Lesson 10-10

Example 1 Identify Lines of Symmetry

Determine whether the figure has line symmetry. If so, copy the figure and draw all lines of symmetry.

The figure has one line of symmetry.

Example 2 Identify Lines of Symmetry

Determine whether the figure has line symmetry. If so, copy the figure and draw all lines of symmetry.

The figure has one line of symmetry.

Example 3 Identify Lines of Symmetry

Determine whether the figure has line symmetry. If so, copy the figure and draw all lines of symmetry.

The figure has no line symmetry.

Example 4 Reflect a Figure Over the x-axis Triangle XYZ has vertices X(-2, 4), Y(5, 1), and Z(6, 2). Find the coordinates of XYZ after a reflection over the x-axis. Then graph the figure and its reflected image.

Vertices of	Distance	Vertices of
$\triangle XYZ$	from x-axis	$\triangle X'Y'Z'$
X(-2, 4)	4	X'(-2, -4)
<i>Y</i> (5, 1)	1	Y'(5,-1)
Z(6, 2)	2	Z'(6, -2)

Plot the vertices and connect to form $\triangle XYZ$. The *x*-axis is the line of symmetry. So, the distance from each point on $\triangle XYZ$ to the line of symmetry is the same as the distance from the line of symmetry to $\triangle X'Y'Z'$.

Example 5 Reflect a Figure Over the y-axis Quadrilateral ABCD has vertices A(2,3), B(3,5), C(7,1), and D(5,-2). Find the coordinates of ABCD after a reflection over the y-axis. Then graph the figure and its reflected image.

Vertices of	Distance	Vertices of
quad ABCD	from y-axis	quad A'B'C'D'
A(2,3)	2	A'(-2, 3)
B(3,5)	3	B'(-3, 5)
C(7, 1)	7	C'(-7, 1)
D(5, -2)	5	D'(-5, -2)

Plot the vertices and connect to form quadrilateral *ABCD*. The *y*-axis is the line of symmetry. So, the distance from each point on quadrilateral *ABCD* to the line of symmetry is the same as the distance from the line of symmetry to quadrilateral *A'B'C'D'*.

