Lesson 4-9

Example 1 Find a Positive Rate of Change

HEIGHTS The table below shows Julia's height in inches between the ages of 5 and 12. Find the rate of change in her height between ages 5 and 10.

Age (yr)	5	10	12
Height (in.)	48	60	67

$\begin{array}{rlrl}\frac{\text { change in height }}{\text { change in age }} & =\frac{(60-48) \text { inches }}{(10-5) \text { years }} & \text { Julia grew from } 48 \text { to } 60 \text { inches tall from age } 5 \text { to age } 10 . \\ & =\frac{12 \text { inches }}{5 \text { years }} & & \text { Subtract to find the change in heights and ages. } \\ & =\frac{2.4 \text { inches }}{1 \text { year }} & & \text { Express this rate as a unit rate. }\end{array}$
Julia grew an average of 2.4 inches per year.

Example 2 Find a Negative Rate of Change

WEIGHT LOSS The graph shows Celia's weight over a period of 6 months. Find the rate of change between the first month and the sixth month, and describe how this rate is shown on the graph.

Use the data to write a rate comparing the change in weight to the change in time.

$$
\begin{aligned}
\frac{\text { change in weight }}{\text { change in time }}=\frac{120-180}{6-0} & \begin{array}{l}
\text { Celia's weight changed } \\
\text { to } 120 \text { pounds during ti }
\end{array} \\
=\frac{-60}{6} & \text { Simplify. } \\
=\frac{-10}{1} & \text { Express as a unit rate. }
\end{aligned}
$$

The rate of change is -10 pounds per month. The rate is negative because between the first month and the sixth month, her weight decreased. This is shown on the graph by a line slanting downward from left to right.

Example 3 Compare Rates of Change

TEMPERATURE The graph shows the temperature during the day over a 6-hour period. Compare the rate of change between 9 A.M. and 10 A.M. to the rate of change between 12 P.M. and 1 P.M. During which period was the rate of change greater?

The segment from 9 A.M. to 10 A.M. appears to have the same steepness as the segment from 12 P.M. to 1 P.M. So, the rate of change during these periods was the same.

Check Find and compare the rates of change.

From 9 A.M. and 10 A.M.

$$
\begin{aligned}
\frac{\text { change in temperature }}{\text { change in time }} & =\frac{20-15}{1} \\
& =5^{\circ} \mathrm{F}
\end{aligned}
$$

From 12 P.M. and 1 P.M.

$$
\begin{aligned}
\frac{\text { change in temperature }}{\text { change in time }} & =\frac{35-30}{1} \\
& =5^{\circ} \mathrm{F}
\end{aligned}
$$

Since $5^{\circ} \mathrm{F}=5^{\circ} \mathrm{F}$, the rate of change was the same during both hours.

