Lesson 9-3

Example 1 Real-World Example

SAFETY Find the slope of a wheelchair ramp that rises 1.5 feet over a horizontal distance of 18 feet.

$$
\begin{aligned}
\text { slope } & =\frac{\text { rise }}{\text { run }} & & \text { Definition of slope } \\
& =\frac{1.5}{18} & & \text { rise }=1.5 \text { feet, run }=18 \text { feet } \\
& =\frac{1}{12} & & \text { Simplify. }
\end{aligned}
$$

The slope of the wheelchair ramp is $\frac{1}{12}$.

Example 2 Find Slope Using a Graph

Find the slope of the line.
Choose two points on the line. The vertical change is 1 unit while the horizontal change is 2 units.

$$
\begin{aligned}
\text { slope } & =\frac{\text { rise }}{\text { run }} & & \text { Definition of slope } \\
& =\frac{1}{2} & & \text { rise }=1, \text { run }=2
\end{aligned}
$$

The slope of the line is $\frac{1}{2}$.

Example 3 Find Slope Using a Table

The points given in the table lie on a line. Find the slope of the line. Then graph the line.

\boldsymbol{x}	1	4	7	10
\boldsymbol{y}	12	10	8	6

$$
\begin{aligned}
\text { slope } & =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{10-12}{4-1} \\
& =\frac{-2}{3} \text { or }-\frac{2}{3}
\end{aligned}
$$

The slope is $-\frac{2}{3}$.

Example 4 Find Slope Using Coordinates
Find the slope of the line that passes through $A(-1,-3)$ and $B(3,4)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope
$m=\frac{4-(-3)}{3-(-1)}$
$\left(x_{1}, y_{1}\right)=(-1,-3),\left(x_{2}, y_{2}\right)=(3,4)$
$m=\frac{7}{4}$
Simplify.

Check When going from left to right, the graph of the line slants upward. This is correct for a positive slope.

Example 5 Find Slope Using Coordinates

Find the slope of the line that passes through $C(2,3)$ and $D(-3,4)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Definition of slope
$m=\frac{4-3}{-3-2}$
$\left(x_{1}, y_{1}\right)=(2,3),\left(x_{2}, y_{2}\right)=(-3,4)$
$m=\frac{1}{-5}$ or $-\frac{1}{5}$
Simplify.

Check When going from left to right, the graph of the line slants downward. This is correct for a negative slope.

