Lesson 14-4

Example 1 Transform One Side of an Equation Verify that $\sec^2 \theta - \tan \theta \cot \theta = \tan^2 \theta$ is an identity.

Transform the left side.

sec²
$$\theta$$
 – tan θ cot θ = tan² θ Original equation
sec² θ – tan θ $\left(\frac{1}{\tan \theta}\right)$ = tan² θ cot θ = $\frac{1}{\tan \theta}$
sec² θ – 1 = tan² θ Multiply.
(tan² θ + 1) – 1 = tan² θ sec² θ = tan² θ + 1
tan² θ = tan² θ Subtract.

Example 2 Find an Equivalent Expression Multiple-Choice Test Item

$$\tan \theta + \cot \theta =$$

A.
$$\sec \theta + \csc \theta$$

B.
$$\sec \theta \csc \theta$$

A.
$$\sec \theta + \csc \theta$$
 B. $\sec \theta \csc \theta$ **C.** $\sec^2 \theta + \csc^2 \theta$ **D.** $\frac{\sec \theta}{\csc \theta}$

D.
$$\frac{\sec \theta}{\csc \theta}$$

Read the Test Item

Find an expression that is equal to the given expression.

Solve the Test Item

Write a trigonometric identity by using the basic trigonometric identities and the definitions of trigonometric functions to transform the given expression to match one of the choices.

$$\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$$

$$= \frac{\sin \theta (\sin \theta) + \cos \theta (\cos \theta)}{\cos \theta \sin \theta}$$

$$= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$$
Write the fractions with a common denominator.
$$= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$$
Simplify.
$$= \frac{1}{\cos \theta \sin \theta}$$

$$= \frac{1}{\cos \theta \sin \theta}$$

$$= \frac{1}{\cos \theta \sin \theta}$$
Simplify.
$$= \frac{1}{\cos \theta \sin \theta}$$
Factor.
$$= \sec \theta \csc \theta$$

$$= \sec \theta \csc \theta$$

$$= \frac{1}{\cos \theta} = \frac{1}{\sin \theta}$$
Factor.

Since $\tan \theta + \cot \theta = \sec \theta \csc \theta$, the answer is B.

Example 3 Verify by Transforming Both Sides

Verify that
$$\frac{\sin \theta}{\csc \theta} + \frac{\cos \theta}{\sec \theta} = \csc^2 \theta - \cot^2 \theta$$
 is an identity.

$$\frac{\sin \theta}{\csc \theta} + \frac{\cos \theta}{\sec \theta} \stackrel{?}{=} \csc^2 \theta - \cot^2 \theta$$

$$\frac{\sin \theta}{\frac{1}{\sin \theta}} + \frac{\cos \theta}{\frac{1}{\cos \theta}} \stackrel{?}{=} (1 + \cot^2 \theta) - \cot^2 \theta$$

$$\frac{\sin^2 \theta}{\sin^2 \theta} + \cos^2 \theta = 1$$

Original equation

Express terms on each side with the same functions.

Simplify both sides.