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Area of a Trapezoid
Proof of 
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The proof of the area formula falls into place as follows: 

· The area of triangle Region 1:       
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· The area of rectangle Region 2:
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· The area of triangle Region 3:    
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· The combined area of the three Regions:
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  …    Adding the three regions
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           …    Addition Property
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…   Simplify
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   Q.E.D.
Area of a Circle   

Using the concept of the Area of a Triangle to show that Area of a Circle = 
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If we cut the circles along the radius of the disk and let them fan out to become straight lines, we get a triangle (because the ratio of the circumference of the circles to their diameters is constant). The base length of the resulting triangle is equal to the circumference of the original circle, and its height is equal to the radius of this circle. 


Thus, the area of a circle is equal to half of the product of the radius and the circumference. 
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  which equals to the area of the DISK or CIRCLE.
Since,  
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Volume of a Right Circular Cylinder
Volume = (Area of Base)(Height)
          
[image: image17.wmf]h

r

V

2

p

=


[image: image229.wmf]b


[image: image230.wmf]c

[image: image231.wmf]c

[image: image232.wmf]c

If you bend a rectangular sheet of paper, bringing two opposite sides together, you will get an open tube. 
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This is called an open cylinder. 
The surface area of this open cylinder is the area of its curved surface given by the product of the distance round the rim and the height.  
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If the top and bottom of the cylinder are covered, we will have a closed cylinder. 

Thus, the formula for volume of prism or cylinder is given by 

     V = Volume = (Area of Base)(Height)
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Volumes  

Cavalieri’s Principle:  Solids with the same height and with cross-sections of equal area have the same volume; in particular, prisms or cylinders with equal bases and heights have the same volume.

Volume of a Sphere  

An Experimental Approach:
If we build a cylinder with height 2r and the diameter 2r and fill the cylinder with water and then remove the sphere from the cylinder, the water will only take up 
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of the cylinder. Thus, the volume of the sphere is 
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 the volume of the cylinder having the same diameter as the sphere and height equal to the diameter. 


Volume of the Cylinder:
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Proven earlier

Equation 1
             
[image: image23.wmf]2

hr

=


….
Given
So,
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….
Substitution 
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….
Simplify

Equation 2

We know from the experiment that:
 

Volume of the Sphere 
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Volume of the Sphere 
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Volume of the Sphere =   
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Q.E.D.

Algebraic Identities 

Algebraic manipulation very often can be explained with the aid of geometrical figures.  

Objective 1: To show that 
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Area of the square is: 
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   square units.
Area Region I:     
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Area Region II:  
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Area Region III:    
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Area Region IV:    
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Area of the Square =  Area Region I  +  Area Region II + Area Region III + Area Region IV
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, which is 
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…
Sum of the areas in the large square
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…
Equate the two expressions for the area
Objective 2: To show that 
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Area Region I:    
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Area Region II:  
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Area Region III:     


[image: image48.wmf](

)

2

Aab

=-

           

square units
Area Region IV:    
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Area Regions I & IV:   
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square units
We know          Region I + Region II + Region III = 
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        Sum of areas in the square
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        Isolating 
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         Distributive Property
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Associative and Commutative 








Properties
 

 

  

Objective 3: 
To show that 
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                    Figure 1                                                   Figure 2
A small square (in red) , area b2 square units is removed from a bigger square of area a2 square units as shown in the Figure 1 above.  Thus, the area of regions I and II is a2 – b2 square units.
In Figure 2, the two remaining regions, I and II, are rearranged to form the rectangle shown. 

  

The area of the newly formed rectangle is equal to 
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Hence, 
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Further justification:



Total Area of Figure 1:      
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Total Area of Figure 2:     
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Proof 
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is irrational.

The Greeks discovered that the diagonal of a square whose side is 1 unit long has a diagonal whose length cannot be rational. By the Pythagorean Theorem, the length of the diagonal equals the square root of 2. So the square root of 2 is irrational! 

The following proof is a classic example of a proof by contradiction: We want to show that A is true, so we assume it's not, and come to contradiction. Thus A must be true since there are no contradictions in mathematics! 

Proof:

Suppose 
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 is rational.  That means 
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 can be written as the ratio of two integers 
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, where q ≠ 0.      
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    ………  Equation #1

Where we may assume that 
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and 
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 have no common factors.  (If there are any common factors we cancel them in the numerator and denominator.)  Then,
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…
Squaring both sides of Eq. #1 

             This implies
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Isolating 
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Thus, 
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is even.  This means that 
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itself must be even. 

Why?  Because if p was odd, then 
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would also be odd.  (An odd number times an odd 
number is always odd.)  
So 
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 is an even number. Then 
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is 2 times some other whole number, or 
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, where k is this other number.  We don't need to know exactly what k is; it doesn't matter.  Soon we will get our contradiction: 

Then 
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p

 = 4k2.  So 4k2 = 2q2, hence q2 = 2k2.  
Hence 
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q

 is even and therefore 
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 itself must be even.  

So 
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and 
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are BOTH even.  They both have a common factor of 2.  This contradicts our assumption that p and q have no common factors.  
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  The square root of 2 is NOT rational.

The Irrationality of [image: image85.png]



Prove that [image: image86.png]


is an irrational number.

Solution: 
The number, [image: image87.png]


, is irrational, ie., it cannot be expressed as a ratio of integers a and b. To prove that this statement is true, let us assume that [image: image88.png]


is rational so that we may write

	[image: image89.png]


= a/b 
	1. 


for a and b = any two integers. To show that [image: image90.png]


is irrational, we must show that no two such integers can be found. We begin by squaring both sides of eq. 1:

	2 = a2/b2 
	2.


	or 
	2b2 = a2 
	2a.


From eq. 2a, we must conclude that a2 (and, therefore, a) is even; b2 (and, therefore, b) may be even or odd. If b is even, the ratio a2/b2 may be immediately reduced by canceling a common factor of 2. If b is odd, it is possible that the ratio a2/b2 is already reduced to smallest possible terms. We assume that b2 (and, therefore, b) is odd.

Now, we set a = 2m, and b = 2n + 1, and require that m and n be integers (to ensure integer values of a and b). Then

	a2 = 4m2 
	3.


	and 
	b2 = 4n2 + 4n + 1 
	4.


Substituting these expressions into eq. 2a, we obtain

	2(4n2 + 4n + 1) = 4m2 
	5. 


	or 4n2 + 4n + 1 = 2m2 
	6.


The L.H.S. of eq. 6 is an odd integer. The R.H.S., on the other hand, is an even integer. There are no solutions for eq. 6. Therefore, integer values of a and b which satisfy the relationship
 [image: image91.png]


= a/b cannot be found. We are forced to conclude that [image: image92.png]


is irrational.

Division by 0 is Meaningless

Since division is defined in terms of multiplication, the rules for the sign of a product lead directly to the corresponding rules for the sign of a quotient, which are given below:

	Symbols
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	Dividend 0

Divisor not 0
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Note:  For 
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Since the product
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Can be 0 only if one of the factors is 0.   Therefore,
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Also,  for 
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But this is IMPOSSIBLE, since
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For example, suppose you wished to find the quotient 
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You would have to find a number 
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such that 
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.  But that is IMPOSSIBLE because you have already seen that the product of 0 and any number must be 0.  Thus we can conclude that DIVISION by 0 is meaningless.
Dividing by a Fraction
If  
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                                                particular numbers for 
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Associatively 
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Q.E.D.

Slope of a Line is Constant.

Prove that the slope of a nonvertical line does not depend on which two points are used to 
calculate it.

Concept:
Slope of a line is CONSTANT and it does NOT depend on which two 
 

points are used to calculate it.

Proof:

Let 
[image: image139.wmf],,,

ABCD

 be any four points on the line.  Prove that the slope obtained using A and B equals the slope obtained using C and D.


                                                                                                             
                                                                                   

Study Tip:
If two figures are similar, then the ratios of the lengths of corresponding sides are equal.
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…
Definition of similar triangles
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…
Cross product property of equality 
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…
Divide both sides by 
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…
Simplify 








Q.E.D.

Product Property of Radicals
Prove:
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…
Definition of cube root
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…
Substitution, Commutativity, Associativity
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…
Definition of cube root
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…
Substitution or transitive property of equality
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…
Uniqueness of the real cube root of a number





Q.E.D.

Prove:
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Proof:
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…
Definition.  If 
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…
Definition of cube root
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Substitution 
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…
Definition of cube root
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…
Substitution or transitive property of equality
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…
Uniqueness of the real cube root of a number






Q.E.D.

Square Roots

Prove:  Any positive real number has a POSITIVE real number as a square root
The area of a SQUARE is obtained by squaring the length of a side.  The side of a square with an area of 2 square units must have a length whose square is 2.  That is, the side has length 
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Figure 1 on the right shows 
squares with AREAS 1, 2, 3, and
4 and sides measuring 1, 
[image: image165.wmf]2

, 
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,
and 2, respectively.



Figure 1

These squares show that any positive real number k has a POSITIVE real number as one of its square roots.  Specifically, the square whose area is equal to k square units has a side whose length is equal to the positive square root of k.
Since every real number has an additive inverse, and since 
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 for each real number a,
every positive real number clearly has a negative square root as well.

Thus the statement 
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is a consequence of our definition that 
[image: image169.wmf]k

, 
[image: image170.wmf]0

k

³

, shall name only a nonnegative number. We also have the statement
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This statement simply reasserts the definition of 
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.  This idea is of importance in later mathematics courses when, for example, students are asked to solve equations such as:
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Pythagorean Theorem

Consider Figure 1, a square whose side has length a + b.  As indicated, there are four identical right triangles and an interior quadrilateral.  The legs of each triangle have lengths a and b.  The hypotenuse of each triangle is c.  The measures of the two acute angles of each triangle have a sum of 90°.   Now look at the point P.  Since the two acute angles at that point have a sum of 90°, the interior angle of the quadrilateral must have a measure of 90°.  The same is true for each of the other vertices of the interior quadrilateral.  And the four sides of the interior quadrilateral all have length c.  Thus the interior quadrilateral is a square.  

Hence, the area of the large square = the sum of the areas of the 4 triangles plus the area of the interior square 
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But the large square can also split into two squares and 4 triangles, as shown in Figure 2.  The area of Figure 2 is 
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.  These two expressions for the area of the large square must be equal.  Hence, 
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a2 + b2 = c2

Converse of Pythagorean Theorem

Consider triangle ABC with sides of length a, b, and c respectively.  In the figure, angle C is unknown.  We assume that a2 + b2 = c2, and we want to prove that angle C is a right angle.  Now consider triangle A′B′C′.  As indicated, this is a right triangle with the right angle at C and legs of length a and b.  Since we know that a2 + b2 = c2 and triangle A′B′C′ is a right triangle, it follows that the length of its hypotenuse must be c.  Thus in the two triangles, the three pairs of corresponding sides are equal in length.  Hence these triangles must be congruent by the Side-Side-Side theorem of congruent triangles.  Hence their corresponding angles are equal.  Since angle C is a right angle, so is angle C′.
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Definition of π
The number π is defined to be the length of the perimeter (usually called the circumference) of a circle whose diameter is 1 unit.  Its value is irrational but is approximately equal to 3.14159.

Circumference of a Circle

Notice that any two circles are similar to each other.  In similar geometric figures, the lengths of corresponding measures are proportional.  Now consider the two circles below, with radii of ½ and r.  Call the diameter and circumference of the second circle d and C respectively.  Since these circles are similar, the ratio of the circumference of the first circle to its diameter is equal to the ratio of the circumference of the second circle to its diameter.  This means that  π/1 = C/d.  When we simplify this equation, we get C = πd, or equivalently, since d = 2r, we have C = 2πr.


                                                 1/2



Area of a Circle

Consider the following figure.  The circle contains an inscribed regular hexagon.  As indicated, the length of each side of the hexagon is s and the apothem (the distance of the perpendicular segment from the center of the circle to the side of the hexagon) is a.  Notice that the hexagon can be split into six congruent triangles.  Then the area of one of these triangles is (1/2)sa.  Hence the area of the entire hexagon is 6(1/2)sa = (1/2)(6s)a = (1/2) times the perimeter of the hexagon times the apothem.  

Now suppose instead of an inscribed regular hexagon, we have an inscribed regular polygon with 12 sides.  Using the same symbols as above, the area of this polygon is (1/2) times the perimeter of the polygon times the apothem.  We can also see that the area of the polygon is closer to the area of the circle than the area of the hexagon.  Clearly, as the number of sides of the polygon increases, the area of the polygon gets closer and closer to the area of the circle.  The formula for the area of this polygon is again (1/2) times its perimeter times the apothem.  Finally, notice that as the number of sides increases, the perimeter of the polygon approaches the circumference of the circle, 2πr, and the apothem approaches the radius of the circle r.  Thus the area of the circle is this limiting value, (1/2) times 2πr times r.  When simplified, this is just πr2.   





Zero Product Rule:  If ab = 0, then either a = 0 or b = 0.

Suppose that the product ab is equal to zero.  Suppose also that a is not zero.  Then the multiplicative inverse of a, a-1, exists.  So we have:

     
                               ab = 0




(a-1)ab = (a-1)0             Multiply both sides by a-1



(a-1a)b = 0                    Associativity of multiplication




       1b = 0                    Definition of multiplicative inverse




         b = 0                    Definition of multiplicative identity[image: image183.emf]b a
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The figure on the right is a square made up of four Regions: I, II, III & IV. ��Each side of the square has length � EMBED Equation.DSMT4  ���units. 
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The figure on the left is made up of four Regions: I, II, III, and IV. 
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