the equation has \square real roots.
b. $4 x^{2}-2 x+14=0$
$b^{2}-4 a c=(-2)^{2}-4(4)(14) \quad a=4, b=-2$ and $c=14$
$=\square$ Simplify.
The discriminant is
 . Since the discriminant is
\square the equation has \square real roots.

Check Your Progress

State the value of the discriminant for each equation. Then determine the number of real roots for the equation.
a. $x^{2}+2 x+2=0$
\square
b. $-5 x^{2}+10 x=-1$

9-5 Exponential Functions

TEKS A. 11 The student understands there are situations modeled by functions that are neither linear nor quadratic and models the situations. (C) Analyze data and represent situations involving exponential growth and decay using concrete models, tables, graphs, or algebraic methods.

Main IdeAS

- Graph exponential functions.
- Identify data that displays exponential behavior.

Key Concept

Exponential Function An exponential function is a function that can be described by an equation of the form $y=a^{x}$, where $a>0$ and $a \neq 1$.

Remember It

The graph of $y=a^{x}$, where $a>0$ and $a \neq 1$ never has an x-intercept.

BUILD YOUR VOGABULARY (pages 196-197)
The type of function in which the \square is called an exponential function.

EXAMPLE Graph an Exponential Function with $a>1$

(1) a. Graph $y=3^{x}$. State the y-intercept.

\boldsymbol{x}	$\mathbf{3}^{\boldsymbol{x}}$	\boldsymbol{y}
-1		\square
0		\square
1	\square	\square
2		\square

Graph the ordered pairs and connect the points with a smooth curve. The y-intercept is \square
b. Use the graph to determine the approximate value of $3^{1.5}$.

The graph represents all real values of x and their corresponding values of y for $y=3^{x}$. The value of y is about

Use a calculator to confirm this value. $3^{1.5} \approx 5.196$

Check Your Progress

a. Graph $y=5^{x}$. State the y-intercept.
b. Use the graph to determine the approximate value of $5^{0.25}$.

EXAMPLE Graph Exponential Functions with $0<a<1$
(2) a. Graph $y=\left(\frac{1}{4}\right)^{x}$. State the y-intercept.

x	$\left(\frac{1}{4}\right)^{x}$	y
-1	$\left(\frac{1}{4}\right)^{-1}$	\square
0		\square
1		

Graph the ordered pairs and connect the points with a smooth curve. The y-intercept is \square
b. Use the graph to determine the approximate value of $\left(\frac{1}{4}\right)^{-1.5}$.
The value of y is about \square when $x=\square$.
Use a calculator to confirm this value. $\left(\frac{1}{4}\right)^{-1.5}=8$

Check Your Progress

a. Graph $y=\left(\frac{1}{8}\right)^{x}$. State the y-intercept.

b. Use the graph to determine the approximate value of $\left(\frac{1}{8}\right)^{-0.5}$.

EXAMPLE Use Exponential Functions to Solve Problems

3 The function $V=25,000 \cdot 0.82^{t}$ models the depreciation of the value of a new car that originally cost $\$ 25,000$. V represents the value of the car and t represents the time in years from the time the car was purchased.
a. What values of V and \boldsymbol{t} are meaningful in the function?

Only the values of $V \leq \square$ and $t \leq \square$ are meaningful in the context of the problem.

Homework
 Assignment

b. What is the value of the car after one year?

$$
\begin{array}{ll}
V=25,000 \cdot 0.82^{t} & \text { Original equation } \\
V=25,000 \cdot 0.82^{1} & t=1 \\
V=\square & \text { Use a calculator. }
\end{array}
$$

After one year, the car's value is about \square
Check Your Progress The function $V=22,000 \cdot 0.82^{t}$ models the depreciation of the value of a new car that originally cost $\$ 22,000$. V represents the value of the car and t represents the time in years from the time the car was purchased.
a. What values of V and t are meaningful in the function?
\square
b. What is the value of the car after one year?
\square

EXAMPLE Identify the Exponential Behavior

4. Determine whether the set of data displays exponential behavior.

\boldsymbol{x}	0	10	20	30
\boldsymbol{y}	10	25	62.5	156.25

Look for a Pattern The domain values are at regular intervals of 10 . Look for a common factor among the range of values.

Since the domain values are at regular intervals and the range values have a common factor, the data are probably exponential. The equation for the data may involve

Check Your Progress
Determine whether the set of data displays exponential behavior.

\boldsymbol{x}	0	10	20	30
\boldsymbol{y}	100	50	25	12.5

9-6 Growth and Decay

TEKS A. 11 The student understands there are situations modeled by functions that are neither linear nor quadratic and models the situations. (C) Analyze data and represent situations involving exponential growth and decay using concrete models, tables, graphs, or algebraic methods.

EXAMPLE Exponential Growth

Main Ideas

Solve problems involving exponential growth.

- Solve problems involving exponential decay

Key Concept

General Equation for Exponential Growth The general equation for exponential growth is $y=C(1+r)^{t}$ where y represents the final amount, C represents the initial amount, r represents the rate of change expressed as a decimal, and t represents time.

(1) POPULATION In 2005 the town of Flat Creek had a

 population of about 280,000 and a growth rate of 0.85% per year.a. Write an equation to represent the population of Flat Creek since 2005.

The rate 0.85% can be written as 0.0085 .

$$
\begin{array}{ll}
y=C(1+r)^{t} & \begin{array}{l}
\text { General equation for } \\
\text { exponential growth }
\end{array} \\
y=280,000(1+0.0085)^{t} & C=280,000 \text { and } r=0.0085 \\
y=280,000(1.0085)^{t} & \text { Simplify. }
\end{array}
$$

An equation to represent the population of Flat Creek is

b. According to the equation, what will be the population of Flat Creek in the year 2015?
In 2015, t will equal $2015-2005$ or 10 .
$y=280,000(1.0085)^{t} \quad$ Equation for population of Flat Creek
$y=280,000(1.0085)^{\square} \quad t=\square$
$y \approx 304,731 \quad$ Use a calculator.
In 2015, there will be about \square people in Flat Creek.

Check Your Progress

In 2005, Scioto School District had a student population of about 4500 students, and a growth rate of about 0.15% per year.
a. Write an equation to represent the student population of the Scioto School District since the year 2005.
b. According to the equation, what will be the student population of the Scioto School District in the year 2011?

BUILD YOUR VOCABULARY (pages 196-197)

The equation $A=P\left(1+\frac{r}{n}\right)^{n t}$ is used to find compound interest which is an application of \square growth.

EXAMPLE Compound Interest

(2) SAVINGS When Jing May was born, her grandparents invested $\$ 1000$ in a fixed rate savings account at a rate of 7% compounded annually. The money will go to Jing May when she turns 18 to help with her college expenses. What amount of money will Jing May receive from the investment?
$A=P\left(1+\frac{r}{n}\right)^{n t} \quad$ Compound interest equation

Compound interest equation
Simplify.
She will receive about \square

Check Your Progress
When Lucy was 10 years old, her father invested $\$ 2500$ in a fixed rate savings account at a rate of 8% compounded semiannually. When Lucy turns 18, the money will help to buy her a car. What amount of money will Lucy receive from the investment?

KEy Concept

General Equation for

 Exponential Decay The general equation for exponential decay is $y=C(1-r)^{t}$ where y represents the final amount, C represents the initial amount, r represents the rate of decay expressed as a decimal, and t represents time.FoldABLES Write the equations for exponential growth and decay in your Foldable.

Homework

 ASSIGNMENTPage(s):
Exercises:

EXAMPLE Exponential Decay

3 CHARITY During an economic recession, a charitable organization found that its donations dropped by 1.1% per year. Before the recession, its donations were $\$ 390,000$.
a. Write an equation to represent the charity's donations since the beginning of the recession.

$$
\begin{array}{ll}
y=C(1-r)^{t} & \begin{array}{l}
\text { General equation for } \\
\text { exponential decay }
\end{array} \\
y=\square(1-\square)^{t} \\
C=390,000 \text { and } \\
r=1.1 \% \text { or } 0.011
\end{array}
$$

b. Estimate the amount of the donations 5 years after the start of the recession.
$y=390,000(0.989)^{t}$
$y=390,000(0.989)^{\square}$
$y=\square$
Equation for the amount of donations

$$
t=\square
$$

The amount of donations should be about \square

Check Your Progress
A charitable organization found that the value of its clothing donations dropped by 2.5\% per year. Before this downturn in donations, the organization received clothing valued at $\mathbf{\$ 2 4 , 0 0 0}$.
a. Write an equation to represent the value of the charity's clothing donations since the beginning of the downturn.
\square
b. Estimate the value of the clothing donations 3 years after the start of the downturn.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 9 Foldable to help you study for your chapter test.

VOCABULARY PuZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 196-197) to help you solve the puzzle.

9-1
Graphing Quadratic Functions
The graphs of two quadratic functions are shown below. Complete each statement about the graphs.
A.

B.

1. Each graph is a curve called a \square
2. The highest point of graph A is located at \square
3. The lowest point of graph B is located at \square
4. The maximum or minimum point of a parabola is called the
\square of the parabola.

9-2

Solving Quadratic Equations by Graphing
Refer to the graph shown at the right to answer the questions about the related equation $f(x)=x^{2}-6 x+9$.
5. The related quadratic equation is \square
6. How many real number solutions are there? \square

7. Name one solution. \square

9-3

Solving Quadratic Equations by Completing the Square
8. Draw a line under each quadratic equation that you could solve by taking the square root of each side.

$$
\begin{array}{lll}
x^{2}+6 x+9=100 & x^{2}-14 x+40=25 & x^{2}-16 x+64=26 \\
x^{2}-20 x+80=16 & x^{2}+10 x+36=49 & x^{2}-12 x+36=6
\end{array}
$$

9-4

Solving Quadratic Equations by Using the Quadratic Formula
Solve each equation by completing the square.
9. $x^{2}+18 x+50=9$
10. $3 x^{2}+15 x-3=0$

11. What is the quadratic formula?

Solve each equation by using the quadratic formula. Round to the nearest tenth if necessary.
12. $2 a^{2}-3 a=-1$
13. $3 w^{2}-1=8 w$

14. You can use the discriminant to determine the number of real roots for a quadratic equation. What is the discriminant?

9-5

Exponential Functions
The graphs of two exponential functions of the form $y=a^{x}$ are shown below.
A.

B.

15. In graph A, the value of a is greater than 0 and less than \square The y values decrease as the x values \square
16. In graph B, the value of a is greater than \square The y values increase as the x values \square

9-6

Growth and Decay

Match an equation to each solution, and then indicate whether the situation is an example of exponential growth or decay.
17. A coin had a value of $\$ 1.17$ in 1995. Its value has been increasing at a rate of 9% per year.
A. $y=1.17(1.09)^{t}$
B. $y=1.17(0.91)^{t}$
18. A business owner has just paid $\$ 6000$ for a computer.

It depreciates at a rate of 22% per year. How much will it be worth in 5 years?
A. $A=6000(1.22)^{5}$

B. $A=6000(0.78)^{5}$

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 9 Practice Test on page 513 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 509-512 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 513.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 509-512 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 513.

10

Radical Expressions and Triangles

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of plain $8 \frac{1}{2}$ " by 11 "paper.

STEP 1 Fold in half matching the short sides.

STEP 2 Unfold and fold the long side up 2 inches to form a pocket.

STEP 3 Staple or glue the outer edges to complete the pocket.

STEP 4 Label each side as shown. Use index cards to record examples.

NOTE-TAKING TIP: Remember to study your notes daily. Reviewing small amounts at a time will help you retain the information.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
$\underbrace{\text { conjugate }}_{\text {[KAHN.jih•guht] }}$			
converse			
Distance Formula			
[extraneous solution			
[ehk•STRAY•nee•uhs]			
[hy.PAH•tn•oos]			

(continued on the next page)

Vocabulary Term	Found on Page	Definition	Description or Example
Pythagorean triple puh•THA•guh•REE•uhn			
radical equation			
radical expression			
$\underbrace{\text { radicand }}_{\text {RA } \cdot \text { duh } \cdot K A N D}$			
rationalizing the denominator			
similar triangles			

10-1 Simplifying Radical Expressions

Preparation for TEKS 2A. 9 The student formulates equations and inequalities based on square root functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.

Main Ideas

- Simplify radical expressions using the Product Property of Square Roots.
- Simplify radical expressions using the Quotient Property of Square Roots.

Key Concept

Product Property of Square Roots For any numbers a and b, where $a \geq 0$ and $b \geq 0$, the square root of the product $a b$ is equal to the product of each square root.

BUILD YOUR YOGABULARY (pages 223-224)

A radical expression is an expression that contains a
\square
A radicand is the expression under the \square sign.

EXAMPLE Simplify Square Roots

(1) Simplify $\sqrt{52}$.

$$
\begin{array}{rlrl}
\sqrt{52} & =\square & & \text { Prime factorization of 52 } \\
& =\sqrt{2^{2}} \cdot \sqrt{13} & & \text { Product Property of } \\
& =\square & \text { Square Roots } \\
& & \text { Simplify. }
\end{array}
$$

EXAMPLE Multiply Square Roots

(2) Find $\sqrt{2} \cdot \sqrt{24}$.

$\sqrt{2} \cdot \sqrt{24}$	$=\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{3}$		Product Property
	$=\square \cdot \square \cdot \sqrt{3}$		Product Property
	$=\square$		Simplify.

Check Your Progress Simplify.

a. $\sqrt{45}$

b. $\sqrt{60}$

c. $\sqrt{5} \cdot \sqrt{35}$

KEY CONCEPT

Quotient Property of Square Roots For any numbers a and b, where $a \geq 0$ and $b>0$, the square root of the quotient $\frac{a}{b}$ is equal to the quotient of each square root.

EXAMPI: Rationalizing the Denominator

4) Simplify each quotient.
a. $\frac{\sqrt{12}}{\sqrt{5}}$

$$
\begin{array}{rlrl}
\frac{\sqrt{12}}{\sqrt{5}} & =\frac{\sqrt{12}}{\sqrt{5}} \cdot \square \\
& =\frac{\square}{5} & & \text { Multiply by } \\
& =\frac{2 \sqrt{15}}{5} & & \begin{array}{l}
\text { Product Property } \\
\text { of Square Roots }
\end{array} \\
& & \text { Simplify. }
\end{array}
$$

FOLDABLES

Organize It

On an index card, write the three steps that must be met for a radical expression to be in simplest form. Place it in the pocket for Radical Expressions.

Homework

 AssignmentPage(s):
Exercises:

b. $\frac{\sqrt{3}}{\sqrt{8 n}}$

$$
\begin{aligned}
\frac{\sqrt{3}}{\sqrt{8 n}} & =\frac{\sqrt{3}}{\sqrt{8 n}} \cdot \square \\
& =\frac{\sqrt{24 n}}{\square} \\
& =\frac{\sqrt{2 \cdot 2 \cdot 2 \cdot 3 n}}{8 n} \\
& =\square \\
& =\square
\end{aligned}
$$

Check Your Progress Simplify.
a. $\frac{\sqrt{5}}{\sqrt{2}}$
b. $\frac{\sqrt{18 y}}{\sqrt{8}}$
c. $\frac{\sqrt{2}}{\sqrt{27}}$

10-2 Operations with Radical Expressions

1 Preparation for TEKS 2A. 9 The student formulates equations and inequalities based on square root functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.

EXAMPLE Expressions with Like Radicands

Main IdeAs

- Add and subtract radical expressions.
- Multiply radical expressions.

FOLDABLES

ORGANIZE IT

On an index card, write how simplifying like radicands is similar to simplifying like terms. Place it in the pocket for Radical Expressions.

(1) Simplify $7 \sqrt{2}+8 \sqrt{11}-4 \sqrt{11}-6 \sqrt{2}$.
$7 \sqrt{2}+8 \sqrt{11}-4 \sqrt{11}-6 \sqrt{2}$
$=\square-6 \sqrt{2}+\square-4 \sqrt{11} \quad$ Commutative Property
$=\square \sqrt{2}+\square \sqrt{11} \quad$ Distributive Property $=\square$ Simplify.

Check Your Progress Simplify $4 \sqrt{2}+8 \sqrt{3}-5 \sqrt{3}+2 \sqrt{2}$.

EXAMPLE Expressions with Unlike Radicands

(2) Simplify $6 \sqrt{27}+8 \sqrt{12}+2 \sqrt{75}$.

$$
\begin{aligned}
6 & \sqrt{27}+8 \sqrt{12}+2 \sqrt{75} \\
& =6 \sqrt{3^{2} \cdot 3}+\square+2 \sqrt{5^{2} \cdot 3} \\
& =6 \square+2\left(\sqrt{5^{2}} \cdot \sqrt{3}\right) \\
& =6(3 \sqrt{3})+8(2 \sqrt{3})+2(5 \sqrt{3}) \\
& =\square \\
& =\square
\end{aligned}
$$

The simplified form is

Check Your Progress
Simplify $6 \sqrt{245}+3 \sqrt{125}+\sqrt{80}$.

EXAMPLE Multiply Radical Expressions

ReVIEW IT

Give an example of two binomials. Then explain how you multiply them using FOIL method. (Lesson 7-6)
\qquad
\qquad
\qquad
\qquad

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework

 AssignmentPage(s):
Exercises:

10-3 Radical Equations

Preparation for TEKS 2A. 9 The student formulates equations and inequalities based on square root functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation.

Main IdeAs

- Solve radical equations.
- Solve radical equations with extraneous solutions.

BUILD YOUR VOGABULARY (pages 223-224)
Equations that contain radicals with variables in the
\square are called radical equations.

EXAMPLE Variable in Radical

(1) FREE-FALL HEIGHT An object is dropped from an unknown height and reaches the ground in 5 seconds. From what height is it dropped?

Use the equation $t=\frac{\sqrt{h}}{4}$ to replace t with \square

$$
t=\frac{\sqrt{h}}{4} \quad \text { Original equation }
$$

$$
\square=\frac{\sqrt{h}}{4} \quad \text { Replace } t \text { with } 5
$$

$$
\square=\sqrt{h} \quad \text { Multiply each side by } 4 .
$$

The object is dropped from \square feet.

EXAMPLE Radical Equation with an Expression

(2) Solve $\sqrt{x-3}+8=15$.
$\sqrt{x-3}+8=15$

$x=\square$
The solution is \square

ReView It

Explain the Zero Product Property in your own words. (Lesson 8-2)
\qquad
\qquad

BUILD YOUR YOGABULARY (pages 223-224)

An extraneous solution is a solution derived from an equation that is \square a solution of the \square equation.
b. Solve $\sqrt{x+4}+6=14$.
\square
a. Refer to Example 1. If an unknown object reaches the ground in 7 seconds, from what height is it dropped?
\square

Check Your Progress

 Original equation\square
Simplify.

Factor.
Zero Product Property

$$
y=\square
$$

\square
Check $\sqrt{2-y}=y$

$$
\begin{array}{rrr}
\mathbf{k} \sqrt{2-y}=y & \sqrt{2-y}=y \\
\sqrt{2-(-2)} \stackrel{?}{=}-2 & \sqrt{2-1} \stackrel{?}{=} 1 \\
\sqrt{4} \stackrel{?}{=}-2 & \sqrt{1} \stackrel{?}{=} 1 \\
2 \neq-2 \mathrm{x} & 1 & =1
\end{array}
$$ Solve.

EXAMPLE Variable on Each Side

Solve $\sqrt{2-y}=y$.

$\sqrt{2-y}$	$=y$		Original equation
$(\sqrt{2-y})^{2}$	$=y^{2}$		
\square	$=\square$		Simplify.
0	$=y^{2}+y-2$		Subtract \square and add
0	$=\square$ to each side.		
\square	$=0$ or \square		Factor.
y	$=\square$		Zero Product Property
\square	y	$=\square$	Solve.

Since \square does not satisfy the original equation, \square the only solution.

Check Your Progress

Solve each equation.
a. $\sqrt{x+3}-1=8$ \square b. $y=\sqrt{2 y+3}$ \square

10-4 The Pythagorean Theorem

MAIN IDEAS

- Solve problems by using the Pythagorean Theorem.
- Determine whether a triangle is a right triangle.

Key Concept

The Pythagorean

Theorem If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

Preparation for

TEKS G. 5 The student uses a variety of representations to describe geometric relationships and solve problems. (D) Identify and apply patterns from right triangles to solve meaningful problems, including special right triangles (45-45-90 and 30-60-90) and triangles whose sides are Pythagorean triples. G. 8 The student uses tools to determine measurements of geometric figures and extends measurement concepts to find perimeter, area, and volume in problem situations. (C) Derive, extend, and use the Pythagorean Theorem.

BUILD YOUR VOGABULARY (pages 223-224)

In a right triangle, the side opposite the \square angle is called the hypotenuse. The other two
\square are called the legs of the triangle.

Whole numbers that satisfy the \square are called Pythagorean triples.

EXAMPLE Find the Length of the Hypotenuse

(1) Find the length of the hypotenuse of a right triangle if $a=18$ and $b=24$.

Pythagorean Theorem

$$
\begin{aligned}
c^{2} & =18^{2}+24^{2} \\
c^{2} & =\square \\
\sqrt{c^{2}} & =\square \\
c & =\square
\end{aligned}
$$

$$
a=\square \text { and } b=\square
$$

Simplify.

Take the square root of each side.

Use the positive value.
The length of the hypotenuse is \square units.

Check Your Progress

Find the length of the hypotenuse of a right triangle if $a=25$ and $b=60$.

EXAMPLE Find the Length of a Side

2) Find the length of the missing side.

In the triangle, $c=\square$ and $a=\square$ units.

$$
c^{2}=a^{2}+b^{2}
$$

Pythagorean Theorem

$a=9$ and $c=16$

Evaluate squares.

$$
\begin{aligned}
\square & =b^{2} \\
\pm \sqrt{175} & =b
\end{aligned}
$$

Subtract 81 from each side.
Take the square root of each side.

Use the positive value. Use a calculator to evaluate $\sqrt{175}$.

WRITE IT

Do the numbers 6, 8, and 10 represent a Pythagorean triple? Explain.
\qquad

EXAMPLE Pythagorean Triples

3 What is the area of triangle $X Y Z$?

Use the measures of the hypotenuse and the base to find the height of the triangle.

Step 1 Check to see if the measurements of this triangle are a multiple of a common Pythagorean triple. The hypotenuse is $7 \cdot 5$ units and the leg is $7 \cdot 4$ units. This triangle is a multiple of a $(3,4,5)$ triangle.

The height of the triangle is \square units.

Key Concept

Corollary to the

 Pythagorean Theorem If a and b are measures of the shorter sides of a triangle, c is the measure of the longest side, and $c^{2}=a^{2}+b^{2}$, then the triangle is a right triangle. If $c^{2} \neq a^{2}+b^{2}$, then the triangle is not a right triangle.
Homework

 AssignmentPage(s):
Exercises:

Step 2 Find the area of the triangle.
$A=\frac{1}{2} b h$
Area of a triangle
$A=\frac{1}{2} \square \square$
$A=\square$
$b=28$ and $h=21$

The area of the triangle is 294 square units.

Check Your Progress What is the area of triangle RST?

BUILD YoUR VocABULARY (pages 223-224)

A statement that can easily be proved using a \square is often called a corollary.

EXAMPIE Check for Right Triangles

4 Determine whether the side measures of 27,36 , and 45 form a right triangle.

Since the measure of the longest side is 45 , let $c=$ \square $a=\square$, and $b=\square$. Then determine whether $c^{2}=a^{2}+b^{2}$.

$$
c^{2}=a^{2}+b^{2} \quad \text { Pythagorean Theorem }
$$

Add.
Since $c^{2}=a^{2}+b^{2}$, the triangle \square a right triangle.
Check Your Progress Determine whether the side measures 12,22 , and 40 form a right triangle.
\square

10-5 The Distance Formula

Preparation for TEKS G. 7 The student understands that coordinate systems provide convenient and efficient ways of representing geometric figures and uses them accordingly. (C) Derive and use formulas involving length, slope, and midpoint.

EXAMPLE Distance Between Two Points

MAIN IDEAS

Find the distance between two points on the coordinate plane.

Find a point that is a given distance from a second point in a plane.

Key Concept

The Distance Formula The distance d between any two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $d=$ $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
(1) Find the distance between the points at $(1,2)$ and $(-3,0)$.

Check Your Progress
Find the distance between the points at $(5,4)$ and $(0,22)$.

EXAMPLE Use the Distance Formula

2) BIATHLON Julianne is sighting her rifle for an upcoming biathlon competition. Her first shot is 2 inches to the right and 7 inches below the bull's-eye. What is the distance between the bull's-eye and where her first shot hit the target?

If the bull's-eye is at $(0,0)$,
 then the location of the first
shot is \square. Use the Distance Formula.

$$
\begin{aligned}
d & =\square
\end{aligned} \begin{aligned}
& \text { Distance Formula } \\
& \\
& =\sqrt{\square^{2}+(-7-0)^{2}}
\end{aligned} \begin{aligned}
& \left(x_{1}, y_{1}\right)=(0,0) \text { and } \\
& \left(x_{2}, y_{2}\right)=(2,-7)
\end{aligned}
$$

$=\sqrt{2^{2}+(-7)}$
$=\square$ or about 7.28 inches

Simplify.

The distance is \square or about \square inches.

Remember It

You can choose either point to be (x_{1}, y_{1}) when using the Distance Formula.

Homework

Assignment
Page(s):
Exercises:

Check Your Progress
Marcy is pitching a horseshoe in her local park. Her first pitch is 9 inches to the left and 3 inches below the pin. What is the distance between the horseshoe and the pin?

EXAMPLE Find a Missing Coordinate

3) Find the value of a if the distance between the points at $(2,-1)$ and $(a,-4)$ is 5 units.

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	Distance Formula
$=\sqrt{\square^{2}+(-4-(-1))^{2}}$	Let $d=5, x_{2}=a, x_{1}=2$, $y_{2}=-4$, and $y_{1}=-1$.
$5=\sqrt{\square^{2}+\square^{2}}$	Simplify.
$5=\sqrt{a^{2}-4 a+4+9}$	Evaluate squares.
$5=\sqrt{ }$	Simplify.
$25=a^{2}-4 a+13$	Square each side.
$0=$	Subtract \square from each side.
$0=\square(a+2)$	Factor.
$=0$ or $\square=0$	Zero Product Property
$a=\square \quad a=$	Solve.

The value of a is
 or

Check Your Progress Find the value of a if the distance between the points at $(2,3)$ and $(a, 2)$ is $\sqrt{37}$ units.

10-6 Similar Triangles

Preparation for TEKS G. 11 The student applies the concepts of similarity to justify properties of figures and solve problems. (B) Use ratios to solve problems involving similar figures. (C) Develop, apply, and justify triangle similarity relationships, such as right triangle ratios, trigonometric ratios, and Pythagorean triples using a variety of methods.

Main Ideas

- Determine whether two triangles are similar.
- Find the unknown measures of sides of two similar triangles.

Key Concept

Similar Triangles If two triangles are similar, then the measures of their corresponding sides are proportional, and the measures of their corresponding angles are equal

BUILD YOUR VOGABULARY (pages 223-224)

Similar triangles have the same \square but not necessarily the same \square

EXAMPL: Determine Whether Two Triangles Are Similar

1) Determine whether the pair of triangles is similar. Justify

 your answer.

The ratio of sides $\overline{X Y}$ to $\overline{A B}$

The ratio of sides $\overline{Y Z}$ to $\overline{B C}$

The ratio of sides $\overline{X Z}$ to $\overline{A C}$

Since the measures of the corresponding sides are
\square and the measures of the corresponding angles are equal, triangle \square is similar to triangle \square.

Check Your Progress
Determine
whether the pair of triangles is similar. Justify your answer.

EXAMPLE Find Missing Measures

Write IT

Find the word corresponding in a dictionary, and write its definition below.
\qquad
\qquad
\qquad
\qquad
(2) a. Find the missing measures if the pair of triangles is similar.

Since the corresponding angles have equal measures, \square. The lengths of the corresponding sides are proportional.

Corresponding sides of similar triangles are proportional.

$=y$
$C E=8, G I=y, C D=18$, and $G H=27$

Find the cross products.

Divide each side by 18.

Corresponding sides of similar triangles are proportional.

$C D=18, G H=27$,
$E D=18$, and $I H=x$

Find the cross products.

Divide each side by

The missing measures are \square and \square
b. Find the missing measures if the pair of triangles is similar.

$$
\begin{aligned}
& \triangle X Y W \sim \square \\
& \frac{\square}{X Z}=\frac{\square}{X V} \\
& \square=\frac{3}{a} \\
& \square \\
& =30 \\
& a \\
& =\square
\end{aligned}
$$

Corresponding sides of similar triangles are proportional.
$X Y=\square, X Z=\square$,
$X W=3$, and $X V=\mathrm{a}$
Find the cross products.
Divide each side by 4.

The missing measure is \square

Check Your Progress

Find the missing measures if each pair of triangles is similar.
a.

Homework Assignment

Page(s):
Exercises:
b.

BRINGING IT ALL TOGETHER

STUDY GUIDE

OLDABLES

Use your Chapter 10 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 223-224) to help you solve the puzzle.

10-1

Simplifying Radical Expressions

Simplify.

1. $\sqrt{28 x^{2} y^{4}}$ \square
2. $\sqrt{\frac{5}{32}}$ \square
3. $\frac{8}{3+\sqrt{3}}$
\square
4. What should you remember to check for when you want to determine if a radical expression is in simplest form?

Check radicands for \square and
 and check fractions for \square in the \square

10-2

Operations with Radical Expressions
Simplify each expression.
5. $6 \sqrt{3}-\sqrt{12}$
6. $2 \sqrt{12}-7 \sqrt{3}$
7. $3 \sqrt{2}(\sqrt{8}+\sqrt{24})$

8. $(2 \sqrt{5}-2 \sqrt{3})(\sqrt{10}+\sqrt{6})$
9. $\sqrt{27}+\sqrt{18}+\sqrt{300}$

10. Below the words First terms, Outer terms, Inner terms, and Last terms, write the products you would use to simplify the expression $(2 \sqrt{15}+3 \sqrt{15})(6 \sqrt{3}-5 \sqrt{2})$.

First terms
\square
Outer terms
Inner terms
Last terms
\square

10-3

Radical Equations

11. To solve a radical equation, you first isolate the radical on one side of the equation. Why do you then square each side of the equation?
12. Provide the reason for each step in the solution of the given radical equation.

$$
\begin{aligned}
& \sqrt{5 x-1}-4=x-3 \\
& \sqrt{5 x-1}=x+1 \\
& (\sqrt{5 x-1})^{2}=(x+1)^{2} \\
& 5 x-1=x^{2}+2 x+1 \\
& 0=x^{2}-3 x+2 \\
& 0=(x-1)(x-2) \\
& x-1=0
\end{aligned} \begin{array}{rr}
0 & x-2=0 \\
x=1 & x=2
\end{array}
$$

Original equation
\square
\square
\square
\square
\square
\square
\square
13. To be sure that 1 and 2 are the correct solutions, into which equation should you substitute to check?
\square
14. A computer screen measures 12 inches high and 17 inches wide. What is the length of the screen's diagonal? Round your answer to the nearest whole number.
\square

10-4

The Pythagorean Theorem

Write an equation that you could solve to find the missing side

 length of each right triangle. Then solve.15.

16.

17.

\square

10-5

The Distance Formula
Find the distance between each pair of points whose coordinates are given. Express answers in simplest radical form and as decimal approximations rounded to the nearest hundredth if necessary.
18. $(6,4),(2,1)$
19. $(3,7),(9,-2)$

10-6

Similar Triangles
Determine whether each pair of triangles is similar. Explain how you would know that your answer is correct.
20.

21.

10

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 563 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 559-562 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 563.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 559-562 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 563.

Student Signature

Teacher Signature

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of plain $8 \frac{1}{2}$ " by 11 "paper.

STEP 1 Fold in half
lengthwise.

STEP 2 Fold the top to the bottom.

STEP 3 Open. Cut along the second fold to make two tabs.

STEP 4 Label each tab as shown.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
complex fraction			
excluded values			
extraneous solutions			
[ehk•STRAY•nee•uhs]			
inverse variation			
[ihn•VUHRS]			
least common multiple			
least common denominator			

Vocabulary Term	Found on Page	Definition	Description or Example
mixed expression			
product rule			
rate problems			
rational equations			
work problems			

11-1 Inverse Variation

TEKS A.11 The student understands there are situations modeled by functions that are neither linear nor quadratic and models the situations. (B) Analyze data and represent situations involving inverse variation using concrete models, tables, graphs, or algebraic methods.

BUILD YOUR VOGABULARY (pages 245-246)
When the product of two values remains \square the relationship forms an inverse variation.

EXAMPLE Graph an Inverse Variation

MANUFACTURING The time t in hours that it takes to build a particular model of computer varies inversely with the number of people p working on the computer. The equation $p t=12$ can be used to represent the people building a computer. Draw a graph of the relation.

Solve for $p=2$.

Solve the equation for the other values of p.

\boldsymbol{P}	2	4	6	8	10	12
\boldsymbol{t}					\square	

Graph the ordered pairs. As the number of people p increases, the time t it takes to build a computer decreases.

Check Your Progress

The time t in hours that it takes to prepare packages for delivery varies inversely with the number of people p that are preparing them. The equation $p t=36$ can be used to represent the people preparing the packages. Draw a graph of the relation.

FOLDABLES

ORGANIZE IT

Under the tab for Rational Expressions, write the general form for inverse variation. Then give an example of an inverse variation equation.

Homework Assignment

EXAMPLE Solve for x

2 If y varies inversely as x and $y=5$ when $x=12$, find x when $y=15$.

Let $x_{1}=12, y_{1}=5$, and $y_{2}=15$. Solve for x_{2}.
METHOD 1 Use the product rule.

$$
\begin{array}{rll}
x_{1} y_{1} & =x_{2} y_{2} & \text { Product rule for inverse variations } \\
\square \cdot \square & =x_{2} \cdot \square & \\
\square=x_{1}=12, y_{1}=5, y_{2}=15 \\
\square & =x_{2} & \text { Divide each side by } \square . \\
\square=x_{2} & & \text { Simplify. }
\end{array}
$$

METHOD 2 Use a proportion.
$\frac{x_{1}}{x_{2}}=\frac{y_{2}}{y_{1}} \quad$ Proportion rule for inverse variations

Cross multiply.
$\square=x_{2}$
Divide each side by 15 .
Both methods show that $x=\square$ when $y=\square$.

Check Your Progress

a. If y varies inversely as x and $y=6$ when $x=40$, find x when $y=30$.

b. If y varies inversely as x and $y=-5$ when $x=15$, find y when $x=3$.
\square

11-2 Rational Expressions

Preparation for TEKS 2A. 10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (B) Analyze various representations of rational functions with respect to problem situations.

BUILD YOUR VOGABULARY (pages 245-246)

Main Ideas

- Identify values excluded from the domain of a rational expression.
- Simplify rational expressions.

A rational expression is an algebraic fraction whose

Any values of a variable that result in a denominator of
\square must be excluded from the \square of the variable and are called excluded values of the rational expression.

EXAMPL Excluded Values

(1) State the excluded value for each rational expression.
a. $\frac{3 b-2}{b+7}$

Exclude the values for which $b+7=0$.

So, b cannot equal \square
b. $\frac{5 a^{2}+2}{a^{2}-a-12}$

Exclude the values for which $a^{2}-a-12=\square$.
$a^{2}-a-12=0$ The denominator cannot equal \square.
\square Factor.
Use the Zero Product Property to solve for a.

So, a cannot equal \square or \square

FOLDABLES

Organize IT

Take notes on how to simplify a rational expression.

WRITE IT

How do you know that a rational expression is in simplest form?

Homework
 Assignment

Page(s):
Exercises:

Check Your Progress State the excluded value for each rational expression.
a. $\frac{2 y-7}{y+3}$
b. $\frac{x^{2}+1}{x^{2}-5 x+6}$

EXAMPLE Expressions Involving Monomials

(2) Simplify $\frac{32 x^{5} y^{2}}{4 x y^{7}}$.

$$
\begin{array}{rlrl}
\frac{32 x^{5} y^{2}}{4 x y^{7}} & =\frac{\left(4 x y^{2}\right)\left(8 x^{4}\right)}{\left(4 x y^{2}\right)\left(y^{5}\right)} & & \text { The GCF of the numerator and } \\
& =\frac{\left.\left(4 x y^{1}\right)^{2}\right)\left(8 x^{4}\right)}{\left(4 x y^{2}\right)\left(y^{5}\right)} & & \begin{array}{l}
\text { denominator is } \square \\
1
\end{array} \\
& =\square & \text { Divide the numerator and } \\
\text { denominator by } \square
\end{array}
$$

EXAMPLE Excluded Values

(3) Simplify $\frac{4 x+16}{x^{2}-5 x-36}$. State the excluded values of x. $\frac{4 x+16}{x^{2}-5 x-36}=\frac{4(x+4)}{(x-9)(x+4)} \quad$ Factor.

$$
\begin{array}{ll}
=\frac{4(x+4)}{(x-9)(x+4)} & \begin{array}{l}
\text { Divide the numerator and } \\
\text { denominator by the GCF, } x+4 .
\end{array} \\
=\square & \text { Simplify. }
\end{array}
$$

Exclude the values for which $x^{2}-5 x-36$ equals 0 .
$x^{2}-5 x-36=0 \quad$ The denominator cannot equal zero.
$(x-9)(x+4)=0 \quad$ Factor.
$x=\square$ or $x=\square \quad$ Zero Product Property

Check Your Progress
 Simplify $\frac{5 w-10}{w^{2}+6 w-16}$. State the

11-3 Multiplying Rational Expressions

1 Preparation for TEKS 2A. 10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (B) Analyze various representations of rational functions with respect to problem situations.

EXAMPLE Expressions Involving Monomials

MAIN IDEAS

- Multiply rational expressions.
- Use dimensional analysis with multiplication.
(1) Find $\frac{7 x^{2} y}{12 z^{3}} \cdot \frac{14 z}{49 x y^{4}}$.

METHOD 1

Divide by the greatest common factor after multiplying.

METHOD 2

Divide the common factors before multiplying.

Divide by common factors

Multiply.

EXAMPLE Expressions Involving Polynomials

2 Find $\frac{b+3}{4 b-12} \cdot \frac{b^{2}-4 b+3}{b^{2}-7 b-30}$.

$$
\begin{array}{rlrl}
\frac{b+3}{4 b-12} \cdot \frac{b^{2}-4 b+3}{b^{2}-7 b-30} & =\frac{b+3}{4(b-3)} \cdot \frac{(b-3)(b-1)}{(b-10)(b+3)} & & \text { Factor. } \\
& =\frac{(b+3)(b-3)(b-1)}{4(b-3)(b-10)(b+3)} \\
& =\frac{b-1}{4(b-10)} & & \begin{array}{l}
\text { The GCF is } \\
(b+3)(b-3) . \\
\end{array}
\end{array}
$$

ReVIew IT

When do you need to use dimensional analysis in a word problem? (Lesson 2-8)
\qquad
\qquad
\qquad
\qquad
\qquad

HOMEWORK

 AssignmentExercises:

Check Your Progress
a. $\frac{6 m n^{2}}{11 m^{3} p^{4}} \cdot \frac{22 p^{3}}{3 n}$

c. $\frac{y+1}{y} \cdot \frac{y^{2}}{y^{2}+8 y+7}$

Find each product.
b. $\frac{14 k^{3} w^{2}}{5 s^{2} t^{2}} \cdot \frac{10 s^{4} t}{21 k w^{5}}$

d. $\frac{13 c-39}{c-4} \cdot \frac{c^{2}-16}{c^{2}+3 c-18}$

EXAMPLE Dimensional analysis

3 SPACE The velocity that a spacecraft must have in order to escape Earth's gravitational pull is called the escape velocity. The escape velocity for a spacecraft leaving Earth is about 40,320 kilometers per hour. What is this speed in meters per second?

$$
\begin{aligned}
& =\frac{40,320 \text { kilometers }}{\text { hour }} \cdot \frac{1000 \text { meters }}{1 \text { kilometer }} \cdot \frac{1 \text { hour }}{60 \text { minutes }} \cdot \frac{1 \text { minute }}{60 \text { seconds }} \\
& =\frac{40,320 \cdot 1000 \cdot 1 \cdot 1 \text { meters }}{1 \cdot 1 \cdot \frac{100}{11} \cdot 60}
\end{aligned}
$$

The escape velocity is \square meters per second.

Check Your Progress

The speed of sound, or Mach 1 , is approximately 330 meters per second at sea level. What is the speed of sound in kilometers per hour?

11-4 Dividing Rational Expressions

Preparation for TEKS 2A. 10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (B) Analyze various representations of rational functions with respect to problem situations.

EXAMPLE Divide by Fractions

Main Ideas

- Divide rational expressions.
- Use dimensional analysis with division.

(1) Find each quotient.

a. $\frac{64 x^{4}}{5} \div \frac{24 x}{75}$

b. $\frac{3 m+12}{m+5} \div \frac{m+4}{m-2}$

$$
\begin{aligned}
& \frac{3 m+12}{m+5} \div \frac{m+4}{m-2} \\
& \quad=\frac{3 m+12}{m+5} \cdot \frac{m-2}{m+4}
\end{aligned}
$$

$$
\text { Multiply by } \frac{m-2}{m+4} \text {, the }
$$

$=\frac{3(m+4)}{m+5} \cdot \frac{m-2}{m+4}$ Factor \square.
$=\frac{3\left(m^{1}+4\right)}{m+5} \cdot \frac{m-2}{\frac{m+4}{1}}$

Check Your Progress

a. $\frac{3 a}{7} \div \frac{9 a^{5}}{14}$

Find each quotient.

b. $\frac{n-8}{n-12} \div \frac{6 n-48}{n+3}$

EXAMPLE Expression Involving Polynomials

(2) Find $\frac{q^{2}-11 q-26}{7} \div \frac{q-13}{q+7}$.

Remember It

When you are dividing rational expressions, always multiply by the reciprocal.

FOLDABLES'

ORGANIZE IT

Under the tab for Rational Expressions, write the question and answer to Example 2. Then label the quotient, dividend, and divisor.

$$
\begin{aligned}
& \frac{q^{2}-11 q-26}{7} \div \frac{q-13}{q+7} \\
&=\frac{q^{2}-11 q-26}{7} \cdot \square \\
&=\frac{(\square)}{7} \quad \begin{array}{l}
\text { Multiply by the }
\end{array} \\
&=\frac{q+7}{q-13} \text { reciprocal, Factor } q^{2}-11 q-26 . \\
&=\square \text { The GCF is } \\
&=\square
\end{aligned}
$$

Check Your Progress
Find the quotient.
$\frac{k^{2}-13 k+30}{10} \div \frac{k-3}{k-2}$

EXAMPLE Dimensional Analysis

AVIATION In 1986, an experimental aircraft named Voyager was piloted by Jenna Yeager and Dick Rutan around the world non-stop, without refueling. The trip took exactly 9 days and covered a distance of 25,012 miles. What was the speed of the aircraft in miles per hour? Round to the nearest miles per hour.

Use the formula for rate, time, and distance.

The speed of the aircraft was about \square miles per hour.

Check Your Progress

Suppose that Jenna Yeager and Dick Rutan wanted to complete the trip in exactly 7 days. What would be their average speed in miles per hour for the 25,012 mile trip?

FOLDABLES

ORGANIZE IT

Write how to divide rational expressions in your Foldable.

Homework

 AssignmentPage(s):
Exercises:

11-5 Dividing Polynomials

EXAMPLE Divide Polynomials by Monomials

MAIN IDEAS

Divide a polynomial by a monomial.

- Divide a polynomial by a binomial.

I Preparation for
 TEKS 2A. 10

The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (A) Use quotients of polynomials to describe the graphs of rational functions, predict the effects of parameter changes, describe limitations on the domains and ranges, and examine asymptotic behavior.
a. Find $\left(4 x^{2}-18 x\right) \div 2 x$.

$$
\begin{array}{rlrl}
\left(4 x^{2}-18 x\right) \div 2 x & =\frac{4 x^{2}-18 x}{2 x} & \begin{array}{l}
\text { Write as a rational } \\
\text { expression. }
\end{array} \\
& =\frac{4 x^{2}}{\square}-\frac{18 x}{\square} & \text { Divide each } \\
\text { term by } \square . \\
& =\frac{2 x^{2}}{2 x}-\frac{18 x}{\frac{9}{2 x}} & & \text { Simplify each term. } \\
& =\square & & \text { Simplify. }
\end{array}
$$

b. Find $\left(2 y^{2}-3 y-9\right) \div 3 y$.

$$
\begin{aligned}
\left(2 y^{2}-3 y-9\right) \div 3 y & =\square \\
& \begin{array}{l}
\text { Write as a rational } \\
\text { expression. }
\end{array} \\
& =\frac{2 y^{2}}{3 y}-\frac{3 y}{3 y}-\frac{9}{3 y}
\end{aligned} \begin{aligned}
& \text { Divide each term } \\
&
\end{aligned}
$$

$$
=\frac{2 y_{2}}{\frac{3 y}{3}}-\frac{\frac{1}{3 y}}{\frac{3 y}{1}}-\frac{\frac{3}{3}}{3 y}
$$

Simplify each term.

$$
=\square
$$

Simplify.

EXAMPLE Divide a Polynomial by a Binomial

2 Find $\left(2 r^{2}+5 r-3\right) \div(r+3)$.

$$
\begin{aligned}
\left(2 r^{2}+5 r-3\right) \div(r+3) & =\square) \quad \begin{array}{l}
\text { Write as } \\
\text { a rational } \\
\text { expression. }
\end{array} \\
& =\frac{\square(\square+3}{} \begin{array}{l}
\text { Factor the } \\
\text { numerator. }
\end{array} \\
& =\frac{(2 r-1)(r+3)}{\frac{1}{1}+3} \\
& \begin{array}{l}
\text { Divide by } \\
\text { the GCF. }
\end{array} \\
& =\square
\end{aligned}
$$

EXAMPLE Long Division

3 Find $\left(x^{2}+7 x-15\right) \div(x-2)$.

Write It

Explain how dividing polynomials is similar to dividing whole numbers.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework AssignMent

Page(s):
Exercises:

Step 1 Divide the first term of the dividend, x^{2}, by the first term of the divisor, x.

$$
x - 2 \longdiv { x } \quad x ^ { 2 } \div x = x .
$$

Multiply x and $x-2$.
Subtract.

Step 2 Divide the first term of the partial dividend, $9 x-15$, by the first term of the divisor, x.
$x - 2 \longdiv { x ^ { 2 } + 7 x - 1 5 } \quad 9 x \div x = 9$

Multiply 9 and $x-2$.
Subtract.
The quotient of $\left(x^{2}+7 x-15\right) \div(x-2)$ is \square with a remainder of \square which can be written as

Check Your Progress
a. $\left(48 z^{2}+18 z\right) \div 6 z$

c. $\left(2 c^{2}-3 c-9\right) \div(c-3)$

d. $\left(y^{2}-4 y+5\right) \div(y-3)$

11-6 Rational Expression with Like Denominators

Preparation for TEKS 2A. 10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (B) Analyze various representations of rational functions with respect to problem situations.

EXAMPLE Numbers in Denominator

MAIN IDEAS

- Add rational expressions with like denominators.
- Subtract rational expressions with like denominators.

Remember It

You must have like denominators before adding or subtracting rational expressions.
(1) Find $\frac{4 b}{15}+\frac{16 b}{15}$.

EXAMPLE Binomials in Denominator

2 Find $\frac{6 c}{c+2}+\frac{12}{c+2}$.

EXAMPLE Subtract Rational Expressions

3 Find $\frac{7 x+9}{x}-\frac{x-5}{x-3}$.
$\frac{7 x+9}{x-3}-\frac{x-5}{x-3}$

$=\frac{(7 x+9)=[-(x-5)]}{x-3}$

The common denominator is

The additive inverse of $(x-5)$
is

Distributive Property

Simplify.

EXAMPLE Inverse Denominators

(4) Find $\frac{3 s}{11-s}+\frac{-5 s}{s-11}$.

Rewrite the second expression so that it has the same denominator as the first.
$\frac{3 s}{11-s}+\frac{-5 s}{s-11}$

Check Your Progress
Find each sum or difference.
a. $\frac{7 k}{9}+\frac{17 k}{9}$

c. $\frac{11 y-3}{y+1}-\frac{5 y+6}{y+1}$

b. $\frac{5 y}{y+4}+\frac{20}{y+4}$

d. $\frac{8 n}{n-4}+\frac{n}{4-n}$

11-7 Rational Expression with Unlike Denominators

Preparation for TEKS 2A. 10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (B) Analyze various representations of rational functions with respect to problem situations.

BUILD YOUR VOGABULARY (pages 245-246)

MAIN IDEAS

- Add rational expressions with unlike denominators.
- Subtract rational expressions with unlike denominators.

KEY CONCEPT

Add Rational Expressions
Use the following steps to add rational expressions with unlike denominators.

Step 1 Find the LCD.
Step 2 Change each rational expression into an equivalent expression with the LCD as the denominator.

Step 3 Add just as with rational expressions with like denominators.

Step 4 Simplify if necessary.

Check Your Progress
 Find the LCM for each pair of expressions.

a. $21 a^{2} b^{4}$ and $35 a^{3} b^{2}$
b. $y^{2}+12 y+36$ and $y^{2}+2 y-24$

EXAMPLE Polynomial Denominators

(2) Find each sum.

a. $\frac{z+2}{5 z}+\frac{z-6}{z}$

Factor each denominator and find the LCD. The LCD is \square

$$
\begin{gathered}
\frac{z+2}{5 z}+\frac{z-6}{z} \\
=\frac{z+2}{5 z}+
\end{gathered}
$$

\square Rename $\frac{z-6}{z}$.

Distributive Property

Add the numerators.

b. $\frac{x+7}{x^{2}-6 x+9}+\frac{x+3}{x-3}$

$$
\frac{x+7}{x^{2}-6 x+9}+\frac{x+3}{x-3}
$$

$$
=\frac{x+7}{(\square)^{2}}+\frac{x+3}{x-3}
$$

$$
=\frac{x+7}{(x-3)^{2}}+\frac{x+3}{x-3}
$$

\square

$$
=\frac{x+7}{(x-3)^{2}}+\frac{x^{2}-9}{(x-3)^{2}}
$$

$$
(x+3)(x-3)=\square
$$

Add the numerators.
\square

FOLDABLES

ORGANIZE IT

Under the tab for Rational Equations, write each new Vocabulary Builder word. Then give an example of each word.

EXAMPLE Polynomials in Denominators

3 Find $\frac{c}{20+4 c}-\frac{6}{5-c}$.
$\frac{c}{20+4 c}-\frac{6}{5-c}$
$=\frac{c}{4(\square)}-\frac{6}{(5-c)}$
$=\frac{\square}{4(5+c)(5-c)}-\frac{\square}{4(5-c)(5+c)}$
$=\square$
$=\frac{\square}{4(5+c)(5-c)}$
$=\frac{-c^{2}-19 c-120}{4(5+c)(5-c)}$ or \square Simplify.

Check Your Progress
Find each sum or difference.
a. $\frac{b-2}{4 b}+\frac{b-7}{b}$
b. $\frac{y-14}{y^{2}-8 y+16}+\frac{y+4}{y-4}$

c. $\frac{3}{b+1}-\frac{b}{4 b-4}$

d. $\frac{n+3}{n^{2}+10+25}-\frac{n-7}{n^{2}+2 n-15}$

11-8 Mixed Expression and Complex Fractions

Preparation for TEKS 2A.10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (B) Analyze various representations of rational functions with respect to problem situations.

Main Ideas

- Simplify mixed expressions.
- Simplify complex fractions.

BUILD YOUR VOGABULARY (pages 245-246)

An expression that contains the sum of a \square and a rational expression is known as a mixed expression. If a fraction has \square or more fractions in the numerator or denominator, it is called a complex fraction.

EXAMPLE Mixed Expression to Rational Expression

(1) Simplify $3+\frac{7}{x-2}$.

$$
\begin{aligned}
3+\frac{7}{x-2} & =\frac{3(x-2)}{x-2}+\frac{7}{x-2} & & \text { The LCD is } x-2 . \\
& =\frac{3(x-2)+7}{x-2} & & \text { Add the numerators. } \\
& =\square & & \text { Distributive Property } \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

EXAMPIE Complex Fraction Involving Monomials

2 Simplify $\frac{\frac{a^{5} b}{c^{2}}}{\frac{a b^{4}}{c^{4}}}$.
$\frac{\frac{a^{5} b}{c^{2}}}{\frac{a b^{4}}{c^{4}}}=\frac{a^{5} b}{c^{2}} \div \frac{a b^{4}}{c^{4}} \quad$ Rewrite as a \square sentence.
$=\frac{a^{5} b}{c^{2}} \cdot \square$
Rewrite as multiplication by the reciprocal.

Key Concept

Simplifying a Complex Fraction Any complex fraction
$\frac{\frac{a}{b}}{\frac{c}{d}}$

$$
\begin{aligned}
& \text { where } b \neq 0, c \neq 0 \\
& \text { and } d \neq 0 \text {, can be } \\
& \text { expressed as } \frac{a d}{b c} \text {. }
\end{aligned}
$$

$=\frac{a^{a^{4}} \frac{1}{b}}{c_{1}^{2}} \cdot \frac{e^{c^{2}}}{a^{4} b^{4}}$
Divide by common factors.
$=\square$
Simplify.

FOLDABLES

ORGANIZE IT

Under the tab for Rational Equations, write why the fraction bar in a complex fraction is considered a grouping symbol.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLE Complex Fraction Involving Polynomials
Simplify $\frac{b+\frac{2}{b+3}}{b-4}$.
The numerator contains a mixed expression. Rewrite it as a rational expression first.
$\frac{b+\frac{2}{b+3}}{b-4}=\frac{\frac{b(b+3)}{b+3}+\frac{2}{b+3}}{b-4}$
The LCD of the fractions in the numerator is \qquad

Factor.

Rewrite as a division sentence.

Multiply by the reciprocal of $b-4$.

Simplify.

Check Your Progress
a. $\frac{\frac{p^{2} q^{3}}{r^{2}}}{\frac{p^{2} q}{r^{5}}}$

c. $5+\frac{2}{y-4}$

11-9 Solving Rational Equations

'
Preparation for TEKS 2A.10 The student formulates equations and inequalities based on rational functions, uses a variety of methods to solve them, and analyzes the solutions in terms of the situation. (D) Determine the solutions of rational equations using graphs, tables, and algebraic methods.

BUILD YOUR VOGABULARY (pages 245-246)

Main Ideas

Solve rational equations.

- Eliminate extraneous solutions.

A rational equation is an equation that contains rational expressions.

EXAMPLE Use Cross Products

(1) Solve $\frac{8}{x+3}=\frac{2}{x-6}$.

$$
\frac{8}{x+3}=\frac{2}{x-6} \quad \text { Original equation }
$$

$$
\begin{array}{rlrl}
8 x-48 & =2 x+6 & \text { Distributive Property } \\
6 x & =\square \quad \text { Add } \square \text { and } \square \text { to each side. }
\end{array}
$$

\square Divide each side by 6 .

EXAMPIE Use the LCD

2 Solve each equation.
a. $\frac{5}{x+1}+\frac{1}{x}=\frac{2}{x^{2}+x}$
$\frac{5}{x+1}+\frac{1}{x}=\frac{2}{x^{2}+x}$ Original equation

The LCD is

$$
\left(\frac{x(x+1)}{1} \cdot \frac{5}{\frac{(x+1)}{1}}\right)+\left(\frac{1}{x(x+1)}-\frac{1}{1}\right)=\frac{x(x+1)}{1} \cdot \frac{2}{\frac{1}{x^{2}+x}}
$$

Distributive
Property

\square	$=2$		Simplify.
\square	$=2$		Add.
$6 x$	$=1$		Subtract.
x	$=\frac{1}{6}$		Divide.

ReVIEW IT

When checking solutions to equations, why do you check both solutions in the original equation? (Lesson 10-3)
\qquad
\qquad
\qquad
\qquad
\qquad
b. $a+\frac{a^{2}-5}{a^{2}-1}=\frac{a^{2}+a+2}{a+1}$

$$
\begin{aligned}
& a+\frac{a^{2}-5}{a^{2}-1}=\frac{a^{2}+a+2}{a+1} \quad \begin{array}{l}
\text { Original } \\
\text { equation }
\end{array} \\
&\left(a+\frac{a^{2}-5}{a^{2}-1}\right)=\square\left(\frac{a^{2}+a+2}{a+1}\right) \\
&\left(a^{2}-1\right) a+\left(\frac{a^{2}-1}{1} \cdot \frac{a^{2}-5}{a^{2}-1}\right)=\left(a^{\frac{a-1}{1}-1}\right)\left(\frac{a^{2}+a+2}{a+1}\right) \\
& \square=a^{3}+a-2 \quad \text { Simplify. } \\
& \square=0 \text { or }=0 \\
& \square=\square=0 \\
& a=\square \\
& a=\square
\end{aligned}
$$

The number \square is an \square value for x.
Thus, the solution is \square

Check Your Progress
Solve each equation.
a. $\frac{2}{x-6}=\frac{4}{5 x-3}$ \square b. $\frac{3}{m-2}=\frac{m+1}{m}-\frac{1}{m} \square$

EXAMPLE Rate Problem

3 TRANSPORTATION The schedule for the Washington, D.C., Metrorail is shown to the right. Suppose two Red Line trains leave their stations at opposite ends of the line at exactly 2:00 P.M. One train travels between the two stations in 48 minutes and the other train takes 54 minutes. At what time
 do the two trains pass each other?

Determine the rates of both trains. The total distance is 19.4 miles.

Next, since both trains left at the same time, the time both have traveled when they pass will be the same. And since they started at opposite ends of the route, the sum of their distances is equal to the total route, \square miles.

$\square\left(\frac{19.4 t}{48}+\frac{19.4 t}{54}\right)=\square \cdot 19.4 \quad$ The LCD is 432.
$\frac{492}{1} \cdot \frac{19.4 t}{-48}+\frac{482}{1} \cdot \frac{19.4 t}{54}=\square \quad$ Distributive Property
$174.6 t+155.2 t=8380.8 \quad$ Simplify.
$329.8 t=8380.8$
Add.
$t=\square$
Divide each side by 329.8.

The trains passed each other at about \square minutes after they left their stations, at \square are riding on a 5 -mile circular bike trail. They both leave the bike trail entrance at 3:00 P.M. traveling in opposite directions. It usually takes the first cyclist one hour to complete the trail and it takes the second cyclist 50 minutes. At what time will they pass each other?

FOLDABLES

ORGANIZE IT

Under the tab for Rational Equations, write the definition of an extraneous solution in your own words.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Extraneous Solutions

(4) Solve $\frac{x^{2}}{x-2}=\frac{4}{x-2}$.

$$
\frac{x^{2}}{x-2}=\frac{4}{x-2} \quad \text { Original equation }
$$

$$
\begin{aligned}
\left(x^{1}-2\right)\left(\frac{x^{2}}{x-2}\right) & =\left(x^{1}-2\right)\left(\frac{4}{x-2}\right) & & \text { Distributive Property } \\
x^{2} & =4 & & \text { Simplify. } \\
x^{2}-\square & =0 & & \text { Subtract. } \\
(x-2)(x+2) & =0 & & \text { Factor. } \\
x-2=0 \text { or } x+2 & =0 & & \text { Zero Product Property } \\
x=\square \quad x & =\square & &
\end{aligned}
$$

The number 2 is an extraneous solution, since 2 is an excluded value for x. Thus, -2 is the solution of the equation.

Check Your Progress extraneous solutions.
a. $\frac{9 y}{y+2}-\frac{5 y-8}{y+2}=3$
b. $\frac{3 w}{w-2}-2=\frac{5 w+14}{w^{2}-4}$

Solve each equation. State any

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABlES

Use your Chapter 11 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 245-246) to help you solve the puzzle.

11-1

Inverse Variation

Write direct variation, inverse variation, or neither to describe the relationship between \boldsymbol{x} and \boldsymbol{y} described by each equation.

1. $y=3 x$
2. $x y=5$
3. $y=-8 x$

4. $y=\frac{2}{x}$
5. $x=\frac{10}{y}$
6. $y=7 x-1$

For each problem, assume that y varies inversely as x. Use the Product Rule to write an equation you could use to solve the problem. Then write a proportion and solve the problem.
7.

Problem	Product Rule	Proportion	Solve
If $y=8$ when $x=12$, find y when $x=4$.			\square
If $x=50$ when $y=6$, find x when $y=30$			\square

11-2

Rational Expressions
Simplify each expression. State the excluded values of the variables.
9. $\frac{21 b c}{28 b c^{2}}$

11. $\frac{2 y^{2}+9+4}{4 y^{2}-4 y-3}$

11-3

Multiplying Rational Expressions
Find each product.
12. $\frac{18 a^{2}}{10 b^{2}} \cdot \frac{15 b^{2}}{24 a}$

13. $\frac{x-4}{x^{2}-x-12} \cdot \frac{x+3}{x-6}$

14. $\frac{y^{2}+5 y+4}{y^{2}-36} \cdot \frac{y^{2}+5 y-6}{y^{2}+2 y-8}$

15. The number of calories used to play basketball depends on your weight and how long you play. Playing basketball expends about 3.8 calories per hour per pound of weight. If you weigh 140 pounds, how many calories do you lose in 1.25 hours?
\square

11-4

Dividing Rational Equations

State the reciprocal of the divisor in each of the following.
16. $\frac{3 b+15}{b+1} \div(b-2)$ \square 17. $\frac{2 c^{2}}{d} \div \frac{c}{3 d}$
\square
18. Supply the reason for the steps below.

$$
\begin{array}{rlr}
\frac{y+1}{y^{2}+5 y+6} \div \frac{1}{y+3} & \text { Original Expression } \\
=\frac{y+1}{y^{2}+5 y+6} \cdot \frac{y+3}{1} & \text { Multiply by the } \square \\
=\frac{y+1}{(y+2)(y+3)} \cdot \frac{y+3}{1} & \square y^{2}+5 y+6 . \\
=\frac{y+1}{(y+2)(y+3)} \cdot \frac{y+3}{1} & & \text { Divide by the } \square . \\
=\frac{y+1}{y+2} & &
\end{array}
$$

11-5

Dividing Polynomials

Find each quotient.
19. $\left(20 y^{2}+12 y\right) \div 4 y$
20. $\frac{2 x^{2}-5 x-3}{2 x+1}$

21. $\frac{6 a^{3}+a^{2}-2 a+17}{2 a+3}$

11-6

Rational Expressions with Like Denominators

For each addition or subtraction problem, write the needed expression in each box on the right side of the equation.
22. $\frac{5 n}{7}+\frac{8}{7}=\frac{5 n+\square}{7}$

24. $\frac{8}{6 x-1}+\frac{9}{1-6 x}=\frac{8+(\square)}{6 x-1}$

23. $\frac{d-c}{c+2 d}-\frac{c-d}{c+2 d}=\frac{-(c-d)}{c+2 d}$

11-7
Rational Expressions with Unlike Denominators
25. What is the LCM of $49 k^{2} n^{2}$ and $21 k n^{5}$?
\square

Find each sum or difference.
26. $\frac{3}{y}+\frac{4}{y^{2}}$

28. $\frac{a}{a-5}+\frac{a-1}{a+5}$

11-8

Mixed Expressions and Complex Fractions
Tell whether each expression is a mixed expression or complex fraction. Write M for mixed expression and C for complex fraction.
30. $7 x+\frac{x+2}{x-5}$ \square 31. $\frac{5+\frac{2}{s-1}}{s^{2}} \square$
32. $(b-6)+\frac{b+3}{b+2} \square$
33. Simplify $\frac{\frac{x+4}{x}}{\frac{x^{2}-16}{x}}$.

11-9

Solving Rational Equations

34. Is $\frac{\sqrt{x-3}}{4}=\frac{3}{x}$ a rational equation? Explain.

Solve each equation. State any extraneous solutions.
35. $\frac{5}{x+2}=\frac{7}{x+6}$
36. $\frac{-2}{w+1}+\frac{2}{w}=1$
37. $\frac{3}{2 t}+\frac{2 t}{t-3}=2$

11

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want take the Chapter 11 Practice Test on page 629 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 625-628 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 629.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldable.
- Then complete the Chapter 11 Study Guide and Review on pages 625-628 of your textbook.
- If you are unsure of any concepts or skills, refer to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 629.

12

Statistics and Probability

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of plain $8 \frac{1}{2}$ " by 11 "paper.

STEP 1 Fold in half
lengthwise.

STEP 2 Fold the top to the bottom twice.

STEP 3 Cut along the second fold to make four tabs.

STEP 4 Label as shown.

NOTE-TAKING TIP: If your instructor points out definitions or procedures from your text, write a reference page in your notes. You can then write these referenced items in their proper place in your notes after class.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
biased sample			
combination			
complements			
compound event			
convenience sample			
dependent events			
empirical study			
event			
factorial			

Vocabulary Term	Found on Page	Definition inclusive	Description or Example
independent events			
population			
random sample			
sample			
simple random sample			
systematic random sample			
sins-tuh•MA•tihk			

12-1 Sampling and Bias

Reinforcement of TEKS 8.13 The student evaluates predictions and conclusions based on statistical data. (A) Evaluate methods of sampling to determine validity of an inference made from a set of data.

Main IdeAs

- Identify various sampling techniques.
- Recognize a biased sample.

Key Concepts

Simple Random

Sample: A sample that is as likely to be chosen as any other from the population.

Stratified Random Sample In a stratified random sample, the population is first divided into similar, nonoverlapping groups. A simple random sample is then selected from each group.

Systematic Random Sample In a systematic random sample, the items are selected according to a specified time or item interval.

BUILD YOUR VOGABULARY (pages 276-277)

A sample is some portion of a \square group, called the population, selected to represent that group. If all of the \square within a population are included, it is called a census.

In a biased sample, one or more parts of a population are
\square

EXAMPLE Classify a Random Sample

a. RETAIL Each day, a department store chain selects one male and one female shopper randomly from each of their 57 stores, and asks them survey questions about their shopping habits.

Identify the sample and suggest a population from which it was selected.

\square
b. Classify the sample as simple, stratified, or systematic. The population is divided into similar, nonoverlapping groups. This is a \square sample.

Check Your Progress

At an automobile factory, every tenth item is checked for quality controls.
a. Identify the sample and suggest a population from which it was selected.

b. Classify the sample as simple, stratified, or systematic.
\square

FOLDABLES

ORGANIZE IT

On the tab for Lesson 12-1, write your own example of a biased sample.

KEY CONCEPTS

Biased Samples A convenience sample includes members of a population that are easily accessed. A voluntary response sample involves only those who want to participate in the sampling.

Homework Assignment

EXAMPLE Identify Sample as Biased or Unbiased

2) STUDENT COUNCIL The student council surveys the students in one classroom to decide the theme for the spring dance. Identify the sample as biased or unbiased. Explain your reasoning.
The sample includes only students in one classroom.
The sample is \square
Check Your Progress Identify the sample as biased or unbiased. Explain your reasoning.

A local news station interviews one person on every street in Los Angeles to give their opinion on their mayor.

EXAMPL 5 Identify and Classify a Biased Sample

a. COMMUNITY The residents of a neighborhood are to be surveyed to find out when to hold a neighborhood clean up day. The neighborhood chairperson decides to ask her immediate neighbors and the neighbors in the houses directly across the street from her house.
Identify the sample, and suggest a population from which it was selected.
The sample is the \square
\square and the neighbors across the street. The
\square is the residents of the neighborhood.
b. Classify the sample as a convenience sample, or a voluntary response sample.

This is a \square sample because the chairperson asked only her closest neighbors.

Check Your Progress

Mark wanted to find out what the average student in the United States does on the weekend. He decides to interview people in his dorm. Identify the sample, and suggest a population from which it was selected. Then classify the sample as a convenience sample, or a voluntary response sample.

12-2 Counting Outcomes

Reinforcement of TEKS 8.13 The student evaluates predictions and conclusions based on statistical data. (B) Recognize misuses of graphical or numerical information and evaluate predictions and conclusions based on data analysis.

MAIN IDEAS

- Count outcomes using a tree diagram.
- Count outcomes using the Fundamental Counting Principle.

FOLDABLES

ORGANIZE IT

Under the tab for Outcomes, explain how to use a tree diagram to show the number of possible outcomes.

BUILD YOUR VOGABULARY (pages 276-277)

One method used for counting the number of possible is to draw a tree diagram.

The list of all possible \square is called the sample space. An event is any collection of one or more outcomes in the sample space.

EXAMPLE Tree Diagram

1) At football games, a concession stand sells sandwiches on either wheat or rye bread. The sandwiches come with salami, turkey, or ham, and either chips, a brownie, or fruit. Use a tree diagram to determine the number of possible sandwich combinations.

There are \square possible combinations.

Check Your Progress
A buffet offers a combination of a meat, a vegetable, and a drink. The choices of meat are chicken or pork; the choices of vegetable are carrots, broccoli, green beans, or potatoes; and the choices of drink are milk, lemonade, possible combinations.

Key Concept

Fundamental Counting Principle If an event M can occur in m ways and is followed by an event N that can occur in n ways, then the event M followed by event N can occur in $m \cdot n$ ways.

EXAMPLE Fundamental Counting Principle

2 The Best Deal computer company sells custom made personal computers. Customers have a choice of 11 different hard drives, 6 different keyboards, 4 different mice, and 4 different monitors. How many different custom computers can you order?
Multiply to find the number of custom computers.

The number of different custom computers is

Check Your Progress A baseball team is organizing their draft. In the first five rounds, they want a pitcher, a catcher, a first baseman, a third baseman, and an outfielder. They are considering 7 pitchers, 9 catchers, 3 first baseman, 4 third baseman, and 12 outfielders. How many top picks are there to choose from?

EXAMPIE Factorial

(3) Find the value of 9 !.

$$
\begin{array}{rlr}
9! & =9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 & \text { Definition of factorial } \\
& =\square & \text { Simplify. }
\end{array}
$$

Check Your Progress
a. 7 !

b. 0 !

12-3 Permutations and Combinations

Reinforcement of TEKS 8.11 The student applies concepts of theoretical and experimental probability to make predictions. (B) Use theoretical probabilities and experimental results to make predictions and decisions.

Main Ideas

- Determine probabilities using permutations.
- Determine probabilities using combinations.

BUILD YOUR VOGABULARY (pages 276-277)

An arrangement or listing in which order or placement is important is called a permutation.

An arrangement or listing in which order is not important is called a combination.

EXAMPLE Permutation and Probability

KEY Concept

Permutation The number of permutations of n objects taken r at a time is the quotient of n ! and $(n-r)$!.

FOLDABLES Under the permutation tab, record this definition in words and in symbols.

1) Shaquille has a 5-digit code to access his e-mail account. The code is made up of the even digits $2,4,6,8$, and 0 . Each digit can be used only once.
a. How many different pass codes could Shaquille have?

This situation is a permutation of 5 digits taken 5 at a time.

$$
\begin{aligned}
& { }_{n} P_{t}=\frac{n!}{(n-r)!} \\
& { }_{5} P_{5}=\frac{5!}{(5-5)!}
\end{aligned}
$$

Definition of permutation

$$
n=5, r=5
$$

There are \square possible pass codes.
b. What is the probability that the first two digits of his code are both greater than 5 ?

There are \square digits greater than 5 and \square digits less than 5. The number of choices for the first two digits is
\square The number of choices for the remaining digits is
 So, the number of favorable outcomes is

$P($ first 2 digits $>5)=\square \longleftarrow \frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$ $=\square$ or $10 \% \quad$ Simplify.

Check Your Progress
Bridget and Brittany are trying to find a house, but they cannot remember the address. They can remember only that the digits used are $1,2,5$, and 8 , and that no digit is used twice. Find the number of possible addresses. Then find the probability that the first two numbers are odd.

EXAMPLE Combinations and Probability

(2) Diane has a bag full of coins. There are 10 pennies, 6 nickels, 4 dimes, and 2 quarters in the bag. What is the probability that she will pull two pennies and two nickels out of the bag?
The number of combinations of 22 coins taken 4 at a time is

$$
{ }_{22} C_{4}=\frac{22!}{(22-4)!4!} \text { or } \square .
$$

Using the Fundamental Counting Principle, the answer can be determined with the product of the two combinations.
$\left({ }_{10} C_{2}\right)\left({ }_{6} C_{2}\right)=\frac{10!}{(10-2)!2!} \cdot \frac{6!}{(6-2)!2!} \quad$ Definition of combination

$$
=\frac{10 \cdot 9}{2!} \cdot \frac{6 \cdot 5}{2!} \quad \text { Divide the first term by }
$$ its GCF and the second term by its GCF.

There are \square ways to choose this particular combination out of 7315 possible combinations.

Check Your Progress At a factory, there are 10 union

 workers, 12 engineers, and 5 foremen. The company needs 6 of these workers to attend a national conference. If the workers are chosen randomly, what is the probability that 3 union workers, 2 engineers, and 1 foreman are selected?
12-4 Probability of Compound Events

Reinforcement of TEKS 8.11 The student applies concepts of theoretical and experimental probability to make predictions. (A) Find the probabilities of dependent and independent events.

Main IdeAs

Find the probability of two independent events or dependent events.

Find the probability of two mutually exclusive events or inclusive events.

Key Concepts

Probability of Independent Events If two events, A and B, are independent, then the probability of both events occuring is the product of the probability of A and the probability of B.
Probability of Dependent Events If two events, A and B, are dependent, then the probability of both events occuring is the product of the probability of A and the probability of B after A occurs.

BUILD YOUR VOGABULARY (pages 276-277)

A compound event is made up of \square or more
\square events.

Independent events are events in which the outcome of one event does not \square the outcome of the other. When the outcome of one event \square the outcome of another event, the events are dependent events.

EXAMPLE Independent Events

(1)Rae is flying from Birmingham to Chicago. She has to fly from Birmingham to Houston on the first leg of her trip. In Houston she changes planes and heads to Chicago. The airline reports that the flight from Birmingham to Houston has a $\mathbf{9 0 \%}$ on time record, and the flight from Houston to Chicago has a 50% on time record. What is the probability that both flights will be on time?
$P(A$ and $B)=P(A) \cdot P(B)$
Definition of independent events
$P(\mathrm{~B}-\mathrm{H}$ on time and $\mathrm{H}-\mathrm{C}$ on time $)$

Check Your Progress

Two cities, Fairfield and Madison, lie on different faults. There is a 60% chance that Fairfield will experience an earthquake by the year 2010 and a 40% chance that Madison will experience an earthquake by 2010. Find the probability that both cities will experience an earthquake by 2010 .

EXAMPLE Dependent Events

2 At the school carnival, winners in the ring-toss game are randomly given a prize from a bag that contains 4 sunglasses, 6 hairbrushes, and 5 key chains. Three prizes are randomly drawn from the bag and not replaced. Find P (sunglasses, hairbrush, key chain).

The selection of the first prize affects the selection of the next prize since there is one less prize from which to choose. So, the events are dependent.
1st prize: $\quad P$ (sunglasses $=\square \longleftarrow \frac{\text { number of sunglasses }}{\text { total number of prizes }}$
2nd prize: $\quad P$ (hairbrush) $=\square$ or $\frac{3}{7} \longleftarrow \frac{\text { number of hairbrushes }}{\text { total number of prizes }}$
3rd prize: $\quad P$ (key chain) $=\square \longleftarrow \frac{\text { number of key chains }}{\text { total number of prizes }}$
P (sunglasses, hairbrush, key chain)

$$
\begin{aligned}
& =\square \cdot \square \cdot \square \\
& =\square \text { or } \frac{4}{91}
\end{aligned}
$$

Check Your Progress

A gumball machine contains 16 red gumballs, 10 blue gumballs, and 18 green gumballs. Once a gumball is removed from the machine, it is not replaced. Find each probability if the gumballs are removed in the order indicated.
a. P (red, green, blue)

b. P (green, blue, not red)

BUILD YOUR VOCABULARY (pages 276-277)

The events for drawing a marble that is green and for drawing a marble that is \square green are called complements.

Events that cannot occur at the mutually exclusive. \square time are called Two events that \square occur at the same time are called inclusive events.

Key CONCEPTS

Mutually Exclusive

 Events If two events, A and B, are mutually exlcusive, then the probability that either A or B occurs is the sum of their probabilities.Probability of Inclusive Events If two events, A and B, are inclusive, then the probability that either A or B occurs is the sum of their probabilities decreased by the probability of both occuring.

FOLDABLES Take notes on how to find the probability of compound events.

Homework
 ASSIGNMENT

EXAMPLE Mutually Exclusive Events

(3) Alfred is going to the Lakeshore Animal Shelter to pick a new pet. Today, the shelter has 8 dogs, 7 cats, and 5 rabbits available for adoption. If Alfred randomly picks an animal to adopt, what is the probability that the animal would be a cat or a dog?
$P($ cat $)=\square$
$P($ cat or dog$)=P(\mathrm{cat})+\underbrace{P(\mathrm{dog})}$
$=\square+\square$
$=\frac{15}{20}$ or $\frac{3}{4}$
$P(\mathrm{dog})=\square$
Mutually exclusive events

Substitution

Add.

EXAMPLE Inclusive Events

A dog has just given birth to a litter of 9 puppies. There are 3 brown females, 2 brown males, 1 mixed-color female, and 3 mixed-color males. If you choose a puppy at random from the litter, what is the probability that the puppy will be male or mixed-color?
These events are inclusive.
P (male or mixed-color)

Check Your Progress

a. The French Club has 16 seniors, 12 juniors, 15 sophomores, and 21 freshmen as members. What is the probability that a member chosen at random is a junior or a senior?

b. In Mrs. Kline's class, 7 boys have brown eyes and 5 boys have blue eyes. Out of the girls, 6 have brown eyes and 8 have blue eyes. If a student is chosen at random from the class, what is the probability that the student will be a boy or have brown eyes?

12-5 Probability Distributions

Reinforcement of TEKS 8.11 The student applies concepts of theoretical and experimental probability to make predictions. (B) Use theoretical probabilities and experimental results to make predictions and decisions.

EXAMPIE Random Variable

Main Ideas

- Use random variables to compute probability.
- Use probability distributions to solve real-world predictions.
(1) The owner of a pet store asked customers how many pets they owned. The results of this survey are shown in the table.
a. Find the probability that a randomly chosen customer has at most 2 pets.

Number of Pets	Number of Customers
0	3
1	37
2	33
3	18
4	9

There are $3+37+33$ or \square outcomes in which a customer owns at most 2 pets. There are \square survey results.
$P(X \leq 2)=\square$ or \square
b. Find the probability that a randomly chosen customer has 2 or 3 pets.

There are
\square or \square outcomes in which a customer owns 2 or 3 pets.
$P(X=2$ or 3$)=\square$ or \square

Check Your Progress

A survey was conducted concerning the number of movies people watch at the theater per month. The results of this survey are shown in the table.

Movies (per month)	Numbers of People
0	7
1	23
2	30
3	29
4	11

a. Find the probability that a randomly chosen person watched at most 1 movie per month.
\square
b. Find the probability that a randomly chosen person watches 0 or 4 movies per month.

BUILD YOUR VOCABULARY (pages 276-277)

The probability of every possible \square of the random variable X is called a probability distribution.

The \square distribution for a random variable can be given in a table or in a probability histogram.

EXAMPLE Probability Distribution

Key Concept

Properties of Probability Distributions

1. The probability of each value of X is greater than or equal to 0 and less than or equal to 1.
2. The probabilities of all the values of X add up to 1 .

Homework ASSIGNMENT

The table shows the probability distribution of the number of students in each grade at Sunnybrook High School. If a student is chosen at random, what is the probability that he or she is in grade 11 or above?

$\boldsymbol{X = \text { grade }}$	$\boldsymbol{P}(\boldsymbol{X})$
9	0.29
10	0.26
11	0.25
12	0.2

The probability of a student being in grade 11 or above is the sum of the probability of grade 11 and the probability of grade 12.
$P(X \geq 11)=P(X=11)+P(X=12)$
Sum of individual probabilities

$$
P(X=12)=
$$

The probability is \square

Check Your Progress

The table shows the probability distribution of the number of children per family in the city of Maplewood. If a family was chosen at random, what is the probability that they have at least 2 children?

$X=$ Number of Children	$\boldsymbol{P}(X)$
0	0.11
1	0.23
2	0.32
3	0.26
4	0.08

12-6 Probability Simulations

Reinforcement of TEKS 8.11 The student applies concepts of theoretical and experimental probability to make predictions. (C) Select and use different models to simulate an event.

Main Ideas

- Use theoretical and experimental probability to represent and solve problems involving uncertainty.
- Perform probability simulations to model real-world situations involving uncertainty.

WRITE IT

Where is data obtained for experimental probability?

BUILD YOUR VOGABULARY (pages 276-277)

Theoretical probabilities are determined

Experimental probability is determined using data from tests or \square
Experimental probability is the \square of the number of times an outcome occurred to the \square number of events or trials. This ratio is also known as the relative frequency.

EXAMPLE Experimental Probability

BUILD YOUR YOGABULARY (pages 276-277)
Theoretical probabilities are determined
\square and describe what should happen.
Experimental probability is determined using data from
tests or \square
Experimental probability is the \square of the number of
times an outcome occurred to the \square
or trials. This ratio is also known as the relative frequency.

(1) Miguel shot 50 free throws in the gym and found that

 his experimental probability of making a free throw was 40\%. How many free throws did Miguel make?Miguel made \square out of every 100 free throws. experimental probability $=40 \%$ or \square \longleftarrow number of success
\longleftarrow total number of free throws
Miguel shot 50 free throws. Write and solve a proportion.

Check Your Progress Nancy was testing her serving accuracy in volleyball. She served 80 balls and found that the experimental probability of keeping it in bounds was 60%. How many serves did she keep in bounds?

BUILD YOUR VOGABULARY (pages 276-277)

 an experiment repeatedly, collect and combine the \square, and \square the results, this is known as an empirical study.

A simulation allows you to use objects to act out an \square that would be difficult or impractical to perform.

EXAMPLE Empirical Study

2 A pharmaceutical company performs three clinical studies to test the effectiveness of a new medication. Each study involved 100 volunteers. The results of the studies are shown in the table.

Result	Study 1	Study 2	Study 3
Expected Success Rate	70%	70%	70%
Condition Improved	61%	74%	67%
No improvement	39%	25%	33%
Condition Worsened	0%	1%	0%

What is the experimental probability that the drug showed no improvement in patients for all three studies?

The number of outcomes with no improvement for the three studies was $39+25+33$ or \square out of the 300 total patients. experimental probability $=\square$ or about \square

Check Your Progress

A new study is being developed to analyze the relationship between heart rate and watching scary movies. A researcher performs three studies, each with 100 volunteers. Based on similar studies, the researcher expects that 80% of the subjects will experience a significant increase in heart rate. The table shows the results of the study. What is the experimental probability that the movie would cause a significant increase in heart rate for all three studies?

Result	Study 1	Study 2	Study 3
Expected Success Rate	80%	80%	80%
Rate increased significantly	83%	75%	78%
Littler or no increase	16%	24%	19%
Rate decreased	1%	0%	0%

EXAMPLE Simulation

(3) In the last 30 school days, Bobbie's older brother has given her a ride to school 5 times.

Remember It

A spinner should simulate the possible outcomes of the event.

Homework Assignment

Exercises: BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 12 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 276-277) to help you solve the puzzle.

12-1

Sampling and Bias

Suppose the principal at a school wants to use Saturdays as make-up days when school is closed due to weather. The principal selects and then polls a group of students to see if the student body supports the idea. Complete the sentences.

1. The student body is the \square from which a \square of students is selected to be polled. If all the students are polled, it is called a \square

12-2

Counting Outcomes
Use the tree diagram for Exercises 2-4.
2. What is the sample space?

3. Name two different outcomes.
\square
4. Use the Fundamental Counting Principle to find the possible outcomes shown above.

	Game 1		Game 2		Game 3		Number of Outcomes
Number of choices	\square	\cdot	\square		\square	\square	\square

12-3
Permutations and Combinations
5. Three of seven students are chosen to go to a job fair. How many different groups of students could be selected? \square
12-4
Probability of Compound Events
A die is rolled and a card is drawn from a standard deck of 52 cards. Find each probability.
6. P (6 and queen)

7. P (greater than 1 and red ace) \square

12-5

Probability Distributions

The table shows the probability of various family sizes in the United States.

8. For each value of X, is the probability greater than or equal to 0 and less than or equal to 1 ?

9. What is the sum of the probabilities?

10. Is the probability distribution valid?

Family Size (United States)	
$\boldsymbol{X}=$ Size of Family	Probability
2	0.42
3	0.23
4	0.21
5	0.10
6	0.03
7	0.01

12-6

Probability Simulations

11. Choose the manipulative you would use to simulate the problem. Explain your choice.

Situation	Simulation method
58% of drivers (commercial and private vehicles) have a cell phone in their car. Simulate whether or not the next 10 drivers you meet on the road will have a cell phone.	- die - mars - marbles

\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Visit glencoe.com to access to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 681 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 676-680 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 681.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldable.
- Then complete the Chapter 12 Study Guide and Review on pages 676-680 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 681.

