Lesson 10-4

Example 1 Graph a Cubic Function
Graph $y=x^{3}+2$.

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{x}^{3}+\mathbf{2}$	$\mathbf{(x , y)}$
-1.5	$(-1.5)^{3}+2 \approx-1.4$	$(-1.5,-1.4)$
-1	$(-1)^{3}+2=1$	$(-1,1)$
0	$(0)^{3}+2=2$	$(0,2)$
1	$(1)^{3}+2=3$	$(1,3)$
1.5	$(1.5)^{3}+2 \approx 5.4$	$(1.5,5.4)$

Example 2 Real-World Example

CARPENTRY A carpenter wants to build a wooden cabinet with a square base of side length x feet and a height of $(x+1)$ feet as shown.

Write the function for the volume V of the cabinet. Graph the function. Then estimate the dimensions of the cabinet that would give a volume of approximately 70 cubic feet.
$V=\ell w h \quad$ Volume of a rectangular prism
$V=x \cdot x \cdot(x+1) \quad$ Replace ℓ with x, w with x, and h with $(x+1)$.
$V=x^{2}(x+1)$
$x \cdot x=x^{2}$
$V=x^{3}+x^{2} \quad$ Distributive Property and Commutative Property
The function for the volume V of the cabinet is $V=x^{3}+x^{2}$. Make a table of values to graph this function. You do not need to include negative values of x since the side length of the cabinet cannot be negative.

\boldsymbol{x}	$\boldsymbol{V}=\boldsymbol{x}^{3}+\boldsymbol{x}^{2}$	$(\boldsymbol{x}, \boldsymbol{V})$
0	$(0)^{3}+(0)^{2}=0$	$(0,0)$
0.5	$(0.5)^{3}+(0.5)^{2} \approx 0.4$	$(0.5,0.4)$
1	$(1)^{3}+(1)^{2}=2$	$(1,2)$
1.5	$(1.5)^{3}+(1.5)^{2} \approx 5.6$	$(1.5,5.6)$
2	$(2)^{3}+(2)^{2}=12$	$(2,12)$
2.5	$(2.5)^{3}+(2.5)^{2} \approx 21.9$	$(2.5,21.9)$
3	$(3)^{3}+(3)^{2}=36$	$(3,36)$
3.5	$(3.5)^{3}+(3.5)^{2} \approx 55.1$	$(3.5,55.1)$
4	$(4)^{3}+(4)^{2}=80$	$(4,80)$

Looking at the graph, we see that the volume of the cabinet is approximately 70 cubic feet when x is about 3.75 feet.

The dimensions of the cabinet when the volume is about 70 cubic feet are 3.75 feet, 3.75 feet, and $3.75+1$ or 4.75 feet.

