Lesson 6-7

Example 1 Graph an Inequality

Graph $2(x - y) < 8$.							
Step 1	Solve for <i>y</i> in terms of <i>x</i> .						
	2(x-y) < 8	Original inequality					
	2x - 2y < 8	Distributive Property					
2x - 2y - 2x < 8 - 2x		Subtract 2x from each side.					
	-2y < -2x + 8	Simplify.					
$\frac{-2y}{-2} > \frac{-2x+8}{-2}$		Divide each side by -2 and change < to >.					
	y > x - 4	Simplify.					

- Step 2 Graph y = x 4. The boundary should be dashed since the inequality is only greater than, not equal to.
- Step 3Select a point in one of the half-planes
and test it. Let's use (0, 0).
y > x 4Original inequality
0 > 0 4
x = 0, y = 0
0 > -4

	1	y		
				1
•	0		1	x
		1 U I	1	

Since the statement is true, the half-plane containing the origin is part of the solution. Shade the half-plane.

Check Test a point in the other half-plane, for example, (4, -2). y > x - 4 Original inequality -2 > 4 - 4 x = 4, y = -2-2 > 0 false

Since the statement is false, the half-plane containing (4, -2) should not be shaded. The graph of the solution is correct.

Real-World EXAMPLE

Example 2 Write and Solve an Inequality

Kami earns extra money by making and selling necklaces and earrings. She makes \$2 every time she sells a necklace and \$1 every time she sells a pair of earrings. She wants to make more than \$20 per day on her sales. How many earrings can she sell?

- **Explore** You know the amount Kami makes per necklace and per pair of earrings and how much she wants to make.
- **Plan** Let *x* equal the profit from necklaces. Let *y* equal the profit from earrings. Write an open sentence representing this situation.

\$2	times	number of	plus	\$1	times	number of	more than	\$20
		necklaces				earrings		
2		х	+	1		v	>	20

Solve Solve for y in terms of x. 2x + y > 20 2x + y - 2x > 20 - 2x

y > 20Original inequalityx > 20 - 2xSubtract 2x from each side.y > 20 - 2xSimplify.

Since the open sentence does not include the equation, graph y > 20 - 2x as a dotted line. Test a point in one of the half-planes, for example (0, 0). Shade the half-plane that does not contain (0, 0) since 0 > 20 - 2(0) is false.

Check Examine the solution.

- Ellen cannot sell a negative number of necklaces or earrings. Therefore, the domain and range contain only nonnegative numbers.
- She also cannot sell half a necklace or half of a pair of earrings. Thus, only points in the shaded half-plane whose *x*-and *y*-coordinates are whole numbers are possible solutions.

One solution is (9, 6). This represents 9 necklaces and 6 pairs of earrings.