Lesson 10-2

Example 1 Graph Quadratic Functions

Graph $y=-x^{2}$.
To graph a quadratic function, make a table of values, plot the ordered pairs, and connect the points with a smooth curve.

\boldsymbol{x}	$-\boldsymbol{x}^{2}$	\boldsymbol{y}	(x, y)
-2	$-(-2)^{2}=-4$	-4	$(-2,-4)$
-1	$-(-1)^{2}=-1$	-1	$(-1,-1)$
0	$-(0)^{2}=0$	0	$(0,0)$
1	$-(1)^{2}=-1$	-1	$(1,-1)$
2	$-(2)^{2}=-4$	-4	$(2,-4)$

Example 2 Graph Quadratic Functions

Graph $y=2 x^{2}$.
To graph a quadratic function, make a table of values, plot the ordered pairs, and connect the points with a smooth curve.

\boldsymbol{x}	$\mathbf{2 x}^{\mathbf{2}}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$2(-2)^{2}=8$	8	$(-2,8)$
-1	$2(-1)^{2}=2$	2	$(-1,2)$
0	$2(0)^{2}=0$	0	$(0,0)$
1	$2(1)^{2}=2$	2	$(1,2)$
2	$2(2)^{2}=8$	8	$(2,8)$

Example 3 Graph Quadratic Functions

Graph $y=x^{2}+1$.

\boldsymbol{x}	$\boldsymbol{x}^{2}+\mathbf{1}$	\boldsymbol{y}	(x, y)
-2	$(-2)^{2}+1=5$	5	$(-2,5)$
-1	$(-1)^{2}+1=2$	2	$(-1,2)$
0	$(0)^{2}+1=1$	1	$(0,1)$
1	$(1)^{2}+1=2$	2	$(1,2)$
2	$(2)^{2}+1=5$	5	$(2,5)$

Example 4 Graph Quadratic Functions

Graph $y=-x^{2}+2$.

\boldsymbol{x}	$-\boldsymbol{x}^{2}+\mathbf{2}$	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$-(-2)^{2}+2=-2$	-2	$(-2,-2)$
-1	$-(-1)^{2}+2=1$	1	$(-1,1)$
0	$-(0)^{2}+2=2$	2	$(0,2)$
1	$-(1)^{2}+2=1$	1	$(1,1)$
2	$-(2)^{2}+2=-2$	-2	$(2,-2)$

Example 5 Real-World Example

SCIENCE The function $h=40-4.9 t^{2}$ represents the height (in meters) of a fireworks rocket after \boldsymbol{t} seconds. Graph this function. Then use your graph to estimate the height of the rocket after 2 seconds.

The equation $h=40-4.9 t^{2}$ is quadratic, since the variable t has an exponent of 2 . Time cannot be negative, so use only positive values of t.

\boldsymbol{t}	$\boldsymbol{h}=\mathbf{4 0}-\mathbf{4 . 9 \boldsymbol { t } ^ { 2 }}$	$(\boldsymbol{t}, \boldsymbol{h})$
0	$40-4.9(0)^{2}=40$	$(0,40)$
0.5	$40-4.9(0.5)^{2}=38.8$	$(0.5,38.8)$
1	$40-4.9(1)^{2}=35.1$	$(1,35.1)$
1.5	$40-4.9(1.5)^{2}=29.0$	$(1.5,29.0)$
2	$40-4.9(2)^{2}=20.4$	$(2,20.4)$
2.5	$40-4.9(2.5)^{2}=9.4$	$(2.5,9.4)$

At a time of 2 seconds, the fireworks rocket would be 20.4 meters.

