Lesson 12-2

Example 1 Probability of Independent Events The two spinners are spun. What is the probability that both spinners will show an odd number?

$P($ first spinner is odd $)=\frac{1}{2}$
$P($ second spinner is odd $)=\frac{4}{7}$
$P($ both spinners are odd $)=\frac{1}{2} \cdot \frac{4}{7}$ or $\frac{2}{7}$

Example 2 STANDARDIZED TEST PRACTICE EXAMPLE

Use the information in the table at the right. What is the probability that a student picked at random will be an eighth grade girl?
A $\frac{1}{10}$
B $\frac{3}{10}$
C $\frac{1}{3}$
D $\frac{2}{5}$

Read the Test Item

You are asked to find the probability that a student picked at random will be an eighth grader and a girl. The events are independent because the grade of the student does not determine the gender.

Jefferson Middle School	
Group	Fraction of the Population
6th grade	$\frac{2}{9}$
7th grade	$\frac{4}{9}$
8th grade	$\frac{1}{3}$
boys	$\frac{7}{10}$
girls	$\frac{3}{10}$

Solve the Test Item

First, find the probability of each event.
$P(8$ th grade $)=\frac{1}{3}$
$P($ girl $)=\frac{3}{10}$
Then, find the probability of both events occurring.
$P(8$ th grade and girl $)=\frac{1}{3} \cdot \frac{3}{10}$ or $\frac{1}{10}$
The probability that the two events will occur is $\frac{1}{10}$, which is A.

Example 3 Probability of Dependent Events

There are 3 red, 6 blue, and 11 green marbles in a bag. Once a marble is selected, it is not replaced. Find the probability that 2 red marbles are chosen.

Since the first marble is not replaced, the first event affects the second event. These are dependent events.
$P($ first marble is red $)=\frac{3}{20} \leftarrow$ number of red marbles
$P($ second marble is red $)=\frac{2}{19} \begin{aligned} & \leftarrow \text { number of red marbles after one red marble is removed } \\ & \leftarrow \text { total number of marbles after one red marble is removed }\end{aligned}$
$P($ two red marbles $)=\frac{3}{20} \cdot \frac{\not 2}{20} 19$ or $\frac{3}{190}$

