GLENCOE MATHEMATICS

Noteables

Interactive Study Notebook with

Geometry Concepts and Applications

Contributing Author

Dinah Zike

FOLDABLES

Consultant

Douglas Fisher, PhD
Director of Professional Development
San Diego State University
San Diego, CA
$M 6$
frim Glencoe

The McGraw-Hill Companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act, no part of this book may be reproduced in any form, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027
ISBN: 0-07-872987-4
Geometry: Concepts and Applications (Student Edition) Noteables ${ }^{\text {Tm }}$: Interactive Study Notebook with Foldables ${ }^{\text {Tm }}$

Contents

CHAPTER 1

Foldables
Vocabulary Builder
1-1 Patterns and Inductive Reasoning.
1-2 Points, Lines, and Planes1-3 Postulates
1-4 Conditional Statements 11
5-4 Congruent Triangles 98
1-5 Tools of the Trade
1-6 A Plan for Problem Solving 16
Study Guide 19
CHAPTER 2
Foldables
Vocabulary Builder 24
2-1 Real Numbers and Number Lines 26
2-2 Segments and Properties of Real Numbers 28
2-3 Congruent Segments 31
2-4 The Coordinate Plane 34
2-5 Midpoints 37
Study Guide 40
CHAPTER 3
Foldables 43
Vocabulary Builder 44
3-1 Angles 46
3-2 Angle Measure 48
3-3 The Angle Addition Postulate 51
3-4 Adjacent Angles \& Linear Pairs
3-5 Comp. and Supp. Angles 56
3-6 Congruent Angles. 58
3-7 Perpendicular Lines 60
Study Guide 62
CHAPTER 4
Foldables 65
Vocabulary Builder 66
4-1 Parallel Lines and Planes 68
4-2 Parallel Lines and Transversals 70
4-3 Transversals and Corres. Angles 73
4-4 Proving Lines Parallel 76
4-5 Slope 78
4-6 Equations of Lines 80
Study Guide 835-1 Classifying Triangles132354

CHAPTER 5

87
1 Foldables 87
88
2 Vocabulary Builder90
7 5-2 Angles of a Triangle 9395
5-5 SSS and SAS 100
5-6 ASA and AAS 102
Study Guide 104
CHAPTER 6
Foldables 107
Vocabulary Builder 108
6-1 Medians 110
6-2 Altitudes and Perp. Bisectors 112
6-3 Angle Bisectors of Triangles. 115
6-4 Isosceles Triangles 117
6-5 Right Triangles 119
6-6 The Pythagorean Theorem 121
6-7 Distance on a Coordinate Plane 123
Study Guide 125
CHAPTER 7
Foldables 129
Vocabulary Builder 130
7-1 Segments, Angles, Inequalities 131
7-2 Exterior Angle Theorem 134
7-3 Inequalities Within a Triangle 137
7-4 Triangle Inequality Theorem 139
Study Guide 142
CHAPTER 8
Foldables 145
Vocabulary Builder 146
8-1 Quadrilaterals 148
8-2 Parallelograms 150
8-3 Tests for Parallelograms. 152
8-4 Rectangles, Rhombi, and Squares 154
8-5 Trapezoids 156
Study Guide 159

CHAPTER 9

Foldables 163
Vocabulary Builder 164
9-1 Using Ratios and Proportions 166
9-2 Similar Polygons 169
9-3 Similar Triangles 172
9-4 Proportional Parts and Triangles 175
9-5 Triangles and Parallel Lines 177
9-6 Proportional Parts and Parallel Lines 179
9-7 Perimeters and Similarity 181
Study Guide 183
CHAPTER 10
Foldables 187
Vocabulary Builder 188
10-1 Naming Polgons. 190
10-2 Diagonals and Angle Measure 192
10-3 Areas of Polygons 194
10-4 Areas of Triangles and Trapezoids. 196
10-5 Areas of Regular Polygons 198
10-6 Symmetry 200
10-7 Tessellations 202
Study Guide 203
CHAPTER 11
Foldables 207
Vocabulary Builder 208
11-1 Parts of a Circle 210
11-2 Arcs and Central Angles 212
11-3 Arcs and Chords 214
11-4 Inscribed Polygons 216
11-5 Circumference of a Circle 218
11-6 Area of a Circle 220
Study Guide 223
CHAPTER 12
Foldables 227
Vocabulary Builder 228
12-1 Solid Figures 230
12-2 SA of Prisms and Cylinders 233
12-3 Volumes of Prisms and Cylinders 236
12-4 SA of Pyramids and Cones 238
12-5 Volumes of Pyramids and Cones 241
12-6 Spheres 243
12-7 Similarity of Solid Figures 245
Study Guide 247

CHAPTER 13

Foldables 251
Vocabulary Builder 252
13-1 Simplifying Square Roots 254
13-2 $45^{\circ}-45^{\circ}-90^{\circ}$ Triangles 257
13-3 $30^{\circ}-60^{\circ}-90^{\circ}$ Triangles 259
13-4 Tangent Ratio 261
13-5 Sine and Cosine Ratios. 264
Study Guide 266
CHAPTER 14
Foldables 269
Vocabulary Builder 270
14-1 Inscribed Angles 272
14-2 Tangents to a Circle 275
14-3 Secant Angles 277
14-4 Secant-Tangent Angles 279
14-5 Segment Measures 281
14-6 Equations of Circles 283
Study Guide 285
CHAPTER 15
Foldables 289
Vocabulary Builder 290
15-1 Logic and Truth Tables 292
15-2 Deductive Reasoning 295
15-3 Paragraph Proofs 297
15-4 Preparing for Two-Column Proofs 299
15-5 Two-Column Proofs 302
15-6 Coordinate Proofs 305
Study Guide 308
CHAPTER 16
Foldables 313
Vocabulary Builder 314
16-1 Graph Systems of Equations 315
16-2 Solving Systems of Equations by Using Algebra 318
16-3 Translations 321
16-4 Reflections 322
16-5 Rotations 324
16-6 Dilations. 326
Study Guide 328

Organizing Your Foldables

OLDABLES
Make this Foldable to help you organize and store your chapter Foldables．Begin with one sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper．

STEP 1 Fold

Fold the paper in half lengthwise．Then unfold．

STEP 2 Fold and Glue
Fold the paper in half widthwise and glue all of the edges．

STEP 3 Glue and Label

Glue the left，right，and bottom edges of the Foldable to the inside back cover of your Noteables notebook．

Reading and Taking Notes As you read and study each chapter，record notes in your chapter Foldable．Then store your chapter Foldables inside this Foldable organizer．

Using Your
 Noteables"

Interactive Study Notebook
This note-taking guide is designed to help you succeed in Geometry: Concepts and Applications. Each chapter includes:

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold
Fold lengthwise in fourths.

STEP 2 Draw

Draw lines along the folds and label each column sequences, patterns, conjectures, and conclusions.

NOTE-TAKING TIP: When you are taking notes, be sure to be an active listener by focusing on what your teacher is saying.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
collinear [co-LIN-ee-ur]			
compass			
conclusion			
conditional statement			
conjecture [con-JEK-shoor]			
construction			
contrapositive [con-tra-PAS-i-tiv]			
converse			
coplanar [co-PLAY-nur]			
counterexample			
endpoint			
formula			

Vocabulary Term	Found on Page	Definition	Description or Example
hypothesis [hi-PA-the-sis]			
if-then statement			
inductive reasoning [in-DUK-tiv]			
inverse [in-VURS]			
line			
line segment			
midpoint			
noncollinear			
noncoplanar			
plane			
point			
postulate [PAS-chew-let]			
ray			

1-1 Patterns and Inductive Reasoning

What You'll LEARN

- Identify patterns and use inductive reasoning.

BUILD YOUR VOGABULARY (page 3)
When you make conclusions based on a \square of examples or past events, you are using inductive reasoning.

EXAMPLE

FOLDABLES'

OrGANIZE IT

Write a sequence and a geometric pattern in your Foldable. Explain how to find the next 3 terms of each.

(1) Find the next three terms of the sequence 11.2, 9.2, 7.2,

Study the pattern in the sequence.

Each term is \square less than the term before it. Assume this pattern continues.

The next three items are \square

Your Turn
Find the next three terms of each sequence.
a. $3.7,5.7,7.7, \ldots$
b. $1,3,9, \ldots$

EXAMPIE

2. Find the next three terms of the sequence 101, 102, 105, $110,117, \ldots$

Notice the pattern. To find the next three terms in the sequence, add \square, \square, and \square.

Your Turn Find the next four terms in the sequence 51, $53,57,63,71,81,93, \ldots$

EXAMPLE

3 Draw the next figure in the pattern.

There are two patterns to study.

- The first pattern is size of the squares. The next square should be \square the area of the previous square.
- The second pattern is shaded or unshaded. The next square should be \square.

The next three terms are \square
 prious

Your Turn
Draw the next figure in the pattern.

BUILD YOUR VOCABULARY (page 2)

A conjecture is a \square based on inductive reasoning.

An example that shows that a conjecture is not \square is a counterexample.

EXAMPLE

4 Minowa studied the data below and made the following conjecture. Find a counterexample for her conjecture.

Multiplying a number by -1 produces a product that is less than -1 .

Number $\times(-\mathbf{1})$	Product
$5(-1)$	-5
$15(-1)$	-15
$100(-1)$	-100
$300(-1)$	-300

Homework

 Assignment
1-2 Points, Lines, and Planes

BUILD YOUR YOCABULARY (pages 2-3)

What You'll LEARN

- Identify and draw models of points, lines, and planes, and determine their characteristics.

A point is the basic unit of geometry.
A series of points that extends without end in
\square directions is a line.

Points that lie on the same \square are said to be collinear.

Points that do not lie on the same line are said to be noncollinear.

A ray is part of a line that has a definite starting point and extends without end in \square direction.

A line segment has a definite beginning and \square

EXAMPLES

(1) Name two points on the line.

\square and

2 Give three names for the line.

Any two points on the line or the script letter can be used to name it. Three names are \square

Your Turn

Refer to the figure shown.

a. Name two points on the line.

b. Give three names for the line.

EXAMPLES

3 Name three points that are collinear and three points that are noncollinear.

Points M, P, and Q, are \square Points N, P, and Q are

Remember It

The order of the letters that identify a line can be switched but the order of the letters that identify a ray cannot.

Page(s):
Exercises:

4 Name three segments and one ray.
Three of the segments are

One ray is ray \square

Your Turn

Refer to the figure.

a. Name three collinear points and three noncollinear points.

b. Name three segments and one ray.

BUILD YOUR VOGABULARY (pages 2-3)

A plane is a \square surface that extends without end in all directions.

Points that lie on the same \square are coplanar.
Points that do not lie on the same \square are noncoplanar.

What You'll Learn

- Identify and use basic postulates about points, lines, and planes.

BUILD YOUR VOGABULARY (page 3)

Postulates are \square in geometry that are accepted as \square

Postulate 1-1 Two points determine a unique line.
Postulate 1-2 If two distinct lines intersect, then their intersection is a point.
Postulate 1-3 Three noncollinear points determine a unique plane.

EXAMPLES

In the figure, points K, L, and M are noncollinear.

-L
(1) Name all of the different lines that can be drawn through these points.

There is only one line through each pair of points. Therefore, the lines that contain points K, L, and M,
taken two at a time, are \square
2) Name the intersection of $\overleftrightarrow{K L}$ and $\overleftrightarrow{K M}$.

The intersection of $\overleftrightarrow{K L}$ and $\overleftrightarrow{K M}$ is \square

Your Turn

Refer to the figure.
a. Name three different lines.

b. Name the intersection of $\overleftrightarrow{A C}$ and $\overleftrightarrow{B H}$.

EXAMPLE

Remember It

Three noncollinear points determine a unique plane.

Homework
Assignment
Page(s):
Exercises:

3 Name all of the planes that are represented in the prism.

There are eight points, A, B, C, D, E, F, G, and H.
There is only \square plane that contains three noncollinear points. The different planes are planes

Your Turn Name four different planes in the figure.

Postulate 1-4 If two distinct planes intersect, then their intersection is a line.

EXAMPLE

4) Name the intersection of plane $A B C$ and plane $D E F$.

The intersection is

Your Turn

Name the intersection of plane $A B D$ and plane $D J K$.
\square

1-4. Conditional Statements and Their Converses

What You’ll LEARN

- Write statements in if-then form and write the converses of the statements.

BUILD YOUR VOCABULARY (pages 2-3)

If-then statements join two statements based on a condition.

If-then statements are also known as conditional statements.

In a conditional statement the part following if is the hypothesis. The part following then is the conclusion.

EXAMPLES

(1) Identify the hypothesis and conclusion in this statement.

If it is raining, then we will read a book.

Hypothesis: \square

Conclusion: \square
2 Write two other forms of this statement. If two lines are parallel, then they never intersect. All \square never intersect.

Lines never \square if they are \square

Your Turn

a. Identify the hypothesis and conclusion in this statement. If you ski, then you like snow.
\square
b. Write two other forms of this statement. If a figure is a rectangle, then it has four angles.

BUILD YOUR VOCABULARY (page 2)

The converse of a conditional statement is formed by exchanging the \square and the conclusion.

EXAMPLE

(3) Write the converse of this statement.

Remember It

The converse of a true statement is not necessarily true.

Homework ASSIGNMENT

Page(s):
Exercises:

If today is Saturday, then there is no school.
If there is \square , then \square

Your Turn

Write the converse of this statement.
If it is $-30^{\circ} \mathrm{F}$, then it is cold.
\square

EXAMPLE

4) Write the statement in if-then form. Then write the converse of the statement.

Every member of the jazz band must attend the rehearsal on Saturday.

If-then form: If a \square is a member of the jazz band, then he or she must attend
\square
Converse: If a student
on Saturday, then he or she is a
 member.

Your Turn Write the statement in if-then form. Then write the converse of the statement. People who live in glass houses should not throw stones.

1-5 Tools of the Trade

What You'll Learn

- Use geometry tools.

BUILD YOUR YOGABULARY (pages 2-3)

A straightedge is an object used to draw a \square line.

A compass is commonly used for drawing arcs and
\square
In geometry, figures drawn using only a \square and a \square are constructions.

The midpoint is the \square in the
 line segment.

EXAMPIE

(1) Find two lines or segments in a classroom that appear to be parallel. Use a ruler to determine whether they are parallel.

The opposite sides of a textbook represent two segments that appear to be parallel.

- Choose two points on one side of the textbook.
- Place the 0 mark of the ruler on each point. Make sure the ruler is perpendicular to the side at each chosen point.
- Measure the distance to the second side. If the distances are
\square , then the sides are \square

Your Turn Find another pair of lines or segments in a classroom that appear to be parallel. Use a ruler or a yardstick to determine if they are parallel.

EXAMPLES

2. On the figure shown, mark a point C on line ℓ that you judge will create $\overline{B C}$ that is the same length as $\overline{A B}$. Then measure to determine how accurate your guess was.

To draw an exact recreation of the length, place the point of a compass on point B. Place the point of the pencil on point
\square Then draw a small arc on line ℓ without changing the setting of the compass. This duplicates the measure of \qquad

Remember It

An arc is part of a circle.

b. Use a compass and a straightedge to construct a triangle with sides of equal length.

Homework ASSIGNMENT

Page(s):
Exercises:

1-6 A Plan for Problem Solving

BUILD YOUR VOCABULARY (page 2)

What You'll Learn

- Use a four-step plan to solve problems that involve the perimeters and areas of rectangles and parallelograms.

A formula is an \square that shows how certain quantities are related.

EXAMPLES

KEy CONCEPTS

Perimeter of a Rectangle The perimeter P of a rectangle is the sum of the measures of its sides. It can also be expressed as two times the length ℓ plus two times the

$$
P=\square+\square \text { or } \square \text { centimeters }
$$ width w.

Area of a Rectangle The area A of a rectangle is the product of the length ℓ and the width w.
a. Find the perimeter of a rectangle with length 12 centimeters and width 3 centimeters.

$$
P=2 \ell+2 w
$$

$$
P=2 \square+2 \square
$$

b. Find the perimeter of a square with side 10 feet long.

$$
\begin{aligned}
& P=2 \ell+2 w \\
& P=2(10)+2(10) \\
& P=\square+\square \text { or } \square \text { feet }
\end{aligned}
$$

2. a. Find the area of a rectangle with length 12 kilometers and width 3 kilometers.
$A=\ell w$

$A=\square$ square kilometers
b. Find the area of a square with sides 10 yards long.
$A=\ell w$

Write IT

What is the difference between perimeter and area?
\qquad
\qquad
\qquad
\qquad

KEY CONCEPT

Area of a Parallelogram The area of a parallelogram is the product of the base b

Your Turn

a. Find the perimeter of a rectangle with length 11 meters and width 4 meters.

b. Find the perimeter of a square with sides 7 centimeters long.
\square
c. Find the area of a rectangle with length 14 inches and width 4 inches.

d. Find the area of a square with sides 11 feet long.

5XAMPI:

3 Find the area of a parallelogram with a height of

 4 meters and a base of 5.5 meters.$A=b h$

$A=\square$ square meters

Your Turn Find the area of a parallelogram with a height of 6.4 inches and a base length of 10 inches.

EXAMPLE

Key Concept

Problem-Solving Plan

1. Explore the problem.
2. Plan the solution.
3. Solve the problem.
4. Examine the solution.

Remember It

Abbreviations for units of area have exponent 2.

Square foot $=\mathrm{ft}^{2}$
Square meter $=\mathrm{m}^{2}$

Homework
Assignment

Page(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 1 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

1-1

Patterns and Inductive Reasoning

Find the next three terms in the sequence.

1. $1,1,2,3,5, \ldots$

2. $-1,2,-4,8,-16, \ldots$

3. Draw the next figure in the pattern.

1-2

Points, Lines, and Planes

Use the figure to match the example to the correct term.
4. collinear points

5. segment
6. plane
7. ray
a. G, F, C
b. $\overline{P B}$
c. $\overrightarrow{A D}$
d. $\overleftrightarrow{P E}$
e. $G B E$

1-3

Postulates

Complete the sentence.
8. $\mathrm{A}(\mathrm{n})$ \square is a statement in geometry that is accepted as true without proof.

Identify three planes in the figure shown.
9.

10.

11.

12. Refer to the above figure. Where do planes $A C F$ and DEF intersect? \square
a. point F
b. $\overleftrightarrow{D F}$
c. plane $D E F$
d. point D

1-4

Conditional Statements and Their Converses
Underline the correct term that completes each sentence.
13. The "if" part of the if-then statement is the hypothesis/conclusion.
14. The "then" part of the if-then statement is the hypothesis/conclusion.
15. Rewrite the statement in if-then form.

Students who complete all assignments score higher on tests.

16. Write the converse of the statement.

If it is Saturday, then there is no school.

1-5

Tools of the Trade
Match the geometry tool to its function.
17. compass
18. straightedge

19. protractor \square
20. patty paper \square
a. to plot points
b. to draw arcs and circles
c. to measure angles
d. to draw lines in constructions
e. to find the midpoint in constructions
21. Indicate whether the statement is true or false.

A conjecture is a special drawing that is created using only a straightedge and compass. \square

1-6

A Plan for Problem Solving

Complete each sentence.

22. The \square is the distance around the edges of a figure.
23. The formula for the area of a rectangle is \square
24. \square is the formula to find the area of a parallelogram.
25. Find the area of a rectangle with length 8 feet and width 9 feet.

26. A framer must frame a piece of art. The frame is $1 \frac{1}{2}$ inches wide, and its outer edge measures 24 inches by 36 inches. What is the area of the piece of art displayed in the center of the frame?

ARE YOU READY FOR
THE CHAPTER TEST?

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 45 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 42-44 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 45 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldable.
- Then complete the Chapter 1 Study Guide and Review on pages 42-44 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 45 of your textbook.

Parent/Guardian Signature

Segment Measure and Coordinate Graphing

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of notebook paper.

STEP 1 Fold

Fold lengthwise to the holes.

STEP 3 Label
Label each tab with a highlighted term from the chapter. Store the Foldable in a 3-ring binder.

Cut along the top line and then cut 10 tabs

STEP 2 Cut

NOTE-TAKING TIP: When taking notes, it is helpful to record the main ideas as you listen to your teacher, or read through a lesson.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
absolute value			
betweenness			
bisect			
congruent segments [con-GROO-unt]			
coordinate [co-OR-duh-net]			
coordinate plane			
coordinates			
greatest possible error			
measure			

Vocabulary Term	Found on Page	Definition	Description or Example
midpoint			
ordered pair			
origin [OR-a-jin]			
percent of error			
precision [pree-SI-zhun]			
quadrants [KWAH-druntz]			
theorem [THEE-uh-rem]			
unit of measure			
vector			
x-axis			
x-coordinate			
y-axis			
y-coordinate			

2-1 Real Numbers and Number Lines

What You'll LEARN
 - Find the distance between two points on a number line.

Postulate 2-1 Number Line Postulate
Each real number corresponds to exactly one point on a number line. Each point on a number line corresponds to exactly one real number.

EXAMPLES

For each situation, write a real number with ten digits to the right of the decimal point.

1) a rational number between 6 and 8 with a 2-digit repeating pattern

Sample answer: 7.3232323232 . . .
2) an irrational number greater than 5

Sample answer: 5.4344334443 . . .

Your Turn For each situation, write a real number with ten digits to the right of the decimal point.
a. a rational number between -4 and -1 with a 3 -digit repeating pattern
b. an irrational number less than -7
\square

Postulate 2-2 Distance Postulate

For any two points on a line and a given unit of measure, there is a unique positive real number called the measure of the distance between the points.

Postulate 2-3 Ruler Postulate

The points on a line can be paired with the real numbers so that the measure of the distance between corresponding points is the positive difference of the numbers.

BUILD YOUR VOGABULARY (pages 24-25)

The number that corresponds to a point on a number
line is called the coordinate of the point.
A point with coordinate \square is known as the origin.

The absolute value of a number is the number of units a number is from \square on the number line.

EXAMPLES

Remember It

$X Y$ represents the measure of the distance between points X and Y.

3 Use the number line below to find $C E$.

The coordinate of C is \square , and the coordinate of E is \square

$$
\begin{aligned}
C E & =\left|-1-\frac{1}{3}\right|=\left|-1 \frac{1}{3}\right| \\
& =\left|-1 \frac{1}{3}\right| \text { or }
\end{aligned}
$$

4. Erin traveled on I-85 from Durham, North Carolina, to Charlotte. The Durham entrance to I-85 that she used is at the 173 -mile marker, and the Charlotte exit she used is at the 39 -mile marker. How far did Erin travel on I-85?
$|173-39|=|134|=\square$
She traveled \square miles on I-85.

Your Turn

a. Refer to Example 3. Find $A E$.
b. Rahmi's drive starts at the 263 -mile marker of I-35 and finishes at the 287-mile marker. How far did Rahmi drive on I-35?

2-2 Segments and Properties of Real Numbers

What You'll Learn

- Apply properties of real numbers to the measure of segments.

BUILD YOUR VOCABULARY (page 24)

Point R is between points P and Q if and only if R, P and Q are \square and $P R+R Q=P Q$.

EXAMPIE

FOLDABLES

OrGANIZE IT

On the third tab of your Foldable write Measure and on the fourth tab write Unit of Measure. Under each tab, explain the differences between the terms and give examples of each.

(1) Points K, L, and J are collinear. If $K L=31, J L=16$, and $J K=47$, determine which point is between the other two.

Check to see which two measures add to equal the third.

Therefore, \square is between \square and \square

Your Turn
Points A, B, and C are collinear. If $A B=54$, $B C=33$, and $A C=21$, determine which point is between the other two.

EXAMPIE

(2) If $F G=12$ and $F J=47$, find $G J$.

Key Concepts

Properties of Equality for Real Numbers

- Reflexive Property For any number a, $a=a$.
- Symmetric Property For any numbers a and b, if $a=b$, then $b=a$.
- Transitive Property For any numbers a, b, and c, if $a=b$ and $b=c$, then $a=c$.
- Addition and Subtraction Properties For any numbers a, b, and c, if $a=b$, then $a+c=b+c$, and $a-c=b-c$.
- Multiplication and Division Properties For any numbers a, b, and c, if $a=b$, then $a \cdot c=b \cdot c$, and if $c \neq 0$, then $\frac{a}{c}=\frac{b}{c}$.
- Substitution Property For any numbers a and b, if $a=b$, then a may be replaced by b in any equation.

Your Turn If $B E=17$ and $A E=25$, find $A B$.

BUILD YOUR YOGABULARY (pages 24-25)

Measurements are composed of \square parts; a number called the measure and the unit of measure.

The precision of a measurement depends on the
\square unit used to make the measurement.

The greatest possible error is \square the smaller unit used to make the measurement.

The percent of error is the \square of the greatest possible error with the measurement itself, multiplied by \square

EXAMPIE

3 Use a ruler to draw a segment 8 centimeters long. Then
find the length of the segment in inches.
Use a metric ruler to draw the segment. Mark a point and call it X. Then put the 0 point at point X and draw a line segment extending to the 8 centimeter mark. Mark the endpoint Y.

The length of $\overline{X Y}$ is \square centimeters.

Homework

Assignment
Page(s):
Exercises:

2-3 Congruent Segments

EXAMPIE

```
What YOU'LL LEARN
- Identify congruent segments.
- Find midpoints of segments.
```


Key Concept

Definition of Congruent Segments Two segments are congruent if and only if they have the same length.

FOLDABLES

On the fifth tab of you Foldable, write Congruent Segments. Under the tab, write the definition and draw examples of congruent segments.

1 Use the figure below to determine whether each statement is true or false. Explain your reasoning.

a. $\overline{\boldsymbol{D E}} \cong \overline{\boldsymbol{G} \boldsymbol{H}}$

Because $D E=4$ and $G H=$ \square
\square $=$ \square
So, \square is a true statement.
b. $\overline{\boldsymbol{E F}} \cong \overline{\boldsymbol{F G}}$

Because $E F=\square$ and $F G=\square, E F \neq F G$. So, $\overline{E F}$ is not congruent to $\overline{F G}$, and the statement is false.

Your Turn Use the figure below to determine whether each statement is true or false. Explain your reasoning.

a. $\overline{A E} \cong \overline{B G}$

b. $\overline{D G} \cong \overline{F J}$

BUILD YOUR VOGABULARY (pages 24-25)

Theorems are statements that can be justified by using
\square reasoning.

ReVIEW IT

Write the converse of Theorem 2-2. Is the converse true? (Lesson 1-4)
\qquad
\qquad
\qquad

Theorem 2-1

Congruence of segments is reflexive.
Theorem 2-2
Congruence of segments is symmetric.
Theorem 2-3
Congruence of segments is transitive.

EXAMPIE

2 Determine whether the statement is true or false. Explain your reasoning.
$\overline{C D}$ is congruent to $\overline{C D}$.
Congruence of segments is \square, so $\square \cong \square$.
Therefore, the statement is \square

Your Turn

Determine whether the statement is true or false. Explain your reasoning.
$\overline{M N}$ is congruent to $\overline{N M}$.

BUILD YOUR VOGABULARY (pages 24-25)

A unique point on every segment that separates the segment into \square segments of \square length is known as the midpoint.

To bisect something means to separate it into two
\square

EXAMPIE

(3) In the figure, K is the midpoint of $\overline{J L}$.

 Find the value of \boldsymbol{d}.
Key Concept

Definition of Midpoint A point M is the midpoint of a segment $\overline{S T}$ if and only if M is betweeen S and T and $S M=M T$.

Foldables
On the sixth tab of your Foldable, write Midpoint. Under the tab, write the definition and draw an example showing the midpoint of a line segment.

Homework Assignment

Page(s):
Exercises:

2-4 The Coordinate Plane

What You'll LEARN

- Name and graph ordered pairs on a coordinate plane.

FOLDABLES'

Organize It

On the seventh tab of your Foldable, write Coordinate Plane.
Under the tab, draw a coordinate plane, labeling the four quadrants and the two axes.

On the eighth tab of your Foldable, write Ordered Pair and Coordinates. Under the tab, give an example of an ordered pair. Label the x-coordinate and the y-coordinate for the pair.

BUILD YOUR VOGABULARY (pages 24-25)

The \square of the grid used to locate points is known as the coordinate plane.

The \square number line is the \boldsymbol{y}-axis.

The \boldsymbol{x}-axis is the \square number line.

The two axes separate the coordinate plane into \square regions known as quadrants.
 origin.

An ordered pair of real numbers, called the coordinates of a point, locates a \square on the coordinate plane.
\square number of the ordered pair is called the x-coordinate.

The y-coordinate is the \square number of the ordered pair.

EXAMPLES

(1) Graph point K at $(-4,1)$.

Start at the origin. Move
 units to the left. Then, move \square unit up. Label this point K.

Postulate 2-4

Completeness Property for Points in the Plane

 Each point in a coordinate plane corresponds to exactly one ordered pair of real numbers. Each ordered pair of real numbers corresponds to exactly one point in a coordinate plane.Your Turn
Graph point L at $(1,-4)$.

2) Name the coordinates of points L and M.

Point L is \square units to the right of the origin and \square below the origin. Its coordinates are \square Point M is \square to the left of the origin and \square units above the origin. Its coordinates are \square

Your Turn Name the coordinates of points P and Q.

Theorem 2-4

If a and b are real numbers, a vertical line contains all points (x, y) such that $x=a$, and a horizontal line contains all points (x, y) such that $y=b$.

EXAMPLE

(3) Graph $y=-2$.

The graph of $y=-2$ is a \square line that intersects the y-axis at \square

Your Turn
Graph $x=-1$.

> HOMEWORK ASSIGNMENT

Page(s):
Exercises:

What You'll LEARN

- Find the coordinates of the midpoint of a segment.

Theorem 2-5 Midpoint Formula for a Number Line

On a number line, the coordinate of the midpoint of a segment whose endpoints have coordinates a and b is $\frac{a+b}{2}$.
Theorem 2-6 Midpoint Formula for a Coordinate Plane On a coordinate plane, the coordinates of the midpoint of a segment whose endpoints have coordinates (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

EXAMPLE

(1) Find the coordinate of the midpoint of $\overline{A B}$.

OLDABLES

OrGANIZE IT

On the ninth tab of your Foldable, write Midpoint for a Number Line. Under the tab, explain how to find the midpoint of a segment on a number line.

Use the Midpoint Formula to find the coordinate of the midpoint of $\overline{A B}$.

$$
\begin{aligned}
\frac{a+b}{2} & =\frac{-4+1}{2} \\
& =\square \text { or } \square
\end{aligned}
$$

The coordinate of the midpoint is \square

Your Turn Find the coordinate of the midpoint of $\overline{O K}$.

EXAMPLES

2. Find the coordinates of D, the midpoint of $\overline{C E}$, given endpoints $C(2,1)$ and $E(16,8)$.

Use the Midpoint Formula to find the coordinates of D.
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{\square+\square}{2}, \frac{\square+\square}{2}\right)$

The coordinates of D are

Your Turn Find the coordinates of Y, the midpoint of $\overline{X Z}$, given endpoints $X(-3,5)$ and $Z(6,-1)$.

3 Suppose $L(2,-5)$ is the midpoint of $\overline{K M}$ and the coordinates of K are (-4, -3). Find the coordinates of M.

Let $\left(x_{1}, y_{1}\right)$ or $(-4,-3)$ be the coordinates of K and let $\left(x_{2}, y_{2}\right)$ be the coordinates of M. So, $x_{1}=\square$ and $y_{1}=\square$. Use the Midpoint Formula.

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\square
$$

Remember It

The x-coordinate of the midpoint is the average of the x-coordinates of the endpoints. The y-coordinate of the midpoint is the average of the y-coordinates of the endpoints.

Homework

 AssignmentPage(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

$\left.\begin{array}{|l|l|l|}\hline \text { FOLDABLES }\end{array} \quad \begin{array}{l}\text { VOCABULARY } \\ \text { PUZZLEMAKER }\end{array} \quad \begin{array}{l}\text { BUILD YOUR } \\ \begin{array}{l}\text { Use your Chapter 2 Foldable to } \\ \text { help you study for your chapter } \\ \text { test. }\end{array} \\ \begin{array}{l}\text { To make a crossword puzzle, } \\ \text { word search, or jumble } \\ \text { puzzle of the vocabulary words } \\ \text { in Chapter 2, go to: } \\ \text { www.glencoe.com/sec/math/ } \\ \text { t_resources/free/index.php }\end{array}\end{array} \begin{array}{l}\text { You can use your completed } \\ \text { Vocabulary Builder } \\ \text { (pages 24-25) to help you solve } \\ \text { the puzzle. }\end{array}\right]$

2-1

Real Numbers and Number Lines

Choose the term that best completes the statement.

1. The set of non-negative integers is also called the set of [natural/whole] numbers.
2. The quotient of two integers, where the denominator is not zero, is $a(n)$ [rational/irrational] number.
3. Decimals that do not repeat or terminate are called [rational/irrational] numbers.

Find.

4. $|-4-1|$

5. $|-(-12)|$

6. $|11+2|$

2-2

Segments and Properties of Real Numbers

7. Points X, Y, and Z are collinear. If $X Y=10$ and $X Z=3$, find $Y Z$.
\square
8. Points A, B, and C are collinear. If $A B=6, B C=8$, and $A C=14$, which point is between the other two points?
9. Points M, N, and P are collinear. If P lies between M and N, $M P=2$, and $P N=1$, find $M N$.
\square

2-3

Congruent Segments

Complete the statement.

10. Two segments are \square if they are equal in length.
11. When a segment is separated into two congruent segments, the segment is \square
12. Statements known as \square can be justified using logical reasoning.
13. Points A, B, and C are collinear. If $\overline{A C} \cong \overline{C B}$, then the point C is the \square of $\overline{A B}$.

2-4

The Coordinate Plane

Refer to the graph and name the ordered pair for each point.
14. point P \square
15. point L \square
16. point A \square

Graph and label the following points on the above coordinate plane.
17. point $N(-4,2)$
18. point $E(3,1)$
19. point $S(1,-5)$

2-5
 Midpoints

20. On a number line, if $X=-2$ and $Y=4$, what is the coordinate of midpoint Z ? \square
21. Find the coordinates of the midpoint of a segment whose endpoints are $(-5,-1)$ and $(-3,3)$. \square
22. Find the coordinates of the other endpoint of a segment whose midpoint has coordinates $(4,5)$ and second endpoint at $(2,-1)$.
\square

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

ARE YOU READY FOR THE CHAPTER TEST?

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 85 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 82-84 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 85 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldable.
- Then complete the Chapter 2 Study Guide and Review on pages 82-84 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 85 of your textbook.

Angles

FOLDABLES
Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of plain $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold
Fold in half lengthwise.

STEP 2 Fold
Fold again in thirds.

STEP 3 Open

Open and cut along the second fold to make

STEP 4 Label

Label as shown. Make
 another 3-tab fold and label as shown.

NOTE-TAKING TIP: When you take notes, listen or read for main ideas. Then record those ideas in simplified form for future reference.

BUILD YoUR Vocabulary

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
acute angle [a-KYOOT]			
adjacent angles [uh-JAY-sent]			
angle			
angle bisector			
complementary angles [kahm-pluh-MEN-tuh-ree]			
congruent angles			
degrees			
exterior			
interior			
linear pair			
[LIN-ee-ur]			

Vocabulary Term	Found on Page	Definition	Description or Example
obtuse angle [ob-TOOS]			
opposite rays			
perpendicular [PER-pun-DI-kyoo-lur]			
protractor			
quadrilateral [KWAD-ruh-LAT-er-ul]			
right angle			
sides			
straight angle			
supplementary angles [SUP-luh-MEN-tuh-ree]			
triangle			
vertex [VER-teks]			
vertical angles			

3-1 Angles

What You’ll Learn

- Name and identify parts of an angle.

Remember It

Read the symbol \angle as angle.

BUILD YOUR VOCABULARY (pages 44-45)

Opposite rays are two rays that are part of the same \square and have only their \square in common.

The figure formed by \square is referred to as a straight angle.

Any case where two rays have a common \square is known as angle.

The common \square is called the vertex.

The two rays that make up the \square are called the sides of the angle.

EXAMPIE

(1) Name the angle in four ways. Then identify its vertex and its sides.

The angle can be named in four ways:

Its vertex is \square Its sides are \square and

Your Turn Name the angle in four ways. Then identify its vertex and its sides.

EXAMPLE

2 Name all angles having D as their vertex.
There are
 distinct angles with
vertex D :

ReVIEW IT

Name the sides of $\angle A B C$. (Lesson 1-2)
\qquad

BUILD YOUR VOGABULARY (page 44)

An angle separates a \square into \square parts: the interior of the angle, the exterior of the angle, and the angle itself.

FOLDABLES

Organize It

In your first Foldable, explain and draw examples of interior points, exterior points, and points on the angle. Include under appropriate tab.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLES

Tell whether each point is in the interior, exterior, or on the angle.

(3) Point A: Point A is on the \square of the angle.
(4) Point B: Point B is on the \square of the angle.
(5) Point C : Point C is \square

Your Turn Tell whether each point is in the interior, exterior, or on the angle.
a. Point T

b. Point N

c. Point D

3-2 Angle Measure

What You'll Learn

- Measure, draw, and classify angles.

BUILD YOUR VOGABULARY (pages 44-45)

Angles are measured in units called degrees.
A protractor is a tool used to measure angles and sketch angles of a given measure.

Postulate 3-1 Angle Measurement Postulate

For every angle, there is a unique positive number between 0 and 180 called the degree measure of the angle.

EXAMPLE

(1) Use a protractor to measure $\angle K L M$.

STEP 1 Place the center point of the protractor on vertex L. Align the straightedge with side $\overrightarrow{L M}$.

STEP 2 Use the scale that begins with 0 at $\overrightarrow{L M}$. Read where $\overrightarrow{L K}$ crosses this scale.

Angle $K L M$ measures \square

Your Turn Use a protractor to measure $\angle X Y Z$.

EXAMPLE

2. Find the measures of $D H E$, $E H G$, and FHG.

$\overrightarrow{H D}$ is at 0° on the left.
$\overrightarrow{H G}$ is at 0° on the right.
$\overrightarrow{H G}$ is at 0° on the right.

Your Turn Find $m \angle P Q R, m \angle R Q S$, and $m \angle S Q T$.

Postulate 3-2 Protractor Postulate

On a plane, given $\overrightarrow{A B}$ and a number r between 0 and 180, there is exactly one ray with endpoint A, extending on each side of $\overrightarrow{A B}$ such that the degree measure of the angle formed is r.

EXAMPLE

3 Use a protractor to draw an angle having a measure of 35°.

Remember It

Read $m \angle P Q R=75$ as the degree measure of angle $P Q R$ is 75.

STEP 1 Draw $\overrightarrow{B C}$.
STEP 2 Place the center point of the protractor on B. Align the mark labeled \square with the ray.

STEP 3 Locate and draw point A at the mark labeled \square Draw $\overrightarrow{B A}$.

Your Turn

Use a protractor to draw an angle having a measure of 78°.

BUILD YOUR YOCABULARY (pages 44-45)

A right angle has a degree measure of 90 .
The degree measure of an acute angle is greater than 0 and less than 90.

An obtuse angle has a degree measure greater than 90 and less than 180.

A three-sided closed figure with three interior angles is a triangle.

A four-sided closed figure with four interior angles is a quadrilateral.

EXAMPLES

FOLDABLES'

Organize IT

In your second Foldable, explain and draw examples of right angles, acute angles, and obtuse angles. Include under appropriate tab.

Homework Assignment
Page(s):
Exercises:

3-3 The Angle Addition Postulate

What You'll LEARN
 - Find the measure and bisector of an angle.

Postulate 3-3 Angle Addition Postulate

For any angle $P Q R$, if A is in the interior of $\angle P Q R$ then $m \angle P Q A+m \angle A Q R=m \angle P Q R$.

EXAMPLES

(1) If $m \angle K N L=110$ and $m \angle L N M=25$, find $m \angle K N M$. $m \angle K N M=m \angle K N L+m \angle L N M$ $=\square+25 \quad$ Substitution

\square So, $m \angle K N M=$

2 Find $m \angle 2$ if $m \angle 1=75$ and $m \angle A B C=140$

$$
\begin{aligned}
m \angle 2 & =m \angle A B C-m \angle 1 \\
& =\square-\square \\
& =\square
\end{aligned}
$$

Substitution

3 Find $m \angle J K L$ and $m \angle L K M$ if $m \angle J K M=140$.
$m \angle J K L+m \angle L K M=m \angle J K M$

So, $m \angle 2=\square$.

$6 x=\square$
\square Divide each side by \square

Replace x with \square in each expression.

$$
\begin{array}{rlrl}
m \angle J K L & =4 x & m \angle L K M & =2 x-10 \\
& =4 \square-10 \\
& =2 \square-10=\square
\end{array}
$$

Therefore, $m \angle J K L=\square$ and $m \angle L K M=\square$.

Your Turn

a. If $m \angle A B C=95$ and $m \angle C B D=65$, find $m \angle A B D$.

b. If $m \angle X Y Z=110$ and $m \angle X Y W=22$, find $m \angle W Y Z$.

c. Find $m \angle R S Z$ and $m \angle Z S T$ if $m \angle R S T=135$.

BUILD YoUR Vocasulary (page 44)

 that divides an angle into \square angles of equal \square is called the angle bisector.

EXAMPLE

REVIEW IT

$\overline{D F}$ is bisected at point E, and $D F=8$. What do you know about the lengths $D E$ and $E F$? (Lesson 2-3)
4) If $\overrightarrow{F D}$ bisects $\angle C F E$ and $m \angle C F E=70$, find $m \angle 1$ and $m \angle 2$.

Since $\overrightarrow{F D}$ bisects $\angle C F E, m \angle 1=m \angle 2$.
 $m \angle 1+m \angle \square=m \angle C F E \quad$ Postulate 3-3

Replace $m \angle C F E$ with \square.
Replace $m \angle 2$ with \square

Combine like terms.

$$
m \angle 1=
$$

Since $m \angle 1=m \angle 2, m \angle 2=$ \square

Your Turn If $\overrightarrow{E G}$ bisects $\angle F E H$ and $m \angle F E H=98$, find $m \angle 1$ and $m \angle 2$.

3-4. Adjacent Angles and Linear Pairs of Angles

BUILD YOUR VocABULARY (page 44)

Adjacent angles share a common side and a vertex, but have no \square points in common.

When the noncommon sides of adjacent angles form a \square, the angles are said to form a linear pair.

EXAMPLES

Determine whether $\angle 1$ and $\angle 2$ are adjacent angles.

(2)

\square They have the same \square and a common \square with no interior points in common.

3

Your Turn Determine whether $\angle 1$ and $\angle 2$ are adjacent angles.

EXAMPLES

$\overrightarrow{C M}$ and $\overrightarrow{C E}$ are opposite rays.

4) Name the angle that forms a linear pair with $\angle T C M$.
$\angle T C E$ and $\angle T C M$ have a common
 side \square, the same vertex \square, and opposite rays \square and \square.

So, $\angle T C E$ forms a linear pair with $\angle T C M$.

Write It

List the differences and similarities between linear pairs of angles and adjacent angles.
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

5 Do $\angle 1$ and $\angle T C E$ form a linear pair? Justify your answer.

Your Turn Refer to Examples 4 and 5.

a. Name the angle that forms a linear pair with $\angle H C E$.

b. Determine if $\angle T C A$ and $\angle T C H$ form a linear pair. Justify your answer.
\square

EXAMPIE

6 List at least two models of linear pairs in your classroom or home.

Your Turn

List at least two models of adjacent angles on a school playground.

3-5 Complementary and Supplementary Angles

What You'll LEARN

- Identify and use complementary and supplementary angles.

BUILD YOUR VOGABULARY (pages 44-45)

Complementary angles are two angles whose degree measures total 90.

Supplementary angles are two angles whose degree measures total 180.

EXAMPLES

(1) Use the figure to name a pair of nonadjacent supplementary angles.
 vertex \square, but \square sides. Therefore, $\angle A G B$ and \square are nonadjacent supplementary angles.

2 Use the above figure to find the measure of an angle that is supplementary to $\angle B G C$.

Let $x=$ measure of angle supplementary to $\angle B G C$.

$$
m \angle B G C+x=180
$$

$$
\square+x=180
$$

$$
35+x-\square=180-\square
$$

$$
x=\square
$$

Defn. of Supplementary Angles
$m \angle B G C=\square$
Subtract \square from each side.

Your Turn

a. In the figure, name a pair of nonadjacent supplementary angles.

b. In the figure, find an angle with a measure supplementary to $\angle B A F$.

EXAMPIE

3 Angles C and D are supplementary. If $m \angle C=12 x$ and $m \angle D=4(x+5)$, find x. Then find $m \angle C$ and $m \angle D$.
$m \angle C+m \angle D=180 \quad$ Defn. of Supplementary Angles
$\square+4(x+5)=180 \quad$ Substitution
$12 x+4 x+\square=180 \quad$ Distributive Property
$\square=160 \quad$ Combine like terms.

$$
\begin{aligned}
\frac{16 x}{16} & =\frac{160}{16} \quad \text { Divide each side by } 16 . \\
x & =\square
\end{aligned}
$$

Replace x with \square in each expression.
$m \angle C=12 x$

$m \angle D=4(x+5)$
$=4(\square+5)$ or \square

Your Turn Angles X and Y are

 complementary. If $m \angle X=2 x$ and $m \angle Y=8 x$, find x. Then find $m \angle X$ and $m \angle Y$.

3-6 Congruent Angles

What You'll Learn
 - Identify and use congruent and vertical angles.

BUILD YOUR VOCABULARY (pages 44-45)

Congruent angles have the same measure.
When two lines \square, \square angles are formed. There are two pairs of nonadjacent angles. These pairs are vertical angles.

Theorem 3-1 Vertical Angle Theorem Vertical angles are congruent.

EXAMPLES

Find the value of \boldsymbol{x} in each figure.

1

2

Your Turn
Find the value of x in each figure.
b.

Remember It

The notation
$\angle A \cong \angle B$ is read as angle A is congruent to angle B.

The angles are \square angles.
So, $x=\square$.

Since the angles are vertical angles, they are congruent.

Theorem 3－2 If two angles are congruent，then their complements are congruent．

Theorem 3－3 If two angles are congruent，then their supplements are congruent．
Theorem 3－4 If two angles are complementary to the same angle，then they are congruent．
Theorem 3－5 If two angles are supplementary to the same angle，then they are congruent．
Theorem 3－6 If two angles are congruent and supplementary，then each is a right angle．
Theorem 3－7 All right angles are congruent．

EXAMPLES

（3）Suppose $\angle A \cong \angle B$ and $m \angle B=47$ ．Find the measure of an angle that is supplementary to $\angle A$ ．

Since $\angle A \cong \angle B$ ，their supplements are congruent．
The supplement of $\angle B$ is $180-47$ or \square ．So，the
measure of an angle that is supplementary to $\angle A$ is \square

4．In the figure，$\angle 1$ is supplementary to $\angle 2, \angle 3$ is supplementary to $\angle 2$ ，and $m \angle 2$ is 105 ．Find $m \angle 1$ and $m \angle 3$ ．
$\angle 1$ and $\angle 2$ are supplementary．

So，$m \angle 1=\square-105$ or $\square . \angle 3$ and $\angle 2$ are supplementary．So，$m \angle 3=\square-105$ or \square ．

Homework Assignment

Page（s）：
Exercises：

Your Turn

a．Suppose $\angle X \cong \angle Y$ and $m \angle Y=82$ ． Find the measure of an angle that is supplementary to $\angle X$ ．
\qquad
b．In the figure，$\angle 1$ is supplementary to $\angle 2$ and $\angle 4$ ．
If $m \angle 4=54$ ，find $m \angle 1, m \angle 2$ ，and $m \angle 3$ ．

3-7 Perpendicular Lines

BUILD YOUR VOCABULARY (page 45)

What You’ll Learn

- Identify, use properties of, and construct perpendicular lines and segments.

Lines that \square at an angle of \square degrees are said to be perpendicular lines.

Theorem 3-8
If two lines are perpendicular, then they form right angles.

EXAMPLES

Refer to the figure to determine whether each of the following is true or false.
(1) $\overline{Q S} \perp \overline{O P}$

Therefore, they \square perpendicular.
2. $\angle 7$ is an obtuse angle.
$\square . \angle 7$ forms a \square with an acute angle.

Your Turn
 In the figure

 $\overline{W Y} \perp \overline{Z T}$. Determine whether each of the following is true or false.a. $m \angle W Z U+m \angle U Z T=90$

b. $\angle S Z Y$ is obtuse.

EXAMPL:

3 Find $m \angle 1$ and $m \angle 2$ if $\overline{A C} \perp \overline{B D}$, $m \angle 1=8 x-2$ and $m \angle 2=16 x-4$.

Since $\overline{A C} \perp \overline{B D}, \angle A E D$ is a right angle.
Homework Assignment

Page(s):
Exercises:

$$
\begin{aligned}
m \angle A E D & =90 & & \begin{array}{l}
\text { Definition of perpendicular } \\
\text { lines }
\end{array} \\
\angle 1+\angle \square & =\angle A E D & & \text { Angle Addition Postulate } \\
m \angle 1+m \angle \square & =m \angle A E D & & \\
m \angle 1+m \angle 2 & =\square & & \text { Substitution } \\
(8 x-2)+(16 x-4) & =90 & & \text { Substitution } \\
24 x-6 & =90 & & \text { Combine like terms. } \\
24 x-6+6 & =90+6 & & \text { Add } 6 \text { to each side. } \\
24 x & =96 & & \\
\frac{24 x}{24} & =\frac{96}{24} & & \text { Divide each side by } 24 . \\
x & =\square & &
\end{aligned}
$$

Replace x with \square to find $m \angle 1$ and $m \angle 2$.
$m \angle l=8 x-2$
$=8(\square)-2$
$=32-2$ or 30

$$
m \angle 2=16 x-4
$$

$$
=16(\square)-4
$$

$$
=64-4 \text { or } 60
$$

Therefore, $m \angle 1=30$ and $m \angle 2=60$.

Your Turn

Find $m \angle 3$ and $m \angle 4$
if $\overline{A C} \perp \overline{B F}, m \angle 3=7 x+6$ and $m \angle 4=12 x+27$.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES	VOCABULARY PUZZLEMAKER	BUILD YOUR VOCABULARY
Use your Chapter 3 Foldable to help you study for your chapter test.	To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to: www.glencoe.com/sec/math/ t.resources/free/index.php	You can use your completed Vocabulary Builder (pages 44-45) to help you solve the puzzle.

3-1

Angles

Indicate whether the statement is true or false.

1. $\overrightarrow{X Y}$ and $\overrightarrow{Y Z}$ are the sides of $\angle X Y Z$. \square
2. The vertex of an angle is a point where two rays intersect. \square
3. A straight angle is also a line. \square

3-2

Angle Measure

Use a protractor to measure the specified angles. Then, classify them as acute, right, or obtuse angles.
4. $\angle B A C$ \square
5. $\angle C A E$ \square
6. $\angle D A E$ \qquad

3-3

The Angle Addition Postulate

7. If $m \angle Q P R=30$ and $m \angle R P S=51$, find $m \angle Q P S$. \square
8. If $m \angle Q P X=137$ and $m \angle Q P R=30$, find $m \angle R P X$.

3-4

Adjacent Angles and Linear Pairs of Angles
9. In the figure $\overrightarrow{\mathrm{QN}}$ and $\overrightarrow{\mathrm{QP}}$ are opposite rays. Name the angles that form a linear pair.

3-5

Complementary and Supplementary Angles

10. If $m \angle 1=36$, what is the measure of its complement? \square
11. What is the measure of an angle supplementary to $m \angle 1=36$? \square

3-6

Congruent Angles
Lines m and n intersect at point P. What is the measure of each of the four angles formed?
12. \square
13.

14.

15.
\square

3-7

Perpendicular Lines

If $\overline{W Z}$ is constructed perpendicular to $\overline{X Y}$, list six terms that describe $\angle X W Z$ and $\angle Y W Z$.
16.

17. \square
18.

19. \square

20. \square
21. \square

Checklist

Math nline

Visit geoconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 137 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 134-136 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 137.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldable.
- Then complete the Chapter 3 Study Guide and Review on pages 134-136 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 137.

Parent/Guardian Signature

Parallels

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with three sheets of plain $8 \frac{1_{2}^{\prime \prime}}{} \times 11^{\prime \prime}$ paper.

STEP 1 Fold
Fold in half along the width.

STEP 2 Open

Open and fold the bottom to form a pocket. Glue edges.

STEP 3 Repeat

Repeat steps 1 and 2 three times and glue all three pieces together.

Label

Label each pocket with the lesson names. Place an index card in each pocket.

NOTE-TAKING TIP: When taking notes, it is often a good idea to write in your own words a summary of the lesson. Be sure to paraphrase key points.

BUILD YOUR Vocabulary

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
alternate exterior angles			
alternate interior angles			
consecutive interior angles			
corresponding angles			
exterior angles			
finite			
great circle			
interior angles			

Vocabulary Term	Found on Page	Definition	Description or Example
line of latitude			
line of longitude			
linear equation			
parallel lines [PARE-uh-lel]			
parallel planes			
skew lines			
[SKYOO]			
slope			
slope-intercept form			
transversal			

What You'll LEARN

- Describe relationships among lines, parts of lines, and planes.

FOLDABLES

ORGANIZE IT

Use the index card labeled Parallel Lines and Planes to record the definitions in this lesson, along with examples to help you remember the main idea.

BUILD YOUR VOCABULARY (pages 66-67)

Parallel lines are two lines in the same \quad that do not intersect.

Parallel planes are the same \square apart at all points and \square intersect.

Lines that do not \square and are not in the
\square plane are said to be skew lines.

EXAMPLES

Name the parts of the prism shown below. Assume segments that look parallel are parallel.

(1) all planes parallel to plane $S K L$

Plane \square is parallel to plane $S K L$.
2) all segments that intersect $\overline{M T}$
\square intersect $\overline{M T}$.
3) all segments parallel to $\overline{M T}$
\square is parallel to $\overline{M T}$.
4) all segments skew to $\overline{M T}$
\square

Remember It

A plane that passes through points A, B, C and D can be named using any three of the points.

ІІ!Н-меגפフW/əоэиәן ()

Your Turn Name the parts of the prism shown below. Assume segments that look parallel are parallel.

a. all segments parallel to $\overline{R S}$
\square
b. all segments that intersect $\overline{R S}$

c. a pair of parallel planes

d. all segments skew to $\overline{X T}$

4-2 Parallel Lines and Transversals

What You'll LEARN

- Identify the relationships among pairs of interior and exterior angles formed by two parallel lines and a transversal.

FOLDABLES

Organize It

Use the index card labeled Parallel Lines and Transversals to record the definitions and theorems in this lesson. Draw pictures and examples to help you remember them.

BUILD YOUR VOGABULARY (pages 66-67)

A line, line segment, or ray that intersects two or more lines at different \square is known as a transversal.

Interior angles lie in between the two lines.
Alternate interior angles are on \square sides of the transversal.

Consecutive interior angles are on the \square side of the transversal.
 the transversal.

EXAMPLES

Identify each pair of angles as alternate interior, alternate exterior, consecutive interior, or vertical.

(1) $\angle 3$ and $\angle 5$
$\angle 3$ and $\angle 5$ are interior angles on the same side as the transversal, so they are \square angles.

2
$\angle 1$ and $\angle 8$
$\angle 1$ and $\angle 8$ are exterior angles on opposite sides of the transversal, so they are \square angles.

Your Turn Identify each pair of angles as alternate interior, alternate exterior, consecutive interior, or vertical.
a. $\angle 3$ and $\angle 5$

b. $\angle 3$ and $\angle 6$

Theorem 4-1 Alternate Interior Angles

If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.

Theorem 4-2 Consecutive Interior Angles If two parallel lines are cut by a transversal, then each pair of consecutive interior angles is supplementary.

Theorem 4-3 Alternate Exterior Angles

If two parallel lines are cut by a transversal, then each pair of alternate exterior angles is congruent.

The sum of the degree measures of three measures of three
angles is 180. Are the three angles supplementary? Explain. (Lesson 3-5)

ReView It

\qquad
\qquad
\qquad
,

EXAMPLE

3 In the figure, $p \| q$, and r is a transversal. If $m \angle 6=115$, find $m \angle 7$.
$\angle 6$ and $\angle 7$ are alternate
 angles, so by Theorem 4-3, they are \square
Therefore, $m \angle 7=\square$.

Your Turn If $m \angle 1=50$, find $m \angle 8$.

EXAMPIE

Remember It

In figures with two pairs of parallel lines, arrowheads indicate the first pair and double arrowheads indicate the second pair.

Review it

If angles P and Q are vertical angles and $m \angle P=47$, what is $m \angle Q$? (Lesson 3-6)

Homework Assignment

Page(s):

Exercises:

4-3 Transversals and Corresponding Angles

What You'Ll LEARN

- Identify the relationships among pairs of corresponding angles formed by two parallel lines and a transversal.

BUILD YOUR Vocabulary (page 66)

When a \square crosses two lines, an interior angle and an exterior angle that are on the \square side of the transversal and have different verticies are called corresponding angles.

EXAMPIE

(1)Lines a and b are cut by transversal c. Name two pairs of corresponding angles.

Corresponding angles lie on the same \square of the transversal and have \square vertices. Two pairs of corresponding angles are \square

Postulate 4-1 Corresponding Angles
If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

EXAMPLES

In the figure, $a \| b$, and k is a transversal.

2 Which angle is congruent to $\angle 1$? Explain your answer.

(3) Find the measure of $\angle 1$ if $m \angle 4=60$.

Key Concepts

Types of angle pairs formed when a transversal cuts two parallel lines.

1. Congruent
a. alternate interior
b. alternate exterior
c. corresponding
2. Supplementary
a. consecutive interior
$m \angle 1=m \angle 3$
$\angle 3$ and $\angle 4$ are a linear pair, so they are supplementary.

$$
m \angle 3+m \angle 4=180
$$

Replace $m \angle 4$

$m \angle 3+60-\square=180-\square$ Subtract 60 from each side.

$$
\begin{aligned}
& m \angle 3=\square \\
& m \angle 1=\square
\end{aligned}
$$

Your Turn

a. Refer to the figure in Example 1. Name two different pairs of corresponding angles.

b. Refer to the figure in Example 2. Which angle is congruent to $\angle 2$? Explain your answer.

c. Refer to the figure in Example 2. Find the measure of $\angle 2$ if $m \angle 3=145$.

Theorem 4-4 Perpendicular Transversal

If a transversal is perpendicular to one of two parallel lines, it is perpendicular to the other.

EXAMPLE

Remember It

There are always four pairs of corresponding angles when two lines are cut by a transversal.

Homework

 AssignmentPage(s):
Exercises:
4. In the figure, $p \| q$, and transversal r is perpendicular to q. If $m \angle 2=3(x+2)$, find x.
$p \perp r$
$\angle 2$ is a right angle.
$m \angle 2=\square$ $m \angle 2=\square$ $\square=3(x+2)$

$90-\square=3 x+6-\square$ $84=3 x$ $\frac{84}{3}=\frac{3 x}{3}$ $\square=x$

Subtract 6 from each side.
Theorem 4-4 Definition of perpendicular lines

Definition of
 right angles

Given
Replace $m \angle 2$ with

Distributive Property

Divide each side by \square

Your Turn

In the figure, $a \| b$ and r is a transversal.
If $m \angle 1=3 x-5$ and $m \angle 2=2 x+35$, find x.

What You'll Learn

- Identify conditions that produce parallel lines and construct parallel lines.

FOLDABLES

ORGANIZE IT

Use the index card labeled Proving Lines Parallel to record the postulates, theorems, and important concepts in this lesson. Record examples to help you remember the main idea.

Postulate 4-2 In a plane, if two lines are cut by a transversal so that a pair of corresponding angles is congruent, then the lines are parallel.

EXAMPIE

1) If $m \angle 1=5 x+10$ and $m \angle 2=6 x-4$, find \boldsymbol{x} so that $\boldsymbol{a} \| b$.

From the figure, you know that $\angle 1$ and $\angle 2$ are corresponding angles. According to Postulate $4-2$, if $m \angle 1=m \angle 2$, then $a \| b$.

$m \angle 1$	$=m \angle 2$		
\square	$=\square$		Substitution
$5 x-5 x+10$	$=6 x-5 x-4$		Subtract $5 x$ from each side.
10	$=x-4$		Add 4 to each side.
$10+4$	$=x-4+4$		
\square	$=x$		

Your Turn

Find c so that $r \| s$.

Theorem 4-5 In a plane, if two lines are cut by a transversal so that a pair of alternate interior angles is congruent, then the two lines are parallel.

Theorem 4-6 In a plane, if two lines are cut by a transversal so that a pair of alternate exterior angles is congruent, then the two lines are parallel.

Theorem 4-7 In a plane, if two lines are cut by a transversal so that a pair of consecutive interior angles is supplementary, then the two lines are parallel.

Theorem 4-8 In a plane, if two lines are perpendicular to the same line, then the two lines are parallel.

EXAMPLE

2) Identify the parallel segments in the letter E.
$\angle F E C$ and $\angle D C A$ are corresponding angles.

$m \angle F E C=m \angle D C A$
$\overline{E F} \| \overline{C D}$

Both angles measure 68°.
Postulate 4-2
$\angle B A C$ and $\angle D C E$ are corresponding angles.
$m \angle B A C=m \angle D C E$
Both angles measure 112°.
$\overline{A B} \| \overline{C D}$
$\overline{A B}\|\overline{C D}\| \overline{E F}$
Postulate 4-2
Transitive Property

Your Turn
Identify the parallel lines in the figure.

EXAMPIE

(3) Find the value of x so that $\overleftrightarrow{K L} \| \overleftrightarrow{M N}$.

$\overleftrightarrow{P Q}$ is a transversal for $\overleftrightarrow{K L}$ and $\overleftrightarrow{M N}$. If $(9 x)^{\circ}=(10 x-8)^{\circ}$, then $\overleftrightarrow{K L} \| \overleftrightarrow{M N}$ by Theorem 4-6.

$$
\begin{aligned}
9 x & =10 x-8 \\
9 x-9 x & =10 x-9 x-8 \\
0 & =x-8 \\
0+8 & =x-8+8
\end{aligned}
$$

What is the relationship between Theorem 4-1 and Theorem 4-5? (Lesson 4-2)
\qquad

Homework Assignment

$$
\square=x
$$

Thus, if $x=\square$, then \square.

Page(s):
Exercises:

BUILD YOUR VOGABULARY（page 67）

Slope is the ratio of the vertical change to the horizontal change，or the \square to the \square ，as you move from one point on the line to another．

EXAMPLES

Find the slope of each line．

（1）

$$
m=\frac{0-2}{2-0}=\frac{-2}{2}=\square
$$ The slope m of a line containing two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the difference in the y－coordinates divided by the difference in the x－coordinates．

Foldables

Use the
index card labeled Slope to record the definitions and postulates in this lesson．

2

Your Turn

Find the slope of each line．
a．

b．

Write It

Explain how you can determine whether a line has a positive or negative slope by observing its graph.
\qquad

ІІ!Н-медээW/əоэиәり ()

Homework Assignment

Page(s):

Exercises:

Postulate 4-3

Two distinct nonvertical lines are parallel if and only if they have the same slope.

Postulate 4-4

Two nonvertical lines are perpendicular if and only if the product of their slopes is -1 .

EXAMPLE

3 Given $A\left(-2,-\frac{1}{2}\right), B\left(2, \frac{1}{2}\right), C(5,0)$, and $D(4,4)$, prove that $\overleftrightarrow{\boldsymbol{A B}} \perp \overleftrightarrow{\boldsymbol{C D}}$.
First, find the slopes of $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$.
slope of $\overleftrightarrow{A B}=\frac{\frac{1}{2}-\left(-\frac{1}{2}\right)}{2-(-2)}=\frac{\frac{1}{2}+\frac{1}{2}}{2+2}=\square$
slope of $\overleftrightarrow{C D}=\frac{4-0}{4-5}=\frac{4}{-1}=\square$

The product of the slopes for $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ is

\square

Your Turn Given $A(-3,-4), B(-1,7), C(2,-5)$, and $D(4,6)$, prove that $\overleftrightarrow{A B} \| \stackrel{\rightharpoonup}{C D}$.

4-6 Equations of Lines

BUILD YOUR VOCABULARY (pages 66-67)

What You'll LEARN

- Write and graph equations of lines.

The graph of a linear equation is a straight line.

The y-value of the point where the line crosses the
\square is called the y-intercept.

The slope-intercept form of a linear equation is written as
\square , where m is the slope and b is the y-intercept.

EXAMPLES

KEY CONCEPT

Slope-Intercept Form An equation of the line having slope m and y-intercept b is $y=m x+b$.

Name the slope and y-intercept of the graph of each equation.
(1) $y=\frac{2}{3} x+6$

The slope is \square The y-intercept \square
(2) $y=0$

The slope is \square The y-intercept \square
(3) $x=7$

The graph is a \square line.The slope is undefined. There is no y-intercept.
4) $3 y+12=6 x$

Rewrite the equation in slope-intercept form by solving for y.

$$
\begin{aligned}
3 y+12 & =6 x & & \\
3 y+12-12 & =6 x-12 & & \text { Subtract } 12 \text { from each side. } \\
3 y & =6 x-12 & & \\
\frac{3 y}{3} & =\frac{6 x-12}{3} & & \text { Divide each side by } 3 . \\
y & =2 x-4 & & \begin{array}{l}
\text { Simplify. This is written in } \\
\text { slope-intercept form. }
\end{array}
\end{aligned}
$$

The slope $m=\square$. The y-intercept is \square.

FOLDABLES'

Organize It

Use the index card labeled Equations of Lines to record important formulas and ideas in this lesson. Give examples that show the most important ideas in the lesson.

Your Turn Name the slope and y-intercept of the

 graph of each equation.a. $y=-6 x+13$
b. $y=8$

c. $x=7$

d. $4 x+3 y=5$

EXAMPLE

5 Graph $2 x-y=4$ using the slope and y-intercept.

First, rewrite the equation in slope-intercept form.

$$
\begin{array}{rlr}
2 x-y & =4 & \\
2 x-y-\square & =4-\square & \text { Subtract } 2 x \text { from each side. } \\
-y & =\square \\
\frac{-y}{-1} & =\frac{4-2 x}{-1} \quad & \text { Divide each side by }-1 . \\
y & =\square & \text { Slope-intercept form }
\end{array}
$$

The y-intercept is -4 . So, the point $(0,-4)$ is on the line. Since the slope is 2 , or $\frac{2}{1}$, plot a point by using a rise of \square units (up) and a run of \square
 unit (right). Draw a line through the two points.

Write it

Explain how you can find the slope of a line perpendicular to a given line.
\qquad
\qquad
\qquad
\qquad

Homework Assignment
Page(s):
Exercises:

Your Turn
Graph $3 x-4 y=-8$ using the slope and y-intercept.

EXAMPLE

6 Write an equation of the line parallel to the graph of $y=-2 x+3$ that passes through the point at $(0,1)$.

Because the lines are parallel, they must have the same
slope. So, $m=$ \square
To find b, use the ordered pair $(0,1)$ and substitute for m, x, and y in the slope-intercept form.

$$
\begin{aligned}
y & =m x+b \\
1 & =\square(0)+b \quad m=\square \\
1 & =0+b \\
\square & =b
\end{aligned}
$$

The value of b is \square. So, the equation of the line is
\square

Your Turn

a. Write an equation of the line parallel to the graph of $-5 x+y=6$ that passes through the point $(-1,3)$.
\square
b. Write an equation of the line perpendicular to the graph of $y=-2 x+1$ that passes through the point $(4,-5)$.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 4 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php.

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 66-67) to help you solve the puzzle.

4-1
 Parallel Lines and Planes

Choose the term that best completes each sentence.

1. (Skew/Parallel) lines always lie on the same plane.
2. (Perpendicular/Skew) lines never have any points in common.
3. (Parallel/Perpendicular) lines never intersect.

4-2
 Parallel Lines and Transversals

Refer to the figure and match the term with the best representative angle pair. Angle pairs cannot be matched more than once.

4. consecutive interior angles \square
5. exterior angles
6. alternate interior angles \square
7. alternate exterior angles \square
a. $\angle 2$ and $\angle 7$
b. $\angle 3$ and $\angle 6$
c. $\angle 4$ and $\angle 6$
d. $\angle 1$ and $\angle 7$
e. $\angle 3$ and $\angle 4$

4-3
Transversals and Corresponding Angles
In the figure, $\ell \| m$, and transversal r is perpendicular to \boldsymbol{m}. Name all angles congruent to the given angle.
8. $\angle 4$

9. $\angle 3$ \square

10. $\angle 9$ \square
Refer to the above figure to find the measure of the specified angle if $m \angle 3=40$.
11. $\angle 4$

12. $\angle 5$

13. $\angle 8$

14. $\angle 2$

Proving Lines Parallel

Find the values of a, b, and c so that $\ell\|m\| n$.
15. $a=$

16. $b=$

17. $c=\square$
18. Name the parallel lines.

4-5

Slope

A wheelchair access ramp must be added to a home. One plan showed a ramp that started 30 feet away from the entrance. The entrance was 3 feet higher than ground level. The second plan started the ramp 15 feet from the same 3 -foot high entrance.
19. What is the slope of each ramp?

20. Which slope is steeper? \square
21. Given $A(0,4), B(3,6), C(1,2)$, and $D(3,-1)$, determine whether $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, perpendicular, or neither.
\square

4-6

Equations of Lines

Identify the slope and y-intercept of each equation.
22. $y=-6 x+\frac{1}{2}$ \square
23. $5 x-4 y=7$

24. $y=-2$ \square
25. $x=5$

26. Write an equation of a line parallel to $y=3 x+2$ that passes through the point $(-1,-4)$.

Checklist

Visit geomconcepts．com to access your textbook，more examples，self－check quizzes，and practice tests to help you study the concepts in Chapter 4.

ARE YOU READY FOR THE CHAPTER TEST？

I completed the review of all or most lessons without using my notes or asking for help．
－You are probably ready for the Chapter Test．
－You may want to take the Chapter 4 Practice Test on page 183 of your textbook as a final check．

I used my Foldable or Study Notebook to complete the review of all or most lessons．
－You should complete the Chapter 4 Study Guide and Review on pages 180－182 of your textbook．
－If you are unsure of any concepts or skills，refer back to the specific lesson（s）．
－You may also want to take the Chapter 4 Practice Test on page 183.

I asked for help from someone else to complete the review of all or most lessons．
－You should review the examples and concepts in your Study Notebook and Chapter 4 Foldable．
－Then complete the Chapter 4 Study Guide and Review on pages 180－182 of your textbook．
－If you are unsure of any concepts or skills，refer back to the specific lesson（s）．
－You may also want to take the Chapter 4 Practice Test on page 183.

Student Signature

Parent／Guardian Signature

Teacher Signature

5
 Triangles and Congruence

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of plain $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold

Fold in half lengthwise.

STEP 2 Fold
Fold the top to the bottom.

STEP 3 Open
Open and cut along the second fold to make two tabs.

Label
Label each tab as shown.

NOTE-TAKING TIP: When you take notes, define new terms and write about the new concepts you are learning in your own words. Then, write your own examples that use the new terms and concepts.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
acute triangle			
base			
base angles			
congruent triangles			
corresponding parts			
equiangular triangle [eh-kwee-AN-gyu-lur]			
equilateral triangle [EE-kwuh-LAT-ur-ul]			
image			
included angle			
included side			
isometry [eye-SAH-muh-tree]			
isosceles triangle [eye-SAHS-uh-LEEZ]			

Vocabulary Term	Found on Page	Definition	Description or Example
legs			
mapping			
obtuse triangle			
preimage			
reflection			
right triangle			
rotation			
scalene triangle [SKAY-leen]			
transformation			
translation			
vertex			
vertex angle			

5-1 Classifying Triangles

What You'll Learn

- Identify the parts of triangles and classify triangles by their parts.

FOLDABLES

ORGANIZE IT

Draw examples of acute, obtuse, right, scalene, isosceles, and equilateral triangles in your notes.

BUILD YOUR VOGABULARY (pages 88-89)

The side that is opposite the vertex angle in an triangle is called the base.

In an isosceles triangle, the two angles formed by the
\square and one of the congruent \square are called
base angles.
The congruent sides in an isosceles triangle are the legs.
The vertex of each angle of a \square is a vertex of the triangle.

The angle formed by the \square sides in an
\square triangle is called the vertex angle.

EXAMPLES

Classify each triangle by its angles and by its sides.
1

The triangle is a \square triangle.

2

The triangle is an \square triangle.

Remember IT

The vertex of each angle is a vertex of the triangle.

3 Find the measures of $\overline{X Y}$ and $\overline{Y Z}$ of isosceles triangle $X Y Z$ if $\angle X$ is the vertex angle.

Since $\angle X$ is the vertex angle, \square \cong
\square So, $X Y=$ \square . Write and solve an equation.
 Write and solve an equation.
 each side.

Divide each side
by

$$
n=\square
$$

The value of n is \square

Homework

 Assignment$$
\begin{aligned}
Y Z & =2 n-2 \\
& =2(\square)-2 \\
& =\square-2 \\
& =\square
\end{aligned}
$$

Therefore, $X Y=\square$ and $Y Z=\square$.

Your Turn Triangle $D E F$ is an isosceles triangle with base $\overline{E F}$. Find $D E$ and $E F$.

To find the measures of $\overline{X Y}$ and $\overline{Y Z}$, replace n with
 in the expression for each measure.

$$
\begin{aligned}
X Y & =2 n+2 \\
& =2(\square)+2 \\
& =\square+2 \\
& =\square
\end{aligned}
$$

Page(s): Exercises:

5-2 Angles of a Triangle

```
What YOU'LL LEARN
- Use the Angle Sum
    Theorem
```


Review IT

What does it mean when two angles are complementary? (Lesson 3-5)
\square
\qquad
\square

Theorem 5-1 Angle Sum Theorem

The sum of the measures of the angles of a triangle is 180.

EXAMPLES

1) Find $m \angle P$ in $\triangle M N P$ if $m \angle M=80$ and $m \angle N=45$.

2 Find the value of each variable in $\triangle A B C$.
$\angle A B C$ is a vertical angle to the given angle measure of 75 . Since vertical angles are congruent, $m \angle A B C=75=x$.

$m \angle A B C+m \angle B C A+m \angle C A B=180$
Angle Sum Theorem

$133+y-133=180-133 \quad$ Subtract.
$y=\square$
Therefore, $x=$ \square and $y=$ \square

Your Turn Find the value of each variable.

Write It

Is it possible to have two right angles in a triangle? Justify your answer.

Homework Assignment

Page(s):
Exercises:

Theorem 5-2

The acute angles of a right triangle are complementary.

Theorem 5-3

The measure of each angle of an equiangular triangle is 60 .

EXAMPLE

3 Find $m \angle J$ and $m \angle K$ in right triangle $J K L$.

$$
\begin{aligned}
m \angle J+m \angle K & =90 \\
(x+15)+(x+9) & =90 \\
+24 & =90
\end{aligned}
$$

$$
2 x+24-\square=90-\square
$$

$$
2 x=66
$$

Theorem 5-2
Substitution
Combine like terms.
Subtract.

Divide.

$$
\begin{aligned}
\frac{2 x}{\square} & =\frac{66}{\square} \\
x & =\square
\end{aligned}
$$

Replace x with
 in each angle expression.
$m \angle J=\square+15$ or \square $m \angle K=\square+9$ or \square
Therefore, $m \angle J=\square$ and $m \angle K=\square$.

Your Turn

Find the value of a, b, and c.

BUILD YOUR VOGABULARY (page 88)

When all three angles in a triangle are congruent, the triangle is said to be equiangular.

5-3 Geometry in Motion

What You’ll LEARN

- Identify translations, reflections, and rotations and their corresponding parts.

BUILD YOUR VOGABULARY (page 89)

\square a figure from one position to another
without turning it is called a translation.
\square a figure over a line creates the mirror image
of the figure, or a reflection.

a figure around a fixed point creates
a rotation.

EXAMPLES

Identify each motion as a translation, reflection, or rotation.

1

\square

Your Turn
Identify each motion as a translation, reflection, or rotation.
a.

b.

BUILD YOUR VOGABULARY (pages 88-89)

Pairing each point on the original figure, or
\square with exactly one point on the \square
is called mapping.
The moving of each \square of a preimage to a new figure called the image is a transformation.

The new figure in a \square is called the image.
In a transformation, the \square figure is called the preimage.

EXAMPLES

In the figure, $\triangle R S T \rightarrow \triangle X Y Z$ by a translation.
(3) Name the image of $\angle T$.

4) Name the side that corresponds to $\overline{X Y}$.

Point R corresponds to point \square

Point S corresponds to point \square
So, \square corresponds to \square

Your Turn In the figure,

 $\triangle Q R S \rightarrow \triangle D E F$ by a rotation.a. Name the angle that corresponds to $\angle R$.

b. Name the side that corresponds to $\overline{Q R}$.

EXAMPIE

BUILD YOUR VOGABULARY (page 88)
Translations, reflections, and rotations are all isometries and do not change the \square or \square of the figure being moved.

5 Identify the type(s) of transformations that were used to complete the work below.

Some figures can be moved to \square another without turning or flipping. Other figures have been turned around
a \square point with respect to the original.

Therefore, the transformations are \square and
\square

Identify the type(s) of transformations that were used to complete the work below.

Homework Assignment

Page(s): Exercises:
\square

5-4 Congruent Triangles

What You'll Learn

- Identify corresponding parts of congruent triangles.

BUILD YOUR VOGABULARY (page 88)

If a triangle can be translated, rotated, or reflected onto another triangle so that all of the \square correspond, the triangles are said to be congruent.

The parts of congruent triangles that \square are called corresponding parts.

EXAMPLES

Key Concept

Definition of Congruent Triangles If the corresponding parts of two triangles are congruent, then the two triangles are congruent. Likewise, if two triangles are congruent, then the corresponding parts of the two triangles are congruent.
(1) If $\triangle A B C \cong \triangle F D E$, name the congruent angles and sides. Then draw the triangles, using arcs and slash marks to show congruent angles and sides.

Name the three pairs of congruent angles by looking at the order of the vertices in the statement $\triangle A B C \cong \triangle F D E$.
$\angle A \cong \square, \angle B \cong \square$,
and $\angle C \cong$ \square

Since A corresponds to \square and B corresponds to

\square
Since B corresponds to D, and C corresponds to E,

Since \square corresponds to F, and \square corresponds to E, $\square \cong \overline{F E}$.

Remember IT

The order of the vertices in a congruence statement shows the corresponding parts of the congruent triangles.

2 The corresponding parts of two congruent triangles are marked on the figure. Write a congruence statement for the two triangles.

List the congruent angles and sides.
$\angle L \cong \square$
$\angle M \cong \angle R$

$$
\overline{L N} \cong \overline{S T} \quad \square \cong \overline{T R} \quad \square
$$

The congruence statement can be written by matching the

Your Turn

a. If $\triangle A C B \cong \triangle E C D$, name the congruent angles and sides. Then draw the triangles, using arcs and slash marks to show congruent angles and sides.

b. Write another congruence statement for the two triangles other than the one given above.

5-5 SSS and SAS

What You'll LEARN

- Use the SSS and SAS tests for congruence.

Postulate 5-1 SSS Postulate

If three sides of one triangle are congruent to three corresponding sides of another triangle, then the triangles are congruent.

EXAMPLE

(1) In two triangles, $\overline{D F} \cong \overline{U V}, \overline{F E} \cong \overline{V W}$, and $\overline{D E} \cong \overline{U W}$. Write a congruence statement for the two triangles.

Remember It

The letter designating the included angle appears in the name of both segments that form the angle.

Draw a pair of \square triangles. Identify the congruent parts with \square Label the vertices of one triangle.

Use the given information to label the \square in the second triangle.

By SSS, \square
\square

Your Turn In two triangles, $\overline{C B} \cong \overline{E F}, \overline{C A} \cong \overline{E D}$, and $\overline{B A} \cong \overline{F D}$. Write a congruence statement for the two triangles.

BUILD YOUR VOCABULARY (page 88)

In a triangle, the \square formed by two given
\square is the included angle.

Postulate 5-2 SAS Postulate

If two sides and the included angle of one triangle are congruent to the corresponding sides and included angle of another triangle, then the triangles are congruent.

Write It

Explain the SSS and SAS tests for congruence in your own words. Give an example of each.
\qquad

ІІ!Н-медээТ/əоэиәэ

Homework Assignment

Page(s): Exercises:

EXAMPLE

(2) Determine whether the triangles shown at the right are congruent. If so, write a congruence statement and explain why the triangles
 are congruent. If not, explain why not.
There are three pairs of \square sides,

Therefore, \square \cong \square
\square

Your Turn
Determine whether the triangles to the right are congruent. If so, write a congruence statement and explain why the triangles are congruent. If not, explain why not.

5-6 ASA and AAS

What You’ll Learn

- Use the ASA and AAS tests for congruence.

BUILD YOUR VocabUlary (page 88)

The \square of the triangle that falls between two given \square is called the included side and is the one common side to both angles.

Postulate 5-3 ASA Postulate

If two angles and the included side of one triangle are congruent to the corresponding angles and included side of another triangle, then the triangles are congruent.

EXAMPLE

(1) In $\triangle D E F$ and $\triangle A B C, \angle D \cong \angle C, \angle E \cong \angle B$, and $\overline{D E} \cong \overline{C B}$. Write a congruence statement for the two triangles.
Draw a pair of \square triangles. Mark the congruent parts with \square and \square. Label the vertices of one triangle D, E, and F.

Locate C and B on the unlabeled triangle in the same positions as \square and \square The unassigned vertex is

Therefore,

Your Turn In $\triangle R S T$ and $\triangle X Y Z, \overline{S T} \cong \overline{X Z}, \angle S \cong \angle X$, and
$\angle T \cong \angle Z$. Write a congruence statement for the two triangles.

Theorem 5-4 AAS Theorem

If two angles and a nonincluded side of one triangle are congruent to the corresponding two angles and nonincluded side of another triangle, then the triangles are congruent.

EXAMPIE

2. $\triangle X Y Z$ and $\triangle Q R S$ each have one pair of sides and one pair of angles marked to show congruence. What other pair of angles needs to be marked so the two triangles are congruent by AAS?

If $\angle Q$ and $\angle X$ are marked

to be congruent for the triangles to be congruent by \qquad

Your Turn

$\triangle A C B$ and $\triangle F E D$ each have one pair of sides and one pair of angles marked to show congruence. What other pair of angles needs to be marked so the two triangles are congruent by AAS?

BRINGING IT ALL TOGETHER

STUDY GUIDE

| FOLDABLES |
| :--- | :--- | :--- |\quad| VOCABULARY |
| :--- |
| PUZZLEMAKER |\quad BUILD YOUR | VOCABULARY |
| :--- |

5-1

Classifying Triangles

Complete each statement.

1. The sum of the measures of a triangle's interior angles is \square
2. The \square angle is the angle formed by two congruent sides of an isosceles triangle.
3. The \square angles of a right triangle are complementary.
4. A triangle with no congruent sides is \square

5-2
Angles of a Triangle
Find the value of each variable.
5.

6.

5-3

Geometry in Motion
Suppose $\triangle S R N \rightarrow \triangle C D A$.
7. Which angle corresponds to $\angle S$?

8. Name the preimage of $\overline{A D}$.

9. Identify the transformation that occurred in the mapping.
\square
5-4
Congruent Triangles
If $\triangle A B C \cong \triangle Q R S$, name the corresponding congruent parts.
10. $\angle B$

11. $\overline{A C}$

12. $\overline{R Q}$

13. $\angle C$

5-5

SSS and SAS

14. The pairs of triangles at the right are congruent. Write a congruence statement and the reason the triangles are congruent.

5-6

ASA and AAS

Underline the best term to make the statement true.
15. [Mapping/Congruence] of triangles is explained by SSS, SAS, ASA, and AAS.
16. AAS indicates two angles and their [included/nonincluded] side.

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 223 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 220-222 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 223 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 220-222 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 223 of your textbook.

Student Signature

Parent/Guardian Signature

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with four sheets of lined $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold

Fold each sheet of paper in half along the width. Then cut along the crease.

BUILD YoUR Vocabulary

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
altitude			
angle bisector			
centroid			
circumcenter [SIR-kum-SEN-tur]			
concurrent			
Euler line			
hypotenuse [hi-PA-tin-oos]			

Vocabulary Term	Found on Page	Definition	Description or Example
incenter			
leg			
median			
nine-point circle			
orthocenter			
[OR-tho-SEN-tur]			
Perpendicular bisector			
Pythagorean Theorem			
[puh-THA-guh-REE-uhn]			

BUILD YOUR VOCABULARY (page 109)

A median is a segment that joins a vertex of a triangle and the midpoint of the side opposite that vertex.

EXAMPLE

(1) In $\triangle A B C, \overline{C E}$ and $\overline{A D}$ are medians.

FOLDABLES

Organize It

Under the tab for Lesson 6-1, draw an example of a median. Label the congruent parts. Under the tab for Vocabulary, write the vocabulary words for this lesson.

If $C D=2 x+5, B D=4 x-1$, and $A E=5 x-2$, find $B E$.

Since $\overline{C E}$ and $\overline{A D}$ are medians,
D and E are midpoints. Solve for x.

Use the values for x and $A E$ to find $B E$.

Your Turn In $\triangle O P S, \overline{S T}$ and $\overline{Q P}$ are medians. If $P T=3 x-1, O T=2 x+1$, and $O Q=4 x-2$, find $S Q$.

BUILD YOUR VOGABULARY (page 108)

The three \square of a triangle intersect at a common point known as the centroid.

When three or more lines or segments meet at the same point, they are said to be concurrent.

Theorem 6-1

The length of the segment from the vertex to the centroid is twice the length of the segment from the centroid to the midpoint.

EXAMPLES

In $\triangle X Y Z, \overline{X P}, \overline{Z N}$, and $\overline{Y M}$ are medians.
(2) Find $Y Q$ if $Q M=4$.

Since $Q M=\square, Y Q=2 \cdot \square$ or \square.
(3) If $Q Z=18$, what is $Z N$?

Since $Q Z=18$ and $Q Z=\frac{2}{3} \cdot Z N$, solve the equation $18=\frac{2}{3} \cdot Z N$ for $Z N$.

$$
\begin{aligned}
18 & =\frac{2}{3} \cdot Z N \\
\frac{3}{2}(18) & =\frac{3}{2}\left(\frac{2}{3} Z N\right) \\
& =Z N
\end{aligned}
$$

Multiply each side by
\square

Your Turn In $\triangle \boldsymbol{E F G}, \overline{\boldsymbol{F A}}, \overline{\boldsymbol{G B}}$,
and $\overline{E C}$ are medians.
a. Find $E O$ if $C O=3$.

b. If $F A=18$, what are the measures
 of $A O$ and $O F$?
\square

6－2 Altitudes and Perpendicular Bisectors

What You＇ll LEARN
 －Identify and construct altitudes and perpendicular bisectors in triangles．

BUILD YOUR VOCABULARY（page 108）

An altitude of a triangle is a perpendicular segment with one endpoint at a \square and the other endpoint on the \square opposite that vertex．

EXAMPLES

Key Concept

Altitudes of Triangles
Acute Triangle The altitude is inside the triangle．

Right Triangle The altitude is a side of the triangle．

Obtuse Triangle The altitude is outside the the triangle．

Remember It

Every triangle has three altitudes－one through each vertex．
（1）Is $\overline{A D}$ an altitude of the triangle？ $\overline{A D}$ is \square a perpendicular segment．So，$\overline{A D} \square$ an
 altitude of the triangle．

2 Is $\overline{G J}$ an altitude of the triangle？

 $\overline{G J} \perp \overline{F H}$, \square is a vertex，and is on the side opposite G ．So，$\overline{G J} \square$ an altitude of the triangle．

Your Turn

a．Is $\overline{B D}$ an altitude of the triangle？

b．Is $\overline{X Y}$ an altitude of the triangle？

BUILD YOUR VOGABULARY (page 109)

A \square line or segment that \qquad a side of a triangle is called the perpendicular bisector of that side.

EXAMPLES

FOLDABLES

Organize IT

Under the tab for Lesson 6-2, draw one example of an altitude and one of a perpendicular bisector. Label congruent parts and right angles.

3 Is $\overline{M N}$ a perpendicular bisector of a side of the triangle?

Since N is the midpoint of $\overline{K L}, \overline{M N}$ is a
 bisector of side $\overline{K L} \cdot \overline{M N}$ \square perpendicular to $\overline{K L}$, so $\overline{M N}$ is \square a perpendicular bisector in $\triangle K L M$.

4 Is $\overline{A D}$ a perpendicular bisector of a side of the triangle?
$\overline{A D} \perp \overline{B C}$ but D \square the
 midpoint of $\overline{B C}$. So, $\overline{A D}$ \square a perpendicular bisector of side $\overline{B C}$ in $\triangle A B C$.

Your Turn

a. Is $\overline{B D}$ a perpendicular bisector of the triangle?

b. Is $\overline{L M}$ a perpendicular bisector of the triangle?

EXAMPIE

(5) Tell whether $\overline{M N}$ is an altitude, a perpendicular bisector, both, or neither.

Write It

How is a perpendicular bisector different from a median?
\qquad
\qquad Your Turn Tell whether $\overline{X O}$ is an altitude, a perpendicular bisector, both, or neither.

Homework Assignment

Page(s): Exercises:

6-3 Angle Bisectors of Triangles

BUILD YOUR VOCABULARY (page 108)

What You'll Learn

- Identify and use angle bisectors in triangles.

An angle bisector of a triangle is a segment that separates an angle of the triangle into two \square angles.

EXAMPLES

(1) In $\triangle A B D, \overline{A C}$ bisects $\angle B A D$. If $m \angle 1=41$, find $m \angle 2$. Lesson 6-3, draw an example of an angle bisector. Label the congruent parts.

Since $\overline{A C}$ bisects $\angle B A D, m \angle 1=$ \square

2 In $\triangle K M N, \overline{N L}$ bisects $\angle K N M$. If $\angle K N M$ is a right angle, find $m \angle 2$.

$$
\begin{aligned}
& m \angle 2=\frac{1}{2}(m \angle K N M) \\
& m \angle 2=\frac{1}{2}(\square) \\
& m \angle 2=\square
\end{aligned}
$$

3 In $\triangle W Y Z, \overline{Z X}$ bisects $\angle W Z Y$. If $m \angle 1=55$, find $m \angle W Z Y$.

Your Turn

a. In $\triangle X Y Z, \overline{Y W}$ bisects $\angle X Y Z$.

If $m \angle 2=33$, find $m \angle 1$.

b. In $\triangle N O M, \overline{O P}$ bisects $\angle N O M$. If $\angle N O M=85$, find $m \angle 4$.

c. In $\triangle R S T, \overline{S U}$ bisects $\angle R S T$. If $m \angle 6=36.5$, find $m \angle R S T$.

EXAMPL:

(4) In $\triangle F H I, \overline{I G}$ is an angle bisector. Find $m \angle H I G$.
$m \angle H I G=m \angle F I G$

$$
4 x+1=5 x-5
$$

$$
4 x+1-4 x=5 x-5-4 x
$$

$$
1=x-5
$$

$$
1+5=x-5+5
$$

\square

$$
=x
$$

Distributive Property Subtract.

Add.
$m \angle H I G=4 x+1=4(\square)+1=\square+1=\square$

Your Turn

 In $\triangle J K L, \overline{K M}$ is an angle bisector. Find $m \angle J K M$.

What You'll LEARN

- Identify and use properties of isosceles triangles.

BUILD YOUR VOGABULARY (page 109)

A leg of an isosceles triangle is one of the two
\square sides.

Theorem 6-2 Isosceles Triangle Theorem

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Theorem 6-3
The median from the vertex angle of an isosceles triangle lies on the perpendicular bisector of the base and the angle bisector of the vertex angle.

EXAMPIE

Organize It

Under the tab for Lesson 6-4, draw an example of an isosceles triangle. Label the congruent parts, and the special names for sides and angles.

(1) Find the values of the variables.

In the top triangle, find the value of base angle x. Since the triangle is isosceles, and one base angle $=35$,
\square

In the bottom triangle, find the value of base angle y. Since the other base angle $=45, y=$ \square

Your Turn

Find the values of the variables.

Theorem 6-4 Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

EXAMPLE

2. In $\triangle D E F, \angle 1 \cong \angle 2$ and $m \angle 1=28$. Find $m \angle F, D F$, and $E F$.

First, find $m \angle F$. You know that $m \angle 1=28$. Since $\angle 1 \cong \angle 2$,
 $m \angle 2=28$.

$$
\begin{array}{r}
m \angle 1+m \angle 2+m \angle F=180 \\
+\square+m \angle F=180
\end{array}
$$

Angle Sum Theorem
Replace $m \angle 1$ and $m \angle 2$.

$$
\begin{aligned}
56+m \angle F-56 & =180-56 \quad \text { Subtract. } \\
m \angle F & =\square
\end{aligned}
$$

Write It

Can an isosceles triangle be an equiangular triangle?

Homework ASSIGNMENT

Page(s):
Exercises:

Your Turn
Find the values of the variables.

Theorem 6-5

A triangle is equilateral if and only if it is equiangular.

- Use tests for congruence of right triangles.

BUILD YOUR VOCABULARY (pages 108-109)

In a \square triangle the side opposite the \square angle is known as the hypotenuse.

The two sides that form the \square angle are called legs.

Theorem 6-6 LL Theorem

If two legs of one right triangle are congruent to the corresponding legs of another right triangle, then the triangles are congruent.

Theorem 6-7 HA Theorem

If the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and corresponding angle of another right triangle, then the triangles are congruent.

Theorem 6-8 LA Theorem

If one leg and an acute angle of one right triangle are congruent to the corresponding leg and angle of another right triangle, then the triangles are congruent.

Postulate 6-1 HL Postulate

If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 6-5, draw an example of a right triangle. Label the special names for the sides of the triangle. Under the tab for Vocabulary, write the vocabulary words for this lesson.

EXAMPLES

Determine whether each pair of right triangles is congruent by $L L, H A, L A$, or $H L$. If it is not possible to prove that they are congruent, write not possible.

There is one pair of congruent
 hypotenuses are congruent, $\overline{D F} \cong \overline{G F}$.

Therefore, $\triangle D E F \cong \triangle G E F$ by \square

2

There is one pair of \square
acute angles, $\angle Z \cong \angle L$. There is one pair of $\square, \overline{X Z} \cong \overline{K L}$.

Therefore, $\triangle Y X Z \cong \triangle J K L$ by \square

Your Turn
Determine whether each pair of right triangles is congruent by $L L, H A, L A$, or $H L$. If it is not possible to prove that they are congruent, write not possible.
a.

b.

What You＇ll LEARN

－Use the Pythagorean Theorem and its converse．

BUILD YOUR VOGABULARY（page 109）

The Pythagorean Theorem can be used to determine the lengths of the sides of a right triangle．It states that the \square of the squares of the \square of a right triangle equals the square of the hypotenuse．

Theorem 6－9 Pythagorean Theorem

 In a right triangle，the square of the length of the hypotenuse c is equal to the sum of the squares of the lengths of the legs a and b ．
EXAMPLE

FOLDABLES

Organize IT

Under the tab for Lesson 6－5，write the Pythagorean Theorem． Draw a right triangle and label the legs a and b ，and the hypotenuse c ．

（1）Find the length of the hypotenuse of the right triangle．

Use the Pythagorean Theorem to find the length of the hypotenuse．

$c^{2}=a^{2}+b^{2}$

$c^{2}=400$

Your Turn

a．Find the length of the hypotenuse of the right triangle．

Remember It

Always check to see that c represents the length of the longest side.

Homework Assignment

Page(s):

Exercises:

122

6-7 Distance on the Coordinate Plane

What You’ll LEARN

- Find the distance between two points on the coordinate plane.

Theorem 6-11 Distance Formula
If d is the measure of the distance between two points with coordinates $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}), then
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} .}$

EXAMPLE

FOLDABLES

Organize IT

Under the tab for Lesson 6-7, write the Distance Formula. Then show an example to help you remember the main idea.

Use the Distance Formula to find the distance between $A(6,2)$ and $B(4,-4)$. Round to the nearest tenth, if necessary.

Use the Distance Formula. Replace $\left(x_{1}, y_{1}\right)$ with $(6,2)$ and $\left(x_{2}, y_{2}\right)$ with \square

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Distance Formula
$A B=\sqrt{(4-\square)^{2}+(\square-2)^{2}} \quad$ Substitution
$A B=\sqrt{(-2)^{2}+(-6)^{2}}$

$A B=\sqrt{40}$

Your Turn
a. Use the Distance Formula to find the distance between $M(2,2)$ and $N(-6,-4)$. Round to the nearest tenth, if necessary.

Remember IT

Only use the positive square roots since distance is not negative.

Homework Assignment

Page(s):

Exercises:

6

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 6 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 108-109) to help you solve the puzzle.

6-1

Medians

Complete the sentence.

1. The midpoint of a side of a triangle and the vertex of the opposite angle are endpoints of a \square
2. A triangle's medians are \square at the centroid.
3. In $\triangle A B C, \overline{B D}$ is a median and $B D=6$. What is $B E$?

For the triangles shown, state whether $A B$ is an altitude, a perpendicular bisector, both, or neither.
4. B

5.

\square

6.

6-3
Angle Bisectors of Triangles
7. In $\triangle J K L, \overline{K H}$ bisects $\angle J K L$. If $m \angle 1=12$, find $m \angle J K L$.

8. What is the value of x so that $B D$ is an angle bisector?

6-4

Isosceles Triangles

Indicate whether the statement is true or false.

9. The vertex angle of an isosceles triangle is opposite one of the congruent sides. \square
10. An isosceles triangle must be equiangular. \square
For each triangle, find the values of the variables.
11.

\square
12.

\square

6-5
 Right Triangles

Determine whether each pair of right triangles is congruent by $L L, H A, L A$, or $H L$. If it is not possible to prove that they are congruent, write not possible.
13.

6-6
The Pythagorean Theorem
Find the missing measure in each right triangle. Round to the nearest tenth, if necessary.
15.

\square
16.

\square

Distance on the Coordinate Plane
Use the Distance Formula to find the distance between each pair of points. Round to the nearest tenth, if necessary.
17. $G(-3,1), H(4,5)$
18. $R(-1,2), S(5,-6)$
19. $A(12,0), B(0,5)$

20. Andre walked 2 blocks west of his home to school. After school, he walked to the store which is 1 block east and 1 block north of his home. About how far apart are the school and the store?
\square

Checklist

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

ARE YOU READY FOR
 THE CHAPTER TEST?

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 6 Practice Test on page 271 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 268-270 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 271.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 268-270 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 271.

Triangle Inequalities

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of sheet of notebook paper.

STEP 1 Fold

Fold lengthwise to the holes.

STEP 2 Cut

Cut along the top line and then cut 4 tabs.

STEP 3

Label

Label each tab with
inequality symbols. Store the Foldable in a 3 -ring binder.

NOTE-TAKING TIP: When you take notes, define new vocabulary words, describe new ideas, and write examples that help you remember the meanings of the words and ideas.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
exterior angle			

7-1 Segments, Angles, and Inequalities

WHAT YOU'LL LEARN
- Apply inequalities to
segment and angle
measurements.

FOLDABLES'

ORGANIZE IT

Write words under each tab to describe each symbol on your foldable.

BUILD YOUR VOCABULARY (page 130)

Statements that contain the symbols \square or \square compare quantities or measures that do not have the same value and are called inequalities.

Postulate 7-1 Comparison Property

For any two real numbers a and b, exactly one of the following statements is true: $a<b, a=b$, or $a>b$.

EXAMPTE

(1) Refer to the number line and replace $-\operatorname{in} D R \circ L N$ with $<,>$, or $=$ to make a true sentence.

Your Turn Refer to the number line and replace \bullet in

 $P R \ominus Q S$ with $<,>$, or = to make a true sentence.

Theorem 7-1

If point C is between points A and B, and A, C, and B are collinear, then $A B>A C$ and $A B>C B$.

Theorem 7-2
If $\overrightarrow{E P}$ is between $\overrightarrow{E D}$ and $\overrightarrow{E F}$, then $m \angle D E F>m \angle D E P$ and $m \angle D E F>m \angle P E F$.

EXAMPLES

Refer to the figure. Determine whether each statement is true or false.
(2) $A B>J K$
$A B=\square$ and $J K=\square$
$48>\square$ Substitution

This is
 because
 greater than \square

(3) $m \angle A H C \neq m \angle H K L$ $m \angle A H C=\square$ and $m \angle H K L=\square$ $45 \not \nexists \square \quad$ Substitution

This is
 because \square is not greater than or equal to \square

Your Turn
Refer to the figure. Determine whether each statement is true or false.

a. $X Y<X Z$

b. $m \angle X Y Z<m \angle Z X Y$

Key Concepts

Transitive Property

For any numbers a, b, and c,

1. If $a<b$ and $b<c$, then $a<c$.
2. If $a>b$ and $b>c$, then $a>c$.

Addition and Subtraction Properties For any numbers a, b, and c,

1. If $a<b$, then $a+c<$ $b+c$ and $a-c<b-c$.
2. If $a>b$, then $a+c>$ $b+c$ and $a-c>b-c$.

Multiplication and Division Properties
For any numbers a, b, and c,

1. If $c>0$, and $a<b$ then $a c<b c$ and $\frac{a}{c}<\frac{b}{c}$.
2. If $c>0$ and $a>b$ then $a c>b c$ and $\frac{a}{c}>\frac{b}{c}$.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLE

4) In the figure, $m \angle C>m \angle A$. If each of these measures were divided by 5 , would the inequality still be true?

$$
\begin{aligned}
m \angle C & >m \angle A \\
47 & >
\end{aligned}
$$

Replace $m \angle C$ with \square and $m \angle A$ with

Divide each side by \square

The inequality still holds \square because \square is greater than \square

Your Turn
In $\triangle X Y Z, m \angle X>m \angle Z$. If each of these measures doubled, would this inequality still hold true?

What You'll LEARN

- Identify exterior angles and remote interior angles of a triangle and use the Exterior Angle Theorem.

OLDABLES

Organize IT

In your notes, record examples of each type of inequality under the appropriate tab. Be sure to write about the relationships between sides and angles of a triangle.

BUILD YOUR VOGABULARY (page 130)

An exterior angle of a triangle is an angle that forms a
\square

Remote interior angles of a triangle are the \square angles that do not form a linear pair with the
\square

EXAMPLE

(1) Name the remote interior angles with respect to $\angle 4$.

Angle \square forms a \square

with $\angle 2$. Therefore, \square and $\angle 3$ are remote \square angles with respect to $\angle 4$.

Your Turn

Name the remote interior angles with respect to $\angle 2$.

Theorem 7-3 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of its two remote interior angles.

FOLDABLES

Organize it

Under the tab labeled with a greater than sign, summarize Theorem 7-4.

Theorem 7-4 Exterior Angle Inequality Theorem
The measure of an exterior angle of a triangle is greater than the measure of either of its two remote interior angles.

EXAMPLES

2. In the figure, if $m \angle 1=145$ and $m \angle 5=82$, what is $m \angle 3$?

$$
\begin{array}{rll}
m \angle 1 & =m \angle 5+\square & \text { Exterior Angle Theorem } \\
145 & =\square+m \angle 3 & \begin{array}{l}
\text { Replace } m \angle 1 \text { with } 145 \\
\text { and } m \angle 5 \text { with } 82 .
\end{array}
\end{array}
$$

$145-\square=82+m \angle 3-\square$ Subtract
 from each side.
\square

$$
=m \angle 3
$$

3 In the figure, if $m \angle 6=8 x, m \angle 3=12$, and $m \angle 2=4(x+5)$, find the value of x.

Remember It

The measures of the angles in any triangle have a sum of 180 degrees.

Homework ASSIGNMENT
Page(s):
Exercises:

Your Turn

a. Find the measure of $\angle 1$ in the figure.

b. In the figure, if $m \angle 6=$ $10 x+3, m \angle 3=6 x-6$, and $m \angle 12=49$, find the value of x.

EXAMPLE

4) Name the two angles in $\triangle C D E$ that have measures less than 82.

The measure of the exterior angle with
 respect to $\angle 1$ is \square. Angles \square and \square are its remote interior angles. By Theorem \square , $82>m \angle$ \square and $82>m \angle \square$. Therefore, \square and \square have measures less than 82.

Your Turn

Name the two angles in $\triangle J K L$ that have measures less than 117.

Theorem 7-5

If a triangle has one right angle, then the other two angles must be acute.

7-3 Inequalities Within a Triangle

What You'll LEARN

- Identify the relationships between the sides and angles of a triangle.

Theorem 7-6

If the measures of three sides of a triangle are unequal, then the measures of the angles opposite those sides are unequal in the same order.

Theorem 7-7

If the measures of three angles of a triangle are unequal, then the measures of the sides opposite those angles are unequal in the same order.

EXAMPIE

(1) In $\triangle K L M$, list the angles in order from least to greatest measure.

Write the segment measures in order from \square to greatest. Then, use Theorem \square to write the measures of the angles opposite those sides in the same order.

Therefore, the angles in order from least to greatest are

Your Turn

In $\triangle Q P S$, list the angles in order from least to greatest measure.

EXAMPLE

2) Identify the side of $\triangle K L M$ with the greatest measure.

Write the angle measures in order from least to \square Then, use Theorem \square to write the measures of the sides opposite those angles in the same order.

FOLDABLES

Organize It

Under the tab labeled with a greater than sign, summarize Theorem 7-8 using the words "greater than".

Homework

ASSIGNMENT
Therefore, \square has the greatest measure.

Your Turn In $\triangle X Y Z$, list the sides in order from least to greatest measure.

Theorem 7-8

In a right triangle, the hypotenuse is the side with the greatest measure.

7-4 Triangle Inequality Theorem

What You'll LEARN

- Identify and use the Triangle Inequality Theorem.

OLDABLES

ORGANIZE IT

Under the tab labeled with a greater than sign, summarize Theorem 7-9.

Theorem 7-9 Triangle Inequality Theorem

The sum of the measures of any two sides of a triangle is greater than the measure of the third side.

EXAMPLES

(1) Determine if the three numbers can be the measures of the sides of a triangle.

6, 7, 9
$6+7>9$

$6+9>7$
$7+9>6$ \square

All possible cases \square true. Sides with these measures
\square form a triangle.
2. 1, 7, 8
$7+8>1$ \square
$8+1>7$

$1+7>8$

All possible cases
 true. Sides with these measures \square form a triangle.

Your Turn
Determine if the three numbers can be the measures of the sides of a triangle.
a. $15,40,19$ \square
b. $4,18,21$ \square

EXAMPLES

3 What are the greatest and least possible whole-number measures for a side of a triangle whose other two sides measure 4 feet and 6 feet?

Let x be the measure of the third side of the triangle. x is greater than the difference of the measures of the two other sides.
$x>6-$

$x>\square$
x is less than the sum of the measures of the two other sides.
$x<6+$ \square

Write IT

In your own words, explain why two sides of a triangle, when added together, cannot equal the length of the third side.
\qquad
\qquad
4) If the measures of two sides of a triangle are 12 meters and 14 meters, find the range of possible measures of the third side.

Let x be the measure of the third side of the triangle. x is greater than the difference of the measures of the two other sides.
$x>14-\square$
$x>\square$
x is less than the sum of the measures of the two other sides.
$x<14+\square$

Therefore, \square

Homework Assignment

Page(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 7 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 130) to help you solve the puzzle.

7-1

Segments, Angles, and Inequalities

Replace with $<,>$, or $=$ to make a true sentence.

1. $J K \bigcirc K X$ \square
2. $L M \bigcirc J L$ \square
3. $K M \bigcirc J L$ \square 4. $K L \bigcirc X M$ \square

4. $m \angle B C D \bullet m \angle B D E$ \square
5. $m \angle C B E \circ m \angle E D C$ \square

7-2

Exterior Angle Theorem

7. Name the remote interior angles of $\triangle A B C$ with respect to $\angle 5$.

8. $\overline{B D} \perp \overline{A C}$ and $m \angle 15=139$.

What is $m \angle 10$? \square
9. If $m \angle 1=19 x, m \angle 16=6 x$, and $m \angle D A B=91$, find the value of x. \square

7-3

Inequalities Within a Triangle
In each triangle, list the angles from least to greatest.
10.

11.

\square

In each triangle, list the sides measuring least to greatest.
12.

13.

\square

7-4

Triangle Inequality Theorem
Determine if the numbers given can be measures of the sides of a triangle.
14. $7.7,16.8,11.3$ \square
16. $7,9,16$

15. $36,12,28$ \square

Find the range of possible values for the third side of the triangle.
17. 16,7 \square 18. 12,10 \square
19. 5,9 \square

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Checklist

Math rline

ARE YOU READY FOR
THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 305 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 302-304 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 305.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldable.
- Then complete the Chapter 7 Study Guide and Review on pages 302-304 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 305.

Student Signature

Parent/Guardian Signature

Teacher Signature

Quadrilaterals

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with three sheets of lined $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold

Fold each sheet of paper in half from top to bottom.

STEP 2
 Cut

Cut along the fold. Staple the six sheets together to form a booklet.

STEP 3 Cut

Cut five tabs. The top tab is 3 lines wide, the next tab is 6 lines wide, and so on.

Label
Label each of the tabs with a lesson number.

NOTE-TAKING TIP: When you read and learn new concepts, help yourself remember these concepts by taking notes, writing definitions and explanations, and drawing models as needed.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
base angles			
bases			
consecutive [con-SEK-yoo-tiv]			
diagonals			
isosceles trapeziod			
kite			
legs			

Vocabulary Term	Found on Page	Definition	Description or Example
midsegment			
nonconsecutive			
parallelogram			
quadrilateral			
rectangle			
rhombus [ROM-bus]			
square			
trapezoid [TRAP-a-ZOYD]			

8-1 Quadrilaterals

What You’ll Learn

- Identify parts of quadrilaterals and find the sum of the measures of the interior angles of a quadrilateral.

OLDABLES

ORGANIZE IT

Under the tab for Lesson 8-1, write the rules for classifying quadrilaterals. Draw a quadrilateral and label the consecutive and nonconsecutive sides, as well as the diagonals.

1
Name all pairs of consecutive angles.

2 Name all pairs of nonconsecutive vertices.

 nonconsecutive vertices.

3 Name all pairs of consecutive sides.

and \square are pairs of consecutive sides.

Remember It
 Consecutive sides share a vertex; nonconsecutive sides do not.
 Consecutive vertices are the endpoints of a side while nonconsecutive vertices are not.
 Consecutive angles share a side of the quadrilateral while nonconsecutive angles do not.

Your Turn Refer to quadrilateral WXYZ.
a. Name all pairs of consecutive angles.

b. Name all pairs of nonconsecutive vertices.

c. Name all pairs of consecutive sides.

Theorem 8-1

The sum of the measures of the angles of a quadrilateral is 360 .

5XAMPIE

Remember It

In a quadrilateral, nonconsecutive sides, vertices, or angles are also called opposite sides, vertices, or angles.

Homework

 AssignmentPage(s):
Exercises:

4. Find the missing measure if three of the four angle measures in quadrilateral $A B C D$ are 90,120 , and 40.

$$
\begin{aligned}
m \angle A+m \angle B+m \angle C+m \angle D & =360 \quad \text { Theorem 8-1 } \\
\square+\square+m \angle D & =360 \quad \text { Substitution } \\
+\square+m \angle D & =360 \\
250+m \angle D-250 & =360-250 \text { Subtract. } \\
m \angle D & =\square
\end{aligned}
$$

Your Turn

 Find the missing measure if three of the four angle measures in quadrilateral $R M S Q$ are 115,75 , and 50.

8-2 Parallelograms

What You’ll Learn

- Identify and use the properties of parallelograms.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 8-2, write the definitions and theorems to help you classify parallelograms. Draw a parallelogram and label the congruent sides and angles, as well as properties of the diagonals.

BUILD YOUR VOCABULARY (page 147)

A parallelogram is a \square with two pairs of
\square

Theorem 8-2

Opposite angles of a parallelogram are congruent.
Theorem 8-3
Opposite sides of a parallelogram are congruent.
Theorem 8-4
The consecutive angles of a parallelogram are supplementary.

EXAMPLES

In parallelogram $K L M N$, $K L=23, K N=15$, and $m \angle K=105$.
(1) Find $L M$ and $M N$.
$\overline{K L} \cong \overline{M N}$ and $\overline{K N} \cong \overline{L M}$
$K L=\square$ and $K N=\square$

Theorem 8-3
Definition of congruent segments

Replace KL with
and $K N$ with

2 Find $m \angle M$.

$$
\begin{aligned}
\angle M & \cong \angle K \\
m \angle M & =\square \\
m \angle M & =\square
\end{aligned}
$$

Theorem 8-2
Definition of congruent angles

Replace $m \angle K$ with

3 Find $m \angle L$.

$$
\begin{aligned}
m \angle L+m \angle K & =180 & & \text { Theorem 8-4 } \\
m \angle L+\square & =180 & & \text { Replace } m \angle K \text { with } \\
m \angle L+105-105 & =180-105 & & \text { Subtract. } \\
m \angle L & =\square & &
\end{aligned}
$$

\square

Your Turn

In parallelogram

$A B C D, A B=8, B C=3$, and $m \angle C=115$.

a. Find $A D$ and $C D$.
b. Find $m \angle A$.
c. Find $m \angle B$. \square

Theorem 8-5
The diagonals of a parallelogram bisect each other.
Theorem 8-6
A diagonal of a parallelogram separates it into two congruent triangles.

EXAMPLE

4. In parallelogram $P Q R S$, if $P R=32$, find $P L$.

Theorem 8-5 states that the diagonals
 of a parallelogram bisect each other.

Homework Assignment

Page(s):
Exercises:

Therefore, $\overline{P L} \cong \overline{L R}$ or $P L=\frac{1}{2}(P R)$.
$P L=\frac{1}{2}(P R)$
$P L=\frac{1}{2}(32)$ or
Replace PR with 32.

Your Turn

In parallelogram
$P A R L$, if $L A=48$, find $L O$.

8-3 Tests for Parallelograms

What You'lL LEARN
 - Identify and use tests to show that a quadrilateral is a parallelogram.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 8-3, write the tests for parallelograms. Remember to include the definition of a parallelogram. Draw pictures to accompany each theorem.

Review It

What does CPCTC
represent? (Lesson 5-4)
\qquad
\qquad
\qquad
\qquad

Theorem 8-7
If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

EXAMPIE

(1) In quadrilateral $W X Y Z$, if $\triangle W Y Z \cong \triangle Y W X$, how could you prove that $W X Y Z$ is a parallelogram?

Show that both pairs of opposite sides are congruent.

Statement	Reason
1. $\triangle W Y Z \cong \triangle Y W X$	1. Given
2. $\overline{Y Z} \cong \overline{W X}$	2. \square
3. $\overline{W Z} \cong \overline{Y X}$	3. CPCTC
4. $W X Y Z$ is a parallelogram.	4. \square

Your Turn

In quadrilateral $A B C D, \angle C A B \cong \angle A C D$ and $\overline{A B} \cong \overline{C D}$. Show that $A B C D$ is a parallelogram by providing a reason for each step.

Statement	Reason
1. $\angle C A B \cong \angle A C D$	1. Given
2. $\overline{A B} \cong \overline{C D}$	2. Given
3. $\overline{A C} \cong \overline{A C}$	3. \square
4. $\triangle C A B \cong \triangle A C D$	4. SAS
5. $\overline{B C} \cong \overline{A D}$	5. \square
6. $A B C D$ is a parallelogram.	6. \square

Theorem 8-8

If one pair of opposite sides of a quadrilateral is parallel and congruent, then the quadrilateral is a parallelogram.
Theorem 8-9
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

EXAMPLES

Determine whether each quadrilateral is a parallelogram. If the figure is a parallelogram, give a reason for your answer.

The figure has one pair of opposite sides that are \square and congruent.
Therefore, the quadrilateral is a

3

One pair of opposite sides is congruent but \square. The other pair of
opposite sides is \square but not \square. Therefore, the
quadrilateral \square a parallelogram.

Your Turn

Determine whether the figure is a parallelogram. Justify your answer.
a.

b.

8-4 Rectangles, Rhombi, and Squares

WHAT YOU'LL LEARN

- Identify and use properties of rectangles, rhombi, and squares.

OLDABLES

Organize It

Under the tab for Lesson 8-4, draw the diagram for classifying rectangles, rhombi, and squares. Write notes and theorems to help you remember the main idea.

Remember It

Rhombi is the plural of rhombus.

BUILD YOUR VOCABULARY (page 147)

\square angles.

A parallelogram with \square congruent sides is a rhombus.

A parallelogram with \square sides and four
\square angles is a square.

EXAMPIE

(1) Identify the parallelogram shown.

The parallelogram has four \square sides and \square right angles. It is a

Your Turn

Identify the parallelogram shown.

Theorem 8-10
The diagonals of a rectangle are congruent.
Theorem 8-11
The diagonals of a rhombus are perpendicular.
Theorem 8-12
Each diagonal of a rhombus bisects a pair of opposite angles.

EXAMPLES

Refer to rhombus ABCD.

(2) Which angles are congruent to $\angle 1$?

Theorem 8-12 states the diagonals of a rhombus \square opposite \square. Therefore, \square is congruent to $\angle 2$, \square , and $\angle 6$.

3 If $m \angle 7=35$, find $m \angle A D C$.
Theorem 8-12 states the diagonals of a \square bisect
\square angles.

Therefore, $m \angle 7=\frac{1}{2}(m \angle A D C)$.

$$
\begin{aligned}
\square & =\frac{1}{2}(m \angle A D C) & m \angle 7=\square . \\
\cdot \square & =\square \cdot \frac{1}{2}(m \angle A D C) & \text { Multiply each side. } \\
\square & =m \angle A D C &
\end{aligned}
$$

Write It

Explain how squares can be rhombi, rectangles, and parallelograms.
\qquad
\qquad
\qquad
\qquad
\qquad

Homework

 AssignmentPage(s):
Exercises:

Your Turn Refer to the figure.

a. Which angles are congruent to $\angle P S Q$ in square $P Q R S$?

b. If $A P=7$, find $Q S$.

BUILD YOUR VOCABULARY (pages 146-147)

What You'll Learn

- Identify and use properties of trapezoids and isosceles trapezoids.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 8-5, write the definition of a trapezoid and of an isosceles trapezoid. Draw a trapezoid and label the bases, legs, and base angles. Label the congruent angles, and draw the median.

A trapezoid is a quadrilateral with exactly \square pair of \square sides.

The \square sides are the bases of the trapezoid.

The \square sides of the trapezoid are known as legs.

Each trapezoid has \square pairs of base angles.

EXAMPLE

(1) In trapezoid $A B C D$, name the bases, legs, and the base angles.

Bases:

parallel segments.
Legs:
$\overline{A D}$ and \square are nonparallel segments.

Base Angles: $\angle A$ and \square form one pair of base angles, while $\angle C$ and \square are the other pair of base angles.

Your Turn

In trapezoid $W X Y Z$, name the bases, legs, and the base angles.

BUILD YOUR VOCABULARY (pages 146-147)

The median of a trapezoid is the segment that joins the
\square

Another name for the median is the midsegment.

If the legs of the trapezoid are \square then the trapezoid is an isosceles trapezoid.

Theorem 8-13

The median of a trapezoid is parallel to the bases, and the length of the median equals one-half the sum of the lengths of the bases.

EXAMPIE

Review It

The word "isosceles" is used for classifying triangles and trapezoids. What similarities do isosceles triangles and isosceles trapezoids have? (Lesson 6-4)
2. Find the length of the median $K L$ in trapezoid $E F G H$ if $E F=35$ and $\boldsymbol{G H}=40$.
$K L=\frac{1}{2}(E F+G H)$
Theorem 8-13

$K L=\frac{1}{2}(\square+\square)$ Replace $E F$ and $G H$. $K L=\frac{1}{2}(\square)$ or \square

Your Turn
Find the length of the median NO in trapezoid JKLM if $J K=22$ and $L M=26$.

Theorem 8-14
Each pair of base angles in an isosceles trapezoid is congruent.

Remember It

Trapezoids and parallelograms are both quadrilaterals, but no quadrilateral can be both a trapezoid and a parallelogram.

Homework Assignment

Page(s):
Exercises:

8

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 8 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 146-147) to help you solve the puzzle.
2. Name two diagonals.

3. Name the vertex opposite Z. \square

4. Name all consecutive sides.

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

8-1

Quadrilaterals

1. Name the side opposite $\overline{W Z}$. \square

2. Find $m \angle X$ and $m \angle Y$. \square

8-2
 Parallelograms

Given that JKLM is a parallelogram, find the missing measures.

6. $m \angle L$ \square
7. $L M$
8. $m \angle J$
9. $m \angle K$

10. If the measure of one angle of parallelogram $P Q R S$ is 79 , what are the measures of the other three interior angles?

8-3

Tests for Parallelograms
State whether each figure is a parallelogram. Justify your reason.
11.

12.

13. Explain why quadrilateral $A B C D$ is a parallelogram.

8-4

Rectangles, Rhombi, and Squares

Underline the best term to complete the statement.

14. A parallelogram with four congruent sides is a [rhombus/rectangle].

Identify each figure with as many terms as possible.
Indicate if no term applies.
Quadrilateral Parallelogram
15.

Square Rhombus Rectangle
16.

8-5

Trapezoids

Complete each statement.

17. The segment that joins the midpoints of each leg of a trapezoid is the \square
18. A \square is a quadrilateral with exactly one pair of parallel sides.
19. The nonparallel sides of a trapezoid are its

20. The parallel sides of a trapezoid are its \square Refer to trapezoid $A B C D$ with median $\overline{J K}$. Name each of the following.

21. bases

22. legs \square
23. base angle pairs \square
24. If $A B=29$ and $D C=23$, what is $J K$?
\square
25. If $A D=18$, find $J D$.
\square
26. If $W X Y Z$ is an isosceles trapezoid and one base angle measures 66 , what are the remaining angle measures?

ARE YOU READY FOR
 THE CHAPTER TEST?

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 345 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 342-344 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 345.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldable.
- Then complete the Chapter 8 Study Guide and Review on pages 342-344 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 345.

Parent/Guardian Signature

9
 Proportions and Similarity

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter．You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes．

Begin with a sheet of notebook paper．

STEP 1
 Fold

Fold lengthwise to the holes．

STEP 2 Cut

Cut along the top line and then cut 10 tabs．

STEP 3 Label

Label each tab with important terms． Store the Foldable in a 3 －ring binder．

NOTE－TAKING TIP：You can design visuals such as graphs，diagrams，pictures，charts，and concept maps to help you organize information so that you can remember what you are learning．

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
cross products			
extremes			
golden ratio			
means			
polygon			
[PA-lee-gon]			

Vocabulary Term	Found on Page	Definition	Description or Example
proportion [pro-POR-shun]			
ratio [RAY-she-oh]			
scale drawing			
scale factor			
similar polygons			

9-1 Using Ratios and Proportions

FOLDABLES

Organize IT

Label the first tab ratio. Under the tab, write the definition and give an example.

224 inches to 3 feet

The units of measure must be the same in a ratio. There are

The ratio is \square

Your Turn Write each ratio in simplest form.
a. $\frac{169}{39}$
b. 30 minutes to $2 \frac{1}{2}$ hours

FOLDABLES

Organize IT

Label the next four tabs proportion, cross products, extremes, and means. Under each tab, write the definition and give an example.

BUILD YOUR VOCABULARY (pages 164-165)

An equation that shows two equivalent ratios is a proportion.

The cross products are the product of the \square and the product of the \square.

In a proportion, the \square of the first ratio and the \square of the second ratio are the extremes.

In a proportion, the \square of the first ratio and the \square of the second ratio are the means.

Theorem 9-1 Property of Proportions

For numbers a and c and any nonzero numbers b and d, if $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$. Conversely, if $a d=b c$, then $\frac{a}{b}=\frac{c}{d}$.

EXAMPLE

(3) Solve $\frac{24}{30}=\frac{6 x+4}{35}$.

$720=180 x$

Distributive Property Subtract
 from each side.

Divide each side
by

REMEMBER IT The denominator can never equal zero.

Your Turn Solve $\frac{15}{x-1}=\frac{4}{5}$.

EXAMPLE
4) The ratio of children to adults at a holiday parade is 2.5 to 1 . If there are 1440 adults at the parade, how many children are there?

Your Turn

The ratio of Republicans to Democrats casting their votes in the local election was 73 to 27. If 135 Democrats voted, how many Republicans cast their votes?

Homework
Assignment
Page(s):
Exercises:

9-2 Similar Polygons

What You'll LEARN
 - Identify similar polygons.

BUILD YOUR VOGABULARY (pages 164-165)

A polygon is a \square figure in a plane formed by segments called sides.

Similar polygons are the same \square but not necessarily the same \square

EXAMPIE

Key Concept

Similar Polygons Two polygons are similar if and only if their corresponding angles are congruent and the measures of their corresponding sides are proportional.

FOLDABLES
Label the next three tabs polygon, sides, and similar polygons. Under each tab, write the definition and give an example.
(1) Determine if the polygons are similar. Justify your answer.

The polygons are \square The corresponding angles are congruent and

Your Turn
Determine if the polygons are similar. Justify your answer.

EXAMPLE

2 Find the values of x and y if $A B C \sim$ FED.

Use the corresponding order of the vertices to write proportions.

Write the proportion to solve for x.

Now write the proportion that can be solved for y.

\square

$$
(12)=y(8)
$$

Cross products

$$
60=8 y
$$

$$
\frac{60}{8}=\frac{8 y}{8}
$$

Divide each side by \square

FOLDABLES'

Organize IT

Label the next tab scale drawings. Under the tab, write the definition and give an example.

Homework AssignMent

Page(s):

Exercises:

EXAMPIE

Your Turn
The triangles are similar. Find the values of x and y.

BUILD YOUR VOGABULARY (page 165)

Scale drawings are used to represent something either too \square or too \square to be drawn at its actual size.

3 In the blueprint, 1 inch represents an actual length of 16 feet. Use the blueprint to find the actual dimensions of the dining room.

$\begin{aligned} & \text { blueprint } \\ & \text { actual }\end{aligned} \rightarrow \frac{1 \mathrm{in} .}{16 \mathrm{ft}}=\frac{\square \mathrm{in} .}{x \mathrm{ft}} \longleftarrow$ blueprint

$$
\int(y)=16\left(\frac{3}{4}\right) \quad \text { Cross products }
$$

\square

$$
y=\square
$$

The dimensions of the dining room are \square ft by \square ft.

Your Turn

Refer to Example 3. Find the dimensions of the kitchen.

9-3 Similar Triangles

What You'll Learn

- Use AA, SSS, and SAS similarity tests for triangles.

Write it

Why must only two pairs of corresponding angles be congruent for two triangles to be similar rather than three?
\qquad
\qquad
\qquad
\qquad
\qquad

EXAMPLE

(1) Determine whether the triangles are similar, If so, tell which similarity test is used and write a similarity statement.

\square
\square

Your Turn Determine whether the triangles are similar, If so, tell which similarity test is used and write a similarity statement.

EXAMPL

(2) Find the value of x.

Since $\frac{8}{12}=\frac{12}{18}$, the triangles are
 similar by SAS similarity.
$\frac{8}{12}=\frac{14}{x} \quad$ Definition of similar polygons
$\square x=(12)(14) \quad$ Cross products
$\frac{8 x}{\square}=\frac{168}{\square} \quad$ Divide each side by \square.

$$
x=\square
$$

Your Turn Find the value of x.

EXAMPLE

(3) The shadow of a flagpole is 2 meters long at the same time that a person's shadow is 0.4 meters long. If the person is 1.5 meters tall, how tall is the flagpole?

The flagpole is \square meters tall.

Your Turn A diseased tree must be cut down before it falls. Which direction the fall is directed depends on the height of the tree. The man who will cut the tree down is $74-\mathrm{in}$. tall and casts a shadow $60-\mathrm{in}$. long. If the tree's shadow measures 20 feet from its base, how tall is the tree?

9-4 Proportional Parts and Triangles

What You'll Learn

- Identify and use the relationships between proportional parts of triangles.

Theorem 9-4

If a line is parallel to one side of a triangle and intersects the other two sides, then the triangle formed is similar to the original triangle.

EXAMPIE

(1) Using the figure, complete the proportion $\frac{?}{V W}=\frac{S T}{S W}$.

Since $\overline{V W} \| \overline{R T}, \triangle S V W \sim \triangle S R T$.

Therefore,

Your Turn

Use the figure to complete
the proportion $\frac{X Y}{A Y}=\frac{?}{B Y}$.

EXAMPLE

2 In the figure, $\overline{M N} \| \overline{K L}$. Find the value of x.

$$
\triangle J M N \sim \triangle J K L
$$

$$
\frac{M N}{K L}=\frac{J N}{J L}
$$

Definition of similar polygons

$9 x=(6) \square \quad$ Cross products
$9 x=\square$

$$
x=\square
$$

Divide each side by 9 .

Your Turn
Find the value of b.

Theorem 9-5

If a line is parallel to one side of a triangle and intersects the other two sides, then it separates the sides into segments of proportional lengths.

EXAMPIE

3 In the figure, $\overline{A B} \| \overline{D E}$. Find the value of x.

Theorem 9.5

$C E=x, E B=6$,
$C D=x+5, D A=8$

$$
\begin{array}{rlrl}
x(8) & =\square(x+5) & & \text { Cross products } \\
8 x & =6 x+\square & \text { Distributive Property }
\end{array}
$$

$8 x-6 x=6 x+30-6 x \quad$ Subtract $6 x$ from each side.

$$
2 x=30
$$

$$
\frac{2 x}{2}=\frac{30}{2} \quad \text { Divide each side by } 2 .
$$

$$
x=\square
$$

Your Turn

Find the value of a.

Homework Assignment
Page(s):
Exercises:

9-5 Triangles and Parallel Lines

What You'll LEARN

- Use proportions to determine whether lines are parallel to sides of triangles.

Theorem 9-6

If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

EXAMPIE

(1) Determine whether $\overline{D E} \| \overline{B C}$.

Determine whether $\frac{B D}{D A}$ and
$\frac{C E}{E A}$ form a proportion.

$\square(8) \stackrel{?}{=} \square$ (4) Cross products
$24=$

Therefore, $\overline{D E} \| \overline{B C}$ by Theorem 9-6.

Your Turn Determine whether $\overline{H J} \| \overline{K M}$.

Theorem 9-7

If a segment joins the midpoint of two sides of a triangle, then it is parallel to the third side, and its measure equals one-half the measure of the third side.

EXAMPLES

For Examples 2 and 3, refer to the figure shown.

2 In the figure, X, Y, and Z are midpoints of the sides of $\triangle U V W$.

Remember It

The midsegment's endpoints are the midpoints of the legs of two sides of a triangle.

Homework Assignment

Page(s):
Exercises:

178

What You'll LEARN

- Identify and use the relationships between parallel lines and proportional parts.

Theorem 9-8

If three or more parallel lines intersect two transversals, the lines divide the transversals proportionally.

EXAMPLES

(1) Complete the proportion $\frac{S T}{R T}=\frac{N P}{?}$.

ReVIEW IT

What is the definition of a transversal?
(Lesson 4-2)
\qquad
\qquad
\qquad
\qquad

Since \square $\|\overleftrightarrow{N S}\| \overleftrightarrow{P T}$, the transversals are divided

2. In the figure, $a\|b\| c$. Find the value of x.

$\frac{9}{15}=\frac{\square}{x}$
$9(x)=15(\square)$
$9 x=\square$
$x=\square$

$$
\begin{aligned}
& T S=9, S R=15, \\
& P N=\square, N M=x
\end{aligned}
$$

Cross products

Divide each side by \square

Review It

Explain how to construct parallel lines.
(Lesson 4-4)
\qquad
\qquad
\qquad
\qquad

Your Turn

a. Complete the proportion $\frac{Z P}{Q P}=\frac{N B}{?}$.

b. In the figure, $a\|b\| c$. Find the value of x.

Theorem 9-9

If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

What You'll LEARN

- Identify and use proportional relationships of similar triangles.

Theorem 9-10
If two triangles are similar, then the measures of the corresponding perimeters are proportional to the measures of the corresponding sides.

EXAMPIE

1) The perimeter of $\triangle D E F$ is 90 units, and $\triangle A B C \sim \triangle D E F$. Find the value of each variable.

Explain its meaning in your own words.

- Use diagrams to clarify.

ORGANIZE IT

- Write each vocabulary word from the lesson.
.

$\frac{D E}{A B}=\frac{\text { perimeter of } \triangle D E F}{\text { perimeter of } \triangle A B C} \quad$ Theorem 9-10

$$
\begin{align*}
\frac{x}{26} & =\frac{90}{60} \\
\square(60) & =\square(9 \tag{90}\\
60 x & =2340 \\
x & =\square
\end{align*}
$$

$$
26+10+24=
$$

\square

Divide.
Cross products

Because the triangles are similar, find y and z.

$$
\begin{aligned}
\frac{D F}{D E} & =\frac{A C}{A B} \\
\frac{y}{39} & =\frac{\square}{26} \\
26 y & =390 \\
y & =\square
\end{aligned}
$$

Your Turn The perimeter of $\triangle A B C$ is 20 units, and $\triangle A B C \sim \triangle X Y Z$. Find the value of each variable.

BUILD YOUR VOGABULARY (page 165)

The scale factor, also known as the constant of

comparing the measures of corresponding sides of similar triangles.

EXAMPIE

FOLDABLES

Organize IT

Label the next tab scale factor. Under the tab, write the definition and give an example.

Homework Assignment

Page(s):

Exercises:

2 Determine the scale factor of $\triangle A B C$ to $\triangle D E F$.

Your Turn

Determine the scale factor of $\triangle R S T$ to $\triangle X Y Z$.

The scale factor is

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 9 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 164-165) to help you solve the puzzle.

9-1

Using Ratios and Proportions

Indicate whether the statement is true or false.

1. Every proportion has two cross products. \square
2. A ratio is a comparison of two numbers by division. \square
3. The two cross products of a ratio are the extremes \square and the means.
4. Cross products are always equal in a proportion. \square
5. Simplify $\frac{220}{70}$.

6. Solve: $\frac{84}{63}=\frac{12}{11-x}$

9-2

Similar Polygons

Complete the sentence.

7. In \square measures of corresponding sides are proportional, and corresponding angles are congruent.
8. \square represent something either too large or too small to be drawn at actual size.
9. Given that the rectangles are similar, find the values of x and y to show similarity.

9-3

Similar Triangles
Determine whether the pair of triangles is similar. Justify your reasons.
10.
11.

\square

9-4

Proportional Parts and Triangles

Complete the proportions.
12. $\frac{A D}{D E}=\frac{\square}{C B}$
13. $\frac{A E}{E B}=\frac{A D}{\square}$

9-5

Triangles and Parallel Lines
Vertices A, B, and C are midpoints.
14. $\overline{A C}$

15. If $B C=6$, then $R T=$ \square
16. If $S B=4, A C=$ \square

9-6
Proportional Parts and Parallel Lines
A tract of land bordering school property was divided into sections for five biology classes to plant gardens. The fences separating the plots are parallel, and the plots' front measures are shown. The entire back border measures 254 feet. What are the individual border lengths, to the nearest tenth of a foot?

	22 ft.	$20 \mathrm{ft}$.	25 ft	$28 \mathrm{ft}$.	$16 \mathrm{ft}$.	- front
	A	B	C	D	E	back

17. $A=$ \square
18. $D=$ \square
19. $E=$ \square

9-7

Perimeters and Similarity
Complete the sentence.
20. The scale factor is also called the constant of

21. Find the scale factor.

$\triangle J K L \sim \triangle M N O$. The perimeter of $\triangle J K L$ is 54 . What are the values for the variables?
22. $a=\square$
23. $b=$

24. $c=$ \square

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 397 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 394-396 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 397.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldable.
- Then complete the Chapter 9 Study Guide and Review on pages 394-396 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 397.

10 Polygons and Area

FOLDABLES'S
Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes

Begin with a sheet of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold
Fold the short side in fourths.

STEP 2 Draw

Draw lines along the folds and label each column Prefix, Number of Sides, Polygon Name, and Figure.
Polygon Name, and figure.

NOTE-TAKING TIP: When you take notes, it is important to record major concepts and ideas. Refer to your journal when reviewing for tests.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
altitude			
apothem [a-pa-thum]			
center			
composite figure [kahm-PA-sit]			
concave			
convex			
irregular figure			

Vocabulary Term	Found on Page	Definition	Description or Example
line symmetry			
polygonal region			
regular polygon			
regular tessellation			
rotational symmetry			
semi-regular tessellation			
sygnificant digits			
tessellation			
[tes-a-LAY-shun]			
symmetry			

10-1 Naming Polygons

What You'll Learn
 - Name polygons according to the number of sides and angles.

FOLDABLES

ORGANIZE IT

Under the tabs labeled Prefix, Number of Sides, and Polygon Name, write the information given in the table on page 402 . Under the tab labeled Figure, draw a picture of each polygon. Include regular and irregular polygons, as well as convex and concave polygons.

EXAMPLES

Refer to the figure for Examples 1-2.
a. Identify polygon VWXYZ.

The polygon has \square sides. It is a \qquad
b. Determine whether the polygon VWXYZ appears to be regular or not regular. If not regular, explain why. The \square appear to be the same length, and the \square appear to have the same measure. The polygon is regular.
2. Name two nonconsecutive vertices of polygon VWXYZ.
W and Z, W and Y, V and X, V and Y, X and Z are examples of \square vertices.

Your Turn Refer to the figure for parts a, b, and c.
a. Identify polygon $D E F G H I J$ by its sides.

b. Determine whether the polygon DEFGHIJ appears to be regular or not regular. If not regular, explain why.
\square
c. Name two nonconsecutive vertices of polygon DEFGHIJ.
\square

Remember It

Most polygons have more than one diagonal. As the number of sides increases, so does the number of diagonals.

BUILD YOUR VOCABULARY (page 188)

All of the diagonals of a convex polygon lie in the
\square of the polygon.

If any part of a diagonal lies \square of the polygon, the polygon is concave.

EXAMPLE

3 Classify each polygon as convex or concave.

a.

When all the diagonals are drawn, \square points lie outside of the polygon. So polygon $A B C D E F$

b.

Diagonal $\overline{Q S}$ lies outside the polygon, so $P Q R S T U$ is \square

Your Turn
Classify each polygon as convex or concave.
a.

b.

What You'll LEARN

- Find measures of interior and exterior angles of polygons.

FOLDABLES

Organize IT

On the back of your Foldable, you may wish to write the interior angle sum for each of the different polygons listed on your Foldable.

Theorem 10-1
If a convex polygon has n sides, then the sum of the measures of the interior angles is $(n-2) 180$.

EXAMPLES

Refer to the regular pentagon for Examples 1-2.

(1) Find the sum of the measures of the interior angles.

Sum of measures of interior angles

The sum of the measures of the interior angles of a pentagon
is \square

2 Find the measure of one interior angle.

Each interior angle of a regular polygon has the same measure.
Divide the \square of the measures by the \square of angles.

The measure of one interior angle of a regular pentagon is
\square

Write It

How do you find the measure of an interior angle of an n-sided regular polygon?
\qquad
\qquad
\qquad
\qquad

Remember It

Theorems 10-1 and 10-2 only apply to convex polygons.

Homework Assignment

Page(s): Exercises:

Your Turn

a. Find the sum of the measures of the interior angles of a regular 15 -sided polygon.

b. Find the measure of one interior angle of a regular 15 -sided polygon.
\square

Theorem 10-2

In any convex polygon, the sum of the measures of the exterior angles, one at each vertex, is 360 .

5XAMPIE

3 Find the measure of one exterior angle of a regular octagon.

By Theorem 10-2, the sum of the measures of exterior angles is \square. An octagon has \square exterior angles. measure of one exterior angle $=\frac{360}{8}=\square$

Your Turn Find the measure of one exterior angle of a regular 15 -sided polygon.
\square

What You'll Learn

- Estimate the areas of polygons.

Postulate 10-1 Area Postulate
For any polygon and a given unit of measure, there is a unique number A called the measure of the area of the polygon.
Postulate 10-2
Congruent polygons have equal areas.
Postulate 10-3 Area Addition Postulate
The area of a given polygon equals the sum of the areas of the nonoverlapping polygons that form the given polygon.

BUILD YOUR VOCABULARY (pages 188-189)

Any polygon and its \square are called a polygonal region.
A composite figure is a figure made from that have been placed together.

EXAMPIE

Review It

What formulas for area have you learned?
(Lesson 1-6)
Find the area of the polygon. Each square represents 1 square centimeter.

Since the area of each square represents one square centimeter, the area of each triangular half square represents 0.5 square centimeter. There are 8 squares and 4 half squares.
$A=8(1) \mathrm{cm}^{2}+4(0.5) \mathrm{cm}^{2}$

Your Turn Find the area of the polygon. Each square represents 1 square inch.

BUILD YOUR VOGABULARY (page 188)
Irregular figures are not polygons and cannot be made from combinations of polygons. Their areas can be approximated using combinations of polygons.

EXAMPIE

2) Estimate the area of the polygon. Each square represents 20 square miles.

Count each square as one unit and each partial square as a half unit regardless

Write IT

How can you determine the area of a polygon by dividing it into familiar shapes?
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises: of size. There are \square whole squares and \square partial squares.

\square

Area $\approx 20 \times \square$
Each square represents 20 square miles.

$$
=\square
$$

The area of the polygon is about \square square miles, or
\square

Your Turn A swimming pool at a resort is shaped as shown on the grid. Each square on the grid represents 16 square meters. Estimate the area of the pool.

10-4 Areas of Triangles and Trapezoids

What You'll LEARN
 - Find the areas of triangles and trapezoids.

Theorem 10-3 Area of a Triangle

If a triangle has an area of A square units, a base of b units, and a corresponding altitude of h units, then $A=\frac{1}{2} b h$.

EXAMPLES

Find the area of each triangle.
(1)

$A=\frac{1}{2} b h \quad$ Theorem 10-3

$=\frac{1}{2}(\square)$

(2)

ReVIEW IT

What is an altitude of a triangle? (Lesson 6-2)

Your Turn Find the area of each triangle.
a.

b.

c.

FOLDABLES'

Organize It

Draw and label the base and altitude for each triangle on your Foldable. In addition, draw a trapezoid as an example of a quadrilateral. Draw and label the bases and altitude for the trapezoid.

Homework Assignment

Page(s):
Exercises:
Exercises:

5XAMPIE

3 Find the area of the trapezoid.

Your Turn Find the area of the trapezoid.

What You'll LEARN

- Find the areas of regular polygons.

FOLDABLES

ORGANIZE IT

Draw an apothem for each of the regular polygons drawn on your Foldable.

Remember It

Only regular polygons have apothems.

BUILD YOUR VOGABULARY (page 188)

The center of a regular polygon is an interior point that is equidistant from all \square
The segment drawn from the center and \square to a side of a regular polygon is an apothem.

Theorem 10-5 Area of a Regular Polygon
If a regular polygon has an area of A square units, an apothem of a units, and a perimeter of P units, then $A=\frac{1}{2} a P$.

EXAMPIE

(1) A regular octagon has a side length of 9 inches and an apothem that is about 10.9 inches long. Find the area of the octagon.

First, find the perimeter of the octagon.

$P=8 s$
$=8(9)$ or 72
All sides of a regular octagon are congruent.
Replace s with 9 .

Now find the area.

$$
\begin{aligned}
A & =\frac{1}{2} a P & & \text { Theorem 10-5 } \\
& =\frac{1}{2}(10.9)(72) \text { or } \square & & \begin{array}{l}
\text { Replace } a \text { with } 10.9 \text { and } \\
P \text { with } 72 .
\end{array}
\end{aligned}
$$

The area of the octagon is about \square in ${ }^{2}$.

Your Turn

A regular pentagon has a side length of 8 inches and an apothem that is about 5.5 inches long. Find the area of the pentagon.

EXAMPLE

(2) A regular octagon has a side length of 12 inches and an apothem that is about 14.5 inches long. Find the area of the shaded region of the octagon.

Find the area of the octagon minus the
 area of the unshaded region.

Area of an octagon:

$$
\begin{aligned}
A & =\frac{1}{2} a P \\
& =\frac{1}{2}(\square)(\square) \\
& =\square \mathrm{in}^{2}
\end{aligned}
$$

Theorem 10-5

Replace a with 14.5 and P with 96.

Area of a Triangle:

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(12)(14.5) \\
& =\square \mathrm{in}^{2}
\end{aligned}
$$

Theorem 10-3
Replace b with 12 and h with 14.5.

Homework

 AssignmentPage(s):
Exercises:

The area of one triangular section is $87 \mathrm{in}^{2}$. There are 5 triangular sections in the unshaded region.
The area of the unshaded region is $5(\square)=\square \mathrm{in}^{2}$.
Subtract the area of the unshaded region from the area of the octagon.
Area of shaded region $=$ \square
\square

Your Turn
Find the area of the shaded region of the regular hexagon.

BUILD YOUR VOGABULARY (page 189)

Significant digits represent the precision of a

BUILD YOUR VOGABULARY (pages 188-189)

Symmetry is when a figure has balanced proportions across a reference \square, line, or plane.

When a line is drawn through the \square of a figure and one half is the \square image of the other, the figure is said to have line symmetry.

The reference line is known as the line of symmetry.

EXAMPLE

(1) Find all lines of symmetry for equilateral triangle $A B C$.

Fold along all possible lines to see if the sides match. There are \square lines of symmetry along the lines shown in the figure.

Your Turn Draw all lines of symmetry for regular pentagon JKXYZ.

BUILD YOUR VOGABULARY (page 189)

A figure that can be turned or rotated less than 360° about a fixed point and that looks exactly as it does in the \square is said to have turn symmetry or rotational symmetry.

EXAMPIE

Write It

Draw a polygon that has line symmetry but does not have rotational symmetry. Do you think it is possible to draw a figure with more than 1 line of symmetry, but that does not have rotational symmetry? Explain.
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s): Exercises:
2. Which of the figures have rotational symmetry?
a.

The figure can be turned 120° and 240° to look like the original. The figure has \square symmetry.
b.

The figure must be turned 360° about its center to look like the original. Therefore, it \square have rotational symmetry.

Your Turn Which of the figures has rotational

 symmetry?a.

b.

What You'll LEARN

- Identify tessellations and create them by using transformations.

Remember It

Regular and semiregular tessellations are created using only regular polygons.

Homework ASSIGNMENT

Page(s):
Exercises:

BUILD YOUR VOGABULARY (page 189)

Tessellations are tiled patterns created by \square figures to fill a plane without gaps or overlaps. They can be made by translating, rotating, or reflecting polygons.
A pattern is a regular tessellation when only \square type of regular polygon is used to form the pattern. When two or more regular polygons are used in the same order at every vertex to form a pattern, it is a semi-regular tessellation.

EXAMPLES

Identify the figures used to create each tessellation. Then identify the tessellation as regular, semi-regular, or neither.

1

Only squares are used. A square is a regular polygon. The tessellation is

Hexagons are used and there are no gaps in the pattern, but the hexagons are not \square
The tessellation is \square a regular nor a semi-regular tessellation.

Your Turn

Identify the tessellation as regular, semiregular, or neither.
a.

b.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 10 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php.

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 188-189) to help you solve the puzzle.

10-1
 Naming Polygons

Indicate whether the statement is true or false.

1. All the diagonals of a concave polygon lie on the interior. \square
2. A regular polygon is both equilateral and equiangular.

Identify each figure by its sides. Indicate if the polygon appears to be regular or not regular. If not regular, justify your reason.
3.

10-2
4.

\square

Find the sum of the measures of the interior angles.
5.

6.

Find the measure of one interior angle and one exterior angle of the regular polygon.
7. dodecagon

8. decagon \square
9. The sum of the measures of four exterior angles of a pentagon is 280 . What is the measure of the fifth exterior angle?

10-3

Areas of Polygons

Indicate whether the statement is true or false.
10. A polygon and its interior are known as a polygonal region.

Find the area of the polygon in square units.
11.

12.

10-4

Areas of Triangles and Trapezoids
Indicate whether the statement is true or false.
13. The segment perpendicular to the parallel bases of a trapezoid is a median.

Find the area of the triangle or trapezoid.

15.

16. Find the area of a trapezoid whose altitude measures 4.5 cm and has bases measuring 6.2 and 8.8 cm .

17. What is the area of a triangle with base length $6 \frac{1}{3} \mathrm{in}$. and height 2 in.?

10-5

Areas of Regular Polygons
18. Find the area of a regular 11 -sided polygon with each side measuring 7 cm and an apothem length of 11.9 cm .
\square
19. Find the area of the shaded region.

10-6

Symmetry

Underline the best term to make the statement true.
20. When a line is drawn through a figure and makes each half a mirror image of the other, the figure has [line/rotational] symmetry.
21. When a figure looks exactly as it does in its original position after being turned less than 360° around a fixed point, it has [line/rotational] symmetry.
Determine whether the figure has line symmetry, rotational symmetry, both, or neither.
22.

23.

10-7

Tessellations

Identify the tessellation as regular, semi-regular, or neither.
24.

25.

\square

ARE YOU READY FOR
 THE CHAPTER TEST?

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 449 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 446-448 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 449 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 446-448 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 449 of your textbook.

Parent/Guardian Signature

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter．You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes．

Begin with seven sheets of plain paper．

STEP 1 Draw

Draw and cut a circle from each sheet．Use a small plate or a CD to outline the circle．

STEP 2 Staple
Staple the circles together to form a booklet．

Label

Label the chapter name on the front．Label the inside six
 pages with the lesson titles．

NOTE－TAKING TIP：When you take notes，write concise definitions in your own words．Add examples that illustrate the concepts．

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
adjacent arcs			
arcs			
center			
central angle			
chord			
circle			
circumference			
[sir-KUM-fur-ents]			
circumscribed			
concentric			
diameter			

Vocabulary Term	Found on Page	Definition	Description or Example
experimental probability [ek-speer-uh-MEN-tul]			
inscribed			
loci			
locus			
major arc			
minor arc			
pi (π)			
radius [RAY-dee-us]			
sector			
semicircle			
theoretical probability [thee-uh-RET-i-kul]			

11-1 Parts of a Circle

WHAT YOU'LL LEARN
- Identify and use parts
of circles.

FOLDABLES

Organize It

Under the tab for Lesson 11-1, draw a circle with a radius, a chord and a diameter. Label each special segment.

BUILD YOUR VOGABULARY (pages 208-209)

A circle is the set of all points in a plane that are a given distance from a given point in the plane, called the
\square of the circle.

In a circle, all points are \square from the center.

A radius is a segment whose endpoints are the \square of the circle and a \square on the circle.

A chord is a segment whose \square are on the circle.

A diameter is a \square that contains the \square of the circle.

Two circles are concentric if they lie in the same plane, have the same \square and have \square of different lengths.

EXAMPLES

Use circle P to determine whether each statement is true or false.
(1) $\overline{R T}$ is a diameter of circle P.
$\square ; \overline{R T} \square$ go through the

center P. Therefore, $\overline{R T}$ is not a diameter.
(2) $\overline{P S}$ is a radius of circle P.

a point on the circle S. Therefore, $\overline{P S}$ is a radius.

Write It

Describe the differences between a radius, a diameter, and a chord.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Your Turn Use circle T to determine whether each statement is true or false.
a. $\overline{A B}$ is not a diameter.

b. $\overline{T D}$ is not a radius.

Theorem 11-1

All radii of a circle are congruent.
Theorem 11-2
The measure of the diameter d of a circle is twice the measure of the radius r of the circle.

EXAMPIE

3) In circle $R, \overline{Q T}$ is a diameter. If $Q R=7$, find $Q T$.
$\overline{Q R}$ is a radius, and $d=2 r$.

$Q T=2(Q R)$

Replace d and r.
Replace $Q R$ with

Your Turn In circle $A, \overline{F C}$ is a diameter. If $F C=25$, find $A B$.

Homework

 AssignmentPage(s):
Exercises:

11-2 Arcs and Central Angles

What You'll LEARN

- Identify major arcs, minor arcs, and semicircles and find the measures of arcs and central angles.

KEy CONCEPTS

The degree measure of a minor arc is the degree measure of its central angle.

The degree measure of a major arc is 360 minus the degree measure of its central angle.

The degree measure of a semicircle is 180 .

Under the tab for Lesson 11-2, draw a circle with a central angle. Label the central angle, the major and minor arcs and give examples of degree measurements for each.

BUILD YOUR YOGABULARY (pages 208-209)

When two sides of an angle meet at the center of a circle, a central angle is formed.

Each side of the central angle intersects a point on the circle, dividing it into \square lines called arcs.

A minor arc is formed by the intersection of the circle and sides of a central angle with interior degree measure less than 180.

A major arc is the part of the circle in the
 the central angle that measures greater than 180. Semicircles are arcs whose endpoints lie on the diameter of the circle.

Adjacent arcs are arcs of a circle with exactly one point in common.

EXAMPLE

(1) In circle J, find $m \widehat{L M}, m \angle K J M$, and $m \widehat{L K}$.

$$
\begin{array}{rlr}
m \widehat{L M} & =m \angle L J M & \\
m \overline{L M} & =125 & \text { Measure of minor arc } \\
m \angle K J M & =m \overline{K M} & \\
m \angle K J M & =\square \\
m \overline{L K} & =360-m \angle L J M-m \angle K J M & \\
m \overline{L K} & =360-125-130 & \\
m \overline{L K} & =\square & \text { Measure of central angle }
\end{array}
$$

Postulate 11-1 Arc Addition Postulate

The sum of the measures of two adjacent arcs is the measure of the arc formed by the adjacent arcs.

EXAMPIE

Remember It
 A circle contains 360°.

2 In circle $A, \overline{C E}$ is a diameter.
Find $m \widetilde{B C}, m \widetilde{B E}$, and $m \widehat{B D E}$.

Measure of minor arc
Substitution
Arc Addition
Postulate

$$
m \widehat{B E}+\square=180
$$

Substitution Subtract.

$$
m \widehat{B D E}=\square-m \widehat{B E}
$$

Measure major arc Substitution

$$
\begin{aligned}
m \widehat{B C} & =m \angle B A C \\
m \widehat{B C} & =\square \\
+m \widehat{B C} & =m \widehat{E B C}
\end{aligned}
$$

Postulate

$$
m \widehat{B E}=132
$$

$$
m \overline{B D E}=\square-132
$$

$$
m \widehat{B D E}=\square
$$

Your Turn In circle X,

 $m \angle A X B=70, m \widehat{D C}=45$, and $\overline{B E}$ and $\overline{A D}$ are diameters.
a. Find $m \widehat{E A}, m \angle B X C$, and $m \overline{E D}$.

b. Find $m \widehat{A C}, m \widehat{D A E}$, and $m \widehat{A B E}$.

Theorem 11-3 In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding central angles are congruent.

11-3 Arcs and Chords

What You’ll Learn

- Identify and use the relationships among arcs, chords, and diameters.

EXAMPIE

FOLDABLES

Organize IT

Under the tab for Lesson 11-3, draw diagrams and give descriptions to summarize Theorems 11-4 and 11-5.

Theorem 11-4
In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Theorem 11-5
In a circle, a diameter bisects a chord and its arc if and only if it is perpendicular to the chord.
(1) In circle R, if $\overline{P R} \perp \overline{Q T}$, find $P Q$.

$\angle P S Q$ is a right angle.
$\triangle P S Q$ is a \square triangle.

$$
\begin{aligned}
(\square)^{2}+(S Q)^{2} & =(P Q)^{2} \\
S Q & =24 \\
\square)^{2}+24^{2} & =(P Q)^{2}
\end{aligned}
$$

$$
\begin{aligned}
100+576 & =(P Q)^{2} \\
\sqrt{676} & =\sqrt{(P Q)^{2}}
\end{aligned}
$$

$$
\square=P Q
$$

Definition of perpendicular Definition of right triangle

Pythagorean Theorem
Theorem 11-5
Replace PS with
 and $S Q$ with 24.

Take the square root of each side.

Your Turn
In circle $P, A B=8$ and $P D=3$. Find PC.

EXAMPL

2. In circle W, find $X V$ if $\overline{U W} \perp \overline{X V}, V W=35$, and $W Y=21$.

$\angle V Y W$ is a \qquad angle. $\triangle V Y W$ is a right triangle.

Pythagorean Theorem

$$
\left.\begin{array}{rlrl}
21^{2}+(Y V)^{2} & =35^{2} & & \text { Replace } W Y \text { and } V W . \\
+(Y V)^{2} & =1225 & & \\
(Y V)^{2} & =\square & & \text { Subtract. } \\
\sqrt{(Y V)^{2}} & =\sqrt{\square}=X Y & & \text { Theorem 11-5 } \\
\text { each side. }
\end{array}\right] \begin{array}{ll}
\text { Thare root of } \\
Y V & =\square+28 \\
X V & =Y V+X Y \\
X V & =\square \text { Substitution } \\
X V & =\square
\end{array}
$$

Your Turn
In circle G, if $\overline{C G} \perp \overline{A E}, E G=20, C G=12$, find $A E$.

Homework Assignment

Page(s):
Exercises:

11-4 Inscribed Polygons

BUILD YOUR VOGABULARY (pages 208-209)

A polygon is inscribed in a circle if and only if every

- Inscribe regular polygons in circles and explore the relationship between the length of a chord and its distance from the center of the circle.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 11-4, draw a polygon inscribed in a circle and another circumscribed about the circle. Label each drawing appropriately.

EXAMPLE

(1) Construct a regular octagon.

Construct a \square quadrilateral by connecting the consecutive \square of two \square diameters.
Bisect adjacent \square. Extend the bisectors through the \square of the circle to the edges of the circle. The other four \square are where the other two perpendicular
\square intersect the circle. Connect all of the
consecutive \square to form the regular \square. Your Turn Construct a regular hexagon.

Theorem 11-6

In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

EXAMPLE

2 In circle O, point O is the midpoint of $\overline{A B}$. If $C R=2 x-1$ and $S T=x+10$, find x.

Your Turn In circle $Y, N Y=Y O$. If $A X=2 x+15$ and $B Z=3 x+6$, what is the value of x ?

Homework Assignment

Page(s):
Exercises:

11-5 Circumference of a Circle

What You’ll Learn

- Solve problems involving circumference of circles.

OLDABLES

ORGANIZE IT

Under the tab for Lesson 11-5, give the formulas for finding the circumference of a circle and give an example of how they are used.

BUILD YOUR YOCABULARY (pages 208-209)

The perimeter of a \square is known as the
circumference. It is the \square around the circle. The ratio of the \square of a circle to its
\square is always equal to the irrational number called pi.

Theorem 11-7 Circumference of a Circle
If a circle has a circumference of C units and a radius of r units, then $C=2 \pi r$ or $C=\pi d$.

EXAMPLES

(1) The radius of a circle is $\mathbf{8}$ feet. Find the circumference of the circle to the nearest tenth.
$C=2 \pi \square$
Theorem 11-7
$C=2 \pi(\square)$
$C=16 \pi \approx \square$ feet

2 The diameter of a plastic pipe is 5 cm . Find the circumference of the pipe to the nearest centimeter.
$C=\pi \square$
Theorem 11-7
$C=\pi(\square)$
Substitution
$C=5 \pi \approx \square \mathrm{~cm}$

ReVIew IT

How do you find the perimeter of a polygon? (Lesson 1-6)
\qquad
\qquad
\qquad

Remember It

$\mathrm{Pi}(\pi)$ is an exact constant. The decimal approximation $3.14 \ldots$ is only an estimate.

Homework Assicnment

Page(s): Exercises:

Your Turn

a. Find the circumference of circle A to the nearest tenth.

b. The diameter of a $C D$ is 4.5 inches. Find its circumference to the nearest tenth.

EXAMPLE

3) A circular garden has a radius of 20 feet. There is a path around the garden that is $\mathbf{3}$ feet wide. Jasmine stands on the inside edge of the path, and Hitesh stands on the outside edge. They each walk around the garden exactly once while staying along their edge of the path. To the nearest foot, how much farther does Hitesh walk than Jasmine?

Jasmine: Hitesh:
$C=2 \pi r$
Theorem 11-7
$C=2 \pi r$
$C=2 \pi(\square)$
Substitution

$C=\square$
$C=\square$
So, Hitesh walked
 - \square or approximately
\square feet more than Jasmine.

Your Turn

A circle has a circumference of 20.5 meters. Find the radius of the circle to the nearest tenth.

11-6 Area of a Circle

What You'll LEARN

- Solve problems involving areas and sectors of circles.

FOLDABLES

Organize IT

Under the tab for Lesson 11-6, give the formula for finding the area of a circle and give an example of how it is used.

Theorem 11-8 Area of a Circle

If a circle has an area of A square units and a radius of r units, then $A=\pi r^{2}$.

EXAMPIE

(1) Find the area of circle G.

$$
\begin{aligned}
& A=\pi r^{2} \quad \text { Theorem 11-8 } \\
& A=\pi \square{ }^{2} \quad \text { Replace } r . \\
& A=100 \pi \approx \square \mathrm{~cm}^{2}
\end{aligned}
$$

Your Turn Find the area of a circle to the nearest tenth whose diameter is 10 cm .

EXAMPLE

2 If circle S has a circumference of 16π inches, find the area of the circle to the nearest hundredth.

$\frac{16 \pi}{2 \pi}=\frac{2 \pi r}{2 \pi}$

$=r$

$$
A=\pi r^{2}
$$

$$
A=\pi \square{ }^{2}
$$

$$
A=64 \pi \approx \square \mathrm{in}^{2}
$$

Theorem 11-7

Divide each side by \square

Theorem 11-8
\square

Your Turn
Find the area of the circle to the nearest hundredth whose circumference is $84 \pi \mathrm{~cm}$.

BUILD YOUR VOCABULARY (pages 208-209)

Theoretical probability is the chance for a successful outcome based on \square

Experimental probability is calculated from actual observations and recording \square It is the chance for a successful outcome based on observing patterns of occurrences.

EXAMPIE

(3) A pond has a radius of 10 meters. In the center of the pond is a square island with a side length of 5 meters. The seeds of a nearby maple tree float down randomly over the pond. What is the probability that a randomlychosen seed will land in the water rather than on the island? Assume that the seed will land somewhere within the circular edge of the pond.
A of pond $=\pi \square^{2}$

A of island $=\square \mathrm{m}^{2}=\square$
$P($ landing in pond $)=\frac{A \text { of pond }-A \text { of island }}{A \text { of pond }}$

\square

Your Turn

Assume that all darts will land on the dartboard. Find the probability that a randomly-thrown dart will land in the shaded region.

BUILD YOUR VOCABULARY (page 209)

A sector of a circle is a region bounded by a central
\square and its corresponding \square

Theorem 11-9 Area of a Sector of a Circle

If a sector of a circle has an area of A square units, a central angle measurement of N degrees, and a radius of r units, then $A=\left(\frac{N}{360}\right) \pi r^{2}$.

EXAMPLE

4) Find the area of a 45° sector of a circle whose radius is 8 in. Round to the nearest hundredth.

$$
\begin{aligned}
& A=\left(\frac{N}{360}\right) \pi r^{2} \\
& A=\left(\frac{45}{360}\right) \pi 8^{2} \\
& A=(0.125)(64) \pi \\
& A=\square \approx \square \mathrm{in}^{2}
\end{aligned}
$$

Homework Assignment

Page(s):
Exercises:

Your Turn Find the area of a 30° sector of a circle whose radius is 7.75 feet. Round to the nearest hundredth.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 11 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 208-209) to help you solve the puzzle.

11-1
 Parts of a Circle

Underline the term that best completes the statement.

1. A chord that contains the center of the circle is the [diameter/radius].
2. A [chord/radius] is a segment with endpoints of the circle.
3. Two circles are [circumscribed/concentric] if they lie on the same plane, have the same center, and have radii of different lengths.

11-2

Arcs and Central Angles

In circle $C, \overline{B D}$ is a diameter and $m \angle G C F=63$. Find each measure.
4. $m F G$
\square
5. $m \widehat{A D}$

6. $m \overline{A B}$
\square
7. $m G E F$
\square

11-3

Arcs and Chords

Complete each statement.

8. If two chords are congruent in the same circle, the intercepted
\square are also congruent.
9. When the diameter of the circle bisects a chord of the circle, then it is \square to the chord and \square the corresponding arc.
10. In a circle, if two arcs are \square, their
\square are congruent.

11-4

Inscribed Polygons
11. Construct an equilateral triangle inscribed in a circle with radius 1 inch.

12. Draw a circle inscribed in the triangle from the previous problem.
Which segment of the triangle equals the radius of the inscribed circle?

13. What is the approximate length of the segment in Exercise 12?
\square

11-5

Circumference of a Circle

Find the circumference of each circle.
14. $r=\frac{1}{2} \mathrm{yd}$
\square
15. $d=4.2$ in.
\square
Find the radius of the circle whose circumference is given.
16. 47 ft
\square
17. 22.7 in .
\square

11-6

Area of a Circle

Underline the term that best completes the statement.
18. A region of a circle bounded by a central angle and its corresponding arc is $a(n)$ [arc/sector].
19. The segment with endpoints at the center and on the circle is a [sector/radius].
20. Find the area of the shaded region in circle B to the nearest hundredth.

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

ARE YOU READY FOR THE CHAPTER TEST?

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 491 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 488-490 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 491.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldable.
- Then complete the Chapter 11 Study Guide and Review on pages 488-490 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 491.

Parent/Guardian Signature

Surface Area and Volume

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a plain piece of $11^{\prime \prime} \times 17^{\prime \prime}$ paper.

STEP 1
 Fold

Fold the paper in thirds lengthwise.

STEP 2 Open

Open and fold a 2 " tab along the short side. Then fold the rest in fifths.

STEP 3 Draw

Draw lines along folds and label as shown.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
axis			
composite solid			
cone			
cube			
cylinder [SIL-in-dur]			
edge			
face			
lateral area [LAT-er-ul]			
lateral edge			
lateral face			
net			
oblique cone [oh-BLEEK]			
oblique cylinder			
oblique prism			

Vocabulary Term	Found on Page	Definition	Description or Example
oblique pyramid			
Platonic solid			
polyhedron [pa-lee-HEE-drun]			
prism [PRIZ-um]			
pyramid [PEER-a-MID]			
regular pyramid			
right cone			
right cylinder			
right prism			
right pyramid			
similar solids			
slant height			
solid figures			
sphere [SFEER]			
surface area			
tetrahedron			
volume			

12-1 Solid Figures

WHAT YOU'LL LEARN

- Identify solid figures.

BUILD YOUR VOCABULARY (pages 228-229)

Solid figures enclose a part of space.

Solids with flat surfaces that are \square are known as polyhedrons.

The two-dimensional polygonal surfaces of a polyhedron are its faces.
Two faces of a polyhedron \square in a segment called an edge.

A prism is a \square with two faces, called bases, which are formed by congruent polygons that lie in parallel planes.

Faces in a prism that are not bases are parallelograms and are called lateral faces.

The intersection of two \square lateral faces in a prism are called lateral edges and are parallel segments.

A pyramid is a solid with all faces but one intersecting at a common point called the vertex. The face not intersecting at the vertex is the base. The base of a pyramid is a polygon. The faces meeting at the vertex are lateral faces and are triangles.

Remember It

Euclidean solids are also called solid figures.

EXAMPIE

(1) Name the faces, edges, and vertices of the polyhedron.

The faces are quadrilaterals $A B C D$,

The edges are \square $\overline{B C}, \overline{C D}$, \square $\overline{B F}, \overline{A E}, \overline{D H}, \overline{C G}$, $\overline{E F}, \overline{F G}, \overline{G H}, \overline{E H}$.

The vertices are A, B, \square , D, E, F, \square , H.

Write It

Give three real-world examples of polyhedrons.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Your Turn
Name the faces, edges, and vertices of the polyhedron.

BUILD YOUR VOCABULARY (pages 228-229)

A Platonic solid is a \square polyhedron.

A cube is a special rectangular prism where all the faces are \square.

A triangular pyramid is known as a tetrahedron because all of its faces are \square
A cylinder is a solid that is not a \square . Its bases are two congruent \square in parallel planes, and its lateral surface is curved.

A cone is a solid that is not a \square . Its base is
a \square and the lateral surface is curved.

A composite solid is a solid made by \square two or more solids.

EXAMPIE

Remember It

Cylinders and cones are terms referring to circular cylinders and circular cones.

Homework

 AssignmentPage(s):
Exercises:
(2) Is the pyramid in the figure a tetrahedron or a rectangular pyramid?

The pyramid has a \square base
 and \square lateral faces. It is a \square
pyramid.

Your Turn
Describe the Washington Monument in terms of solid figures.

12-2 Surface Areas of Prisms and Cylinders

What You'll Learn

- Find the lateral areas and surface areas of prisms and cylinders.

BUILD YOUR VOCABULARY (pages 228-229)

In a right prism, a lateral edge is also an altitude. In an oblique prism, a lateral edge is not an altitude.

The lateral area of a solid figure is the \square of all the areas of its lateral faces.

The surface area of a solid figure is the \square of the areas of all its surfaces.

A net is a two-dimensional figure that \square to form a solid.

Theorem 12-1 Lateral Area of a Prism

If a prism has a lateral area of L square units and a height of h units and each base has a perimeter of P units, then $L=P h$.

Theorem 12-2 Surface Area of a Prism
If a prism has a surface area of S square units and a height of h units and each base has a perimeter of P units and an area of B square units, then $S=P h+2 B$.

EXAMPIE

OLDABLES

ORGANIZE IT

In the box for Surface Area of Prisms, make a sketch of a prism. Then write the formula for finding the surface area of a prism.

(1) Find the lateral area and total surface area of a cube with side length 6 inches.

Perimeter of Base
$P=4 s$

$$
=4(6) \text { or }
$$

\square
Lateral Area
$L=P h$
$=(24)(6)$ or \square

Area of Base

$$
\begin{aligned}
B & =s^{2} \\
& =6^{2} \text { or }
\end{aligned}
$$

\square
Surface Area

$$
\begin{aligned}
S & =L+2 B \\
& =144+2(36) \\
& =144+72 \text { or } \square
\end{aligned}
$$

The lateral area of the cube is \square in ${ }^{2}$, and the surface area is $\square \mathrm{in}^{2}$

Write IT

What is the difference between lateral area and surface area?
\qquad
\qquad
\qquad
\qquad

Review it
What is the length of the hypotenuse of a right triangle with legs 5 cm and 12 cm long? (Lesson 6-6)
\qquad
\qquad
\qquad
\qquad

Your Turn

Find the lateral area and the surface area of the rectangular prism.

EXAMPIE

2 Find the lateral area and the surface area of the triangular prism.

Use the Pythagorean Theorem to find the
 length of side b.

$$
\begin{array}{rlr}
& \text { Perimeter of Base } \\
c^{2} & =a^{2}+b^{2} & P=10+6+b \\
10^{2} & =6^{2}+b^{2} & =10+6+8 \\
100 & =36+b^{2} & = \\
\square & =b^{2} & \\
\sqrt{64} & =\sqrt{b^{2}} & \\
\square & =b & \\
&
\end{array}
$$

Area of Base

$$
\begin{aligned}
B & =\frac{1}{2} b h \\
& =\frac{1}{2}(6)(8) \\
& =\square
\end{aligned}
$$

Find the lateral and surface areas.
$L=P h$
$S=L+2 B$
$=(24)(8)$
$=192+2(24)$
$=\square \mathrm{cm}^{2}$

$$
=192+48
$$

$$
=\square \mathrm{cm}^{2}
$$

Your Turn
Find the lateral area and the surface area of the triangular prism.

BUILD YOUR VOCABULARY (pages 228-229)

FOLDABLES

Organize IT

In the box for Surface Area of Cylinders, make a sketch of a cylinder. Then write the formula for finding the surface area of a cylinder.

The axis of a cylinder is the segment whose \square are centers of the circular bases.

In a right cylinder, the axis is also an \square In an oblique cylinder, the axis is not an altitude.

Theorem 12-3 Lateral Area of a Cylinder

If a cylinder has a lateral area of L square units and a height of h units and the bases have radii of r units, then $L=2 \pi r h$.

Theorem 12-4 Surface Area of a Cylinder If a cylinder has a surface area of S square units and a height of h units and the bases have radii of r units, then $S=2 \pi r h+2 \pi r^{2}$.

EXAMPIE

3 Find the lateral area and surface area of the cylinder to the nearest hundredth.

$$
\begin{aligned}
L & =2 \pi r h \\
& =2 \pi(8)(14) \\
& \approx \square
\end{aligned}
$$

$$
\begin{aligned}
S & =2 \pi r h+2 \pi r^{2} \\
& =703.72+2 \pi(8)^{2}
\end{aligned}
$$

$$
\approx \square+\square
$$

$$
\approx \square
$$

The lateral area is about $\square \mathrm{in}^{2}$, and the surface

Homework

 AssignmentPage(s):
Exercises:

12-3 Volumes of Prisms and Cylinders

BUILD YOUR VOGABULARY (page 229)

Volume measures the space contained within a solid.

Theorem 12-5 Volume of a Prism
If a prism has a volume of V cubic units, a base with an area of B square units, and a height of h units, then $V=B h$.

EXAMPLES

(1) Find the volume of the triangular prism.

Area of triangular base
$B=\frac{1}{2}(10)(24)$ or \square.
$V=B h$

2 Find the volume of the rectangular prism.
Area of base $B=(2)(5)$ or \square
$V=B h$

Theorem 12-5
Substitution

Your Turn

a. Find the volume of the triangular prism.

b. Find the volume of a rectangular prism with base dimensions of 8 cm by 9 cm and height 4.1 cm .
\square

Theorem 12-6 Volume of a Cylinder

If a cylinder has a volume of V cubic units, a radius of r units, and a height of h units, then $V=\pi r^{2} h$.

5XAMPIE

FOLDABLES

Organize IT

Use the box for Volume of Cylinders. Sketch and label a cylinder. Then write the formula for finding the volume of a cylinder.

Homework

 AssignmentPage(s):
Exercises:

3 Find the volume of the cylinder to the nearest hundredth.

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(5)^{2}(12) \\
& =300 \pi \\
& \approx \square \mathrm{~cm}^{3}
\end{aligned}
$$

Theorem 12-6
Substitution

Your Turn the cylinder to the nearest hundredth.

EXAMPLE

4) Leticia is making a sand sculpture by filling a glass tube with layers of different-colored sand. The tube is 24 inches high and 1 inch in diameter. How many cubic inches of sand will Leticia use to fill the tube?

$$
\begin{array}{rlrl}
V & =\pi r^{2} h & & \text { Theorem 12-6 } \\
& =\pi(0.5)^{2}(24) & & \text { Substitution } \\
& =(0.25)(24) \pi & \\
& =6 \pi & & \\
& \approx \square &
\end{array}
$$

Leticia will need about \square in 3 of sand.

Your Turn
Sam fills the cylindrical coffee grind containers. One bag has 32π cubic inches of grinds. How many cylindrical containers can Sam fill with two bags of grinds if each cylinder is 4 inches wide and 4 inches high?

12-4 Surface Areas of Pyramids and Cones

What You'll LEARN
Find the lateral areas and surface areas of regular pyramids and cones.

BUILD YOUR VOGABULARY (page 229)

In a right pyramid or a right cone, the \square is perpendicular to the base at its center.

In a oblique pyramid or a oblique cone, the altitude is to the base at a point other than
its center.
A pyramid is a regular pyramid if and only if it is a
\square pyramid and its base is a \square polygon. The height of each \square face of a regular pyramid is called the slant height of the pyramid.

FOLDABLES

Organize IT

Use the box for Surface Area of Pyramids. Sketch and label a pyramid. Then write the formula for finding the surface area of a pyramid.

Theorem 12-7 Lateral Area of a Regular Pyramid If a regular pyramid has a lateral area of L square units, a base with a perimeter of P units, and a slant height of ℓ units, then $L=\frac{1}{2} P \ell$.

Theorem 12-8 Surface Area of a Regular Pyramid If a regular pyramid has a surface area of S square units, a slant height of ℓ units, and a base with perimeter of P units and an area of B square units, then $S=\frac{1}{2} P \ell+B$.

EXAMPLE

(1) Find the lateral area and the surface area of the square pyramid.

First, find the perimeter and the area of
 the base.

$$
\begin{aligned}
P & =4 s \\
& =4(15) \text { or } \square
\end{aligned}
$$

Lateral Area

$$
\begin{aligned}
L & =\frac{1}{2} P \ell \\
& =\frac{1}{2}(60)(25) \\
& =\square \mathrm{cm}^{2}
\end{aligned}
$$

Surface Area

$$
\begin{aligned}
S & =L+B \\
& =750+225 \\
& =\square \mathrm{cm}^{2}
\end{aligned}
$$

Your Turn

Find the lateral area and surface area of the square pyramid.
\square

EXAMPIE

2. Find the lateral area and the surface area of a regular triangular pyramid with a base perimeter of 24 inches, a base area of 27.7 square inches, and a slant height of 8 inches.

$$
\begin{aligned}
L & =\frac{1}{2} P \ell \\
& =\frac{1}{2}(24)(8) \\
& =\square \mathrm{in}^{2}
\end{aligned}
$$

$$
=\frac{1}{2}(24)(8) \quad \text { Substitution }
$$

$$
\begin{aligned}
S & =L+B \\
& =96+27.7
\end{aligned}
$$

Theorem 12-7

$$
=\square \mathrm{in}^{2}
$$

Your Turn

Find the lateral area and the surface area of a regular triangular pyramid with a base perimeter of 18 inches, a base area of 15.6 square inches, and a slant height of 11 inches.

FOLDABLES

ORGANIZE IT

Use the box for Surface Area of Cones. Sketch and label a cone. Then write the formula for finding the surface area of a cone.

Homework
Assignment
Page(s):
Exercises:

12-5 Volumes of Pyramids and Cones

What You’ll Learn

- Find the volumes of pyramids and cones.

Theorem 12-11 Volume of a Pyramid

If a pyramid has a volume of V cubic units and a height of h units and the area of the base is B square units, then $V=\frac{1}{3} B h$.

EXAMPLES

(1) Find the volume of the rectangular pyramid.

$$
\begin{aligned}
B & =\ell w \\
& =(10)(4) \text { or } \square \\
V & =\frac{1}{3} B h \\
& =\frac{1}{3}(40)(12) \\
& =\square \mathrm{cm}^{3}
\end{aligned}
$$

Theorem 12-11

$$
=\frac{1}{3}(40)(12) \quad \text { Substitution }
$$

FOLDABLES

Organize IT

Use the boxes for Volume of Pyramids and Cones. Sketch and label a pyramid and a cone. Then write the formula for finding the volumes of a pyramid and a cone.

2 Find the volume of the cone to the nearest hundredth.
Find the height h
$h^{2}+21^{2}=35^{2}$
$h^{2}+441=1225$
$h^{2}=784$
$\sqrt{h^{2}}=\sqrt{784}$
$h=\square$

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(21)^{2}(28) \\
& \approx \square \mathrm{in}^{3}
\end{aligned}
$$

$$
=\frac{1}{3} \pi(21)^{2}(28) \quad \text { Substitution }
$$

Theorem 12-12 Volume of a Cone
If a cone has a volume of V cubic units, a radius of r units, and a height of h units, then $V=\frac{1}{3} \pi r^{2} h$.

Your Turn

a. Find the volume of the triangular pyramid.

b. Find the volume of the cone to the nearest hundredth.

EXAMPLE

(3) The sand in a cone with radius 3 cm and height 10 cm is poured into a square prism with height of 29.5 cm and base area of $4 \mathbf{~ c m}^{2}$. How far up the side of the prism will the sand reach when leveled?

Volume of Cone

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi(3)^{2}(10) \\
& =30 \pi \\
& \approx \square
\end{aligned}
$$

Volume of Prism

$$
\begin{aligned}
V & =B h \\
94.25 & =4 h \\
h & \approx \square
\end{aligned}
$$

The sand will level off at a height of about $\square \mathrm{cm}$ in the prism.

Your Turn

The salt in a cone with radius 6 cm and height 8 cm is poured into a square prism with height of 20 cm and base area of $12 \mathrm{~cm}^{2}$. Will the prism be able to hold all of the salt?

BUILD YOUR VOcABULARY（page 229）

What You＇ll LEARN
 －Find the surface areas and volumes of spheres．

FOLDABLES

ORGANIZE IT

Use the boxes for Volume and Surface Area of Spheres．Sketch and label a sphere．Then write the formulas for finding the surface area and volume of a sphere．

A sphere is the set of all points that are a fixed
\square from a given \square called the center．

Theorem 12－13 Surface Area of a Sphere

If a sphere has a surface area of S square units and a radius of r units，then $S=4 \pi r^{2}$ ．

Theorem 12－14 Volume of a Sphere

If a sphere has a volume of V cubic units and a radius of r units，then $V=\left(\frac{4}{3}\right) \pi r^{3}$ ．

EXAMPLE

（1）Find the surface area and volume of a sphere with radius 5 cm ．

Surface Area

$$
\begin{aligned}
S & =4 \pi r^{2} \\
& =4 \pi(5)^{2} \\
& =100 \pi \\
& \approx \square \mathrm{~cm}^{2}
\end{aligned}
$$

Volume

$$
\begin{aligned}
V & =\left(\frac{4}{3}\right) \pi r^{3} \\
& =\left(\frac{4}{3}\right) \pi(5)^{3} \\
& =\left(\frac{500}{3}\right) \pi \\
& \approx \square \mathrm{cm}^{3}
\end{aligned}
$$

Your Turn Find the surface area and volume of a sphere with diameter 15 in．

EXAMPLE

2 Some students build a snow sculpture from a cylinder and a sphere of snow. Both the sphere and the cylinder have a radius of 1 ft . and the height of the cylinder is 4 ft . Find the volume of the snow used to build the sculpture.

$$
\begin{aligned}
& \text { Volume of Cylinder } \\
& \begin{aligned}
V & =\pi r^{2} h \\
& =\pi(1)^{2}(4) \\
& =4 \pi \\
& \approx \square
\end{aligned}
\end{aligned}
$$

Volume of Sphere
$V=\left(\frac{4}{3}\right) \pi r^{3}$

$$
=\left(\frac{4}{3}\right) \pi(1)^{3}
$$

$$
=\left(\frac{4}{3}\right) \pi
$$

$$
\approx \square
$$

The volume of the snow used for the sculpture is about $12.57+4.19$, or $\square \mathrm{ft}^{3}$.

Your Turn

Felix and Brenda want to share an ice cream cone. Brenda wants half the scoop of ice cream on top, while Felix wants the ice cream inside the cone. Assuming the half scoop of ice cream on top is a perfect sphere, who will have more ice cream? The cone and scoop both have radii of 1.5 inch; the cone is 3.25 inches long.

12-7 Similarity of Solid Figures

What You’ll Learn

- Identify and use the relationship between similar solid figures.

BUILD YOUR VOCABULARY (page 229)

Similar solids are solids that have the same \square but not necessarily the same \square

5XAMPIE

Key Concept

Characteristics of Similar Solids For similar solids, the corresponding lengths are proportional, and the corresponding faces are similar.

Remember It

A scale factor is a one-dimensional measure. Surface area is a two-dimensional measure. Volume is a three-dimensional measure.
(1) Determine whether the pair of solids is similar.

$$
\begin{aligned}
\frac{9}{27} & \stackrel{?}{=} \frac{18}{54} \\
(9)(54) & \stackrel{?}{=}(27)(18) \\
486 & =486
\end{aligned}
$$

Definition of similarity
Cross products

The corresponding lengths are in \square , so the solids \square similar.

Your Turn

Determine whether each pair of solids is similar.
a.

Theorem 12-15
If two solids are similar with a scale factor of $a: b$, then the surface areas have a ratio of $a^{2}: b^{2}$ and the volumes have a ratio of $a^{3}: b^{3}$.

EXAMPLE

2 For the similar prisms, find the scale factor of the prism on the left to the prism on the right. Then find the ratios of the surface areas and the volumes.

The scale factor is $\frac{21}{7}=\frac{30}{10}$ or \square
The ratio of the surface areas is $\frac{3^{2}}{1^{2}}$ or \square
The ratio of the volumes is $\frac{3^{3}}{1^{3}}$ or \square

Your Turn

Find the scale factor of the prism on the left to the prism on the right. Then find the ratios of the surface areas and the volumes.

EXAMPTE

3 Sara made a scale model of the Great American Pyramid in Memphis, Tennessee, which has a base side length of 544 ft and a lateral area of $456,960 \mathrm{ft}^{2}$. If the scale factor of the model to the original is $1: 136$, what will be the lateral area of the model?

$$
\frac{\text { surface area of the model }}{\text { surface area of Great Amer. Pyr. }}=\frac{1^{2}}{136^{2}}
$$

Your Turn

A scale model of a house is made using a scale factor of $\frac{1}{112}$. What fraction of the actual house material would would the dollhouse need to cover all of its floors?

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 12 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder
(pages 228-229) to help you solve the puzzle.

12-1
 Solid Figures

Complete each sentence.

1. Two faces of a polyhedron intersect at a(n) \square
2. A triangular pyramid is called a \square
3. A \square is a figure that encloses a part of space.
4. Three faces of a polyhedron intersect at a point called $a(n)$
\square

12-2

Surface Areas of Prisms and Cylinders

Find the lateral area and surface area of each solid to the nearest hundredth.
5. a regular pentagonal prism with apothem $a=4$, side length $s=6$, and height $h=12$
a. $L=$

b. $S=$

6. a cylinder with radius $r=42$ and height $h=10$
a. $L \approx$ \square
b. $S \approx$ \square

12-3

Volumes of Prisms and Cylinders

Find the volume of each solid and round to the nearest hundredth.
7. the regular pentagonal prism from Exercise \#5

8. How much water will a 24 in . by 15 in . by 10 in . fish tank hold?
\square

12-4

Surface Areas of Pyramids and Cones

Find the lateral and surface areas of each solid. Round to the nearest hundredth if necessary.
9. a rectangular pyramid with base dimensions 2 ft by 3 ft and lateral height $h=1 \mathrm{ft}$
a. $L \approx \square$
b. $S \approx$

10. a cone with diameter 3.6 cm and lateral height 2.4 cm
a. $L \approx \square$
b. $S \approx \square$

12-5

Volumes of Pyramids and Cones

Find the volume of each solid rounded to the nearest hundredth, if necessary.
11. a cone with its height as three times the radius
\square
12. the cone in Exercise \#10
\square

12-6

Spheres
Complete the sentence.
13. The set of all points a given distance from the center is a

A beach ball will have a diameter of 30 in .

14. How much material will be used to make the beach ball?
\square
15. How much air will be needed to fill it?
\square

12-7
Similarity of Solid Figures
16. Solids having the same shape but not always the same size are \square

If the radius of a sphere is doubled:

17. How does the surface area change?
\square
18. How does the volume change?
\square
The diameter of the moon is about 2160 miles. The diameter of the Earth is about $\mathbf{7 9 0 0}$ miles.
19. Assuming both are spheres, what is the scale factor of the Earth to the moon?
\square
20. Are they similar solid figures?

ARE YOU READY FOR
 THE CHAPTER TEST?

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 543 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 540-542 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 543.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldable.
- Then complete the Chapter 12 Study Guide and Review on pages 540-542 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 543.

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with three sheets of lined $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Stack
Stack sheets of paper with edges $\frac{1}{4}$ inch apart.

STEP 2 Fold

Fold up bottom edges. All tabs should be the same size.

STEP 3 Crease
Crease and staple along fold.

STEP 4

Turn
Turn and label the tabs with the lesson names.

NOTE-TAKING TIP: When taking notes, it is often helpful to remember what you've learned if you can paraphrase or summarize key terms and concepts in your own words.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 13. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
$30^{\circ}-60^{\circ}-90^{\circ}$ triangle			
$45^{\circ}-45^{\circ}-90^{\circ}$ triangle			
angle of depression			
angle of elevation			
cosine			
hypsometer			
perfect square			
radical expression			
RAD-ik-ul]			

Vocabulary Term	Found on Page	Definition	Description or Example
radical sign			
radicand [RAD-i-KAND]			
simplest form			
sine			
square root			
tangent			
tran-junt]			
trigonometric ratio			

13-1 Simplifying Square Roots

What You’ll Learn

- Multiply, divide, and simplify radical expressions.

BUILD YOUR VOGABULARY (pages 252-253)

Perfect squares are products of two \square factors, or when a number multiplies itself.

The square root, therefore, is one of \square equal factors.
A \square number has both positive (+) and negative (-) square roots, indicated by the radical sign $\sqrt{ }$.

A radical expression is an expression that contains a
\square
The number under the radical sign $\sqrt{ }$ is the radicand.

Write It

What are the next three perfect squares after 16?
\qquad
\qquad
\qquad

Key Concept

Product Property of
Square Roots The square root of a product is equal to the product of each square root.

EXAMPLES

Simplify each expression.

(1) $\sqrt{36}$
$\sqrt{36}=\square$, because $6^{2}=36$.
(2) $\sqrt{81}$
$\sqrt{81}=\square$, because $9^{2}=81$.
(3) $\sqrt{24}$

$$
\begin{aligned}
\sqrt{24} & =\sqrt{2 \cdot 2 \cdot 2 \cdot 3} \\
& =\sqrt{2 \cdot 2} \cdot \sqrt{2 \cdot 3} \\
& =2 \cdot \sqrt{6} \\
& =\square
\end{aligned}
$$

(4) $\sqrt{6} \cdot \sqrt{30}$

KEY CONCEPT

Quotient Property of Square Roots The square root of a quotient is equal to the quotient of each square root.

Foldables
On the tab for Lesson 13-1, write the names of the two properties introduced in this lesson. Then write your own example of each property on the back of the tab.

Remember It

Simplifying a fraction with a radical in the denominator is called rationalizing the denominator.

$$
\begin{aligned}
\sqrt{6} \cdot \sqrt{30} & =\sqrt{6} \cdot \square \\
& =\sqrt{6 \cdot 6 \cdot 5} \\
& =\square \cdot \sqrt{5} \\
& =\square
\end{aligned}
$$

Prime factorization
Product Property of Square Roots

Product Property of Square Roots
$\sqrt{6 \cdot 6}=6$

Your Turn Simplify each expression.

a. $\sqrt{25}$

b. $\sqrt{121}$

c. $\sqrt{18}$

d. $\sqrt{3} \cdot \sqrt{12}$

EXAMPLES

Simplify each expression.

5
$\frac{\sqrt{16}}{\sqrt{8}}$
$\frac{\sqrt{16}}{\sqrt{8}}=\sqrt{\frac{16}{8}}$
Quotient Property

6. $\sqrt{\frac{121}{49}}$
$\sqrt{\frac{121}{49}}=\frac{\sqrt{121}}{\sqrt{49}}$ Quotient Property

$$
=\square
$$

Your Turn Simplify each expression.

a. $\frac{\sqrt{20}}{\sqrt{4}}$
b. $\frac{\sqrt{144}}{\sqrt{25}}$

EXAMPLES

Key Concept

Rules for Simplifying Radical Expressions

1. There are no perfect square factors other than 1 in the radicand.
2. The radicand is not a fraction.
3. The denominator does not contain a radical expression.

Homework Assignment

Page(s):

Exercises:
(7) Simplify $\frac{\sqrt{10}}{\sqrt{7}}$.

$$
\begin{aligned}
\frac{\sqrt{10}}{\sqrt{7}} & =\frac{\sqrt{10}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}} \\
& =\frac{\sqrt{10 \cdot 7}}{\sqrt{7 \cdot 7}} \\
& =\frac{\sqrt{70}}{7}
\end{aligned}
$$

$$
\frac{\sqrt{7}}{\sqrt{7}}=1
$$

Product Property of Square Roots

$$
\sqrt{7 \cdot 7}=7
$$

We used the Identity Property and the Product Property of Square Roots to simplify the above radical expression. The denominator does not have a radical sign.

8 Simplify $\frac{16}{\sqrt{6}}$.

$$
\begin{aligned}
\frac{16}{\sqrt{6}} & =\frac{16}{\sqrt{6}} \cdot \square \\
& =\frac{16 \cdot \sqrt{6}}{\sqrt{6} \cdot \sqrt{6}} \\
& =\frac{16 \sqrt{6}}{\square} \\
& =\frac{16 \sqrt{6}}{6} \text { or }
\end{aligned}
$$

Product Property of Square Roots

$$
\sqrt{6 \cdot 6}=6
$$

We used the Identity Property and the Product Property of Square Roots to simplify the above expression and eliminate the radical in the denominator.

Your Turn Simplify.

a. $\frac{\sqrt{7}}{\sqrt{2}}$

b. $\frac{4}{\sqrt{5}}$

13-2 $45^{\circ}-45^{\circ}-90^{\circ}$ Triangles

What You’ll Learn

- Use the properties of $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.

Write IT

Describe two different ways to find the length of the hypotenuse of a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.
\qquad
\qquad
1

BUILD YOUR VOCABULARY (page 252)

The \square of a square separates the square into two $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.

Theorem 13-1 $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times the length of a leg.

EXAMPLE

(1) In a scale model of a town, a baseball diamond has sides 36 inches long. What is the distance from first base to third base on the model? Round to the nearest tenth.

```
h=s\sqrt{}{2}}\quad\mathrm{ Theorem 13-1
    =\square\sqrt{}{2}
                                    Substitution
    \approx
```

The distance from first to third base on the scale model is
about \square inches.

Your Turn Find the length of the diagonal of a square whose side measures 22 inches.

EXAMPIE

Remember It

A $45^{\circ}-45^{\circ}-90^{\circ}$
triangle is isosceles, so the legs are always congruent.

FOLDABLES

Organize IT

On the tab for Lesson 13-2, draw a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle and label its parts. Then write your own real-world example that can be solved using this information.

Homework Assignment

Page(s):
Exercises:

BUILD YOUR VOGABULARY (page 252)

What You’ll Learn

- Use the properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

Remember It

The shorter leg is always opposite the 30° angle, and the longer leg is always opposite the 60° angle.

The median of an equilateral triangle separates it into two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles.

Theorem 13-2 $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice the length of the shorter leg, and the longer leg is $\sqrt{3}$ times the length of the shorter leg.

EXAMPLE

(1) In $\triangle A B C, a=12$. Find b and c.

$$
a=b \sqrt{3} \quad \text { The longer leg is } \sqrt{3} \text { times }
$$ the length of the shorter leg.

Replace a with

$$
\square=b \sqrt{3}
$$

$$
=b
$$

$$
c=2 b
$$

The hypotenuse is twice the shorter leg.
Replace b with \square.

$$
\square
$$

EXAMPIE

2
In $\triangle D E F, D E=18$. Find $E F$ and $D F$.
Use Theorem 13-2.

The longer leg is $\sqrt{3}$ times the shorter leg.

Replace $D E$ with \square
Divide each side by $\sqrt{3}$.

The hypotenuse is twice the shorter leg.

Replace $E F$ with \square

Associative Property

Your Turn

Refer to Example 2. If $D E=11$, find $E F$ and $D F$.

Homework ASSIGNMENT

Page(s):

Exercises:
you can find the length of the longer leg given the length of the shorter leg.

Organize IT

Under the tab for Lesson 13-3, draw a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle and label its parts. Then write a summary of how

BUILD YOUR VOGABULARY (page 253)

What You'll Learn

- Use the tangent ratio to solve problems.

Trigonometry is the study of the properties of

A trigonometric ratio is a ratio of the measures of two sides of a \square triangle.

The tangent is the ratio of one \square to the other. If A is an acute angle of a right triangle, $\tan A=\frac{\text { measure of leg opposite } \angle A}{\text { measure of leg adjacent to } \angle A}$.

EXAMPIE

Remember It

The ratio of the measures of the legs of a right triangle can be compared to the ratio of rise to run in the definition of slope of a line.
(1) Find $\tan K$ and $\tan M$.

$\tan M=\frac{K L}{M L}$
$=\frac{28}{21}$ or \square
opposite

Substitution $\frac{\text { opposite }}{\text { adjacent }}$ Substitution

Your Turn Find $\tan 30^{\circ}, \tan 45^{\circ}, \tan 60^{\circ}$.

EXAMPLES

Remember It

The symbol $\tan B$ is read the tangent of angle B.

FOLDABLES

Organize it

Write the definition of tangent on the tab for Lesson 13-4. Under the tab, sketch and label a triangle. Then express the tangent of one of the angles.

2 Find $Q R$ to the nearest tenth of a meter.

3 A ranger sights the top of a tree at a 40° angle of elevation. Find the height of the tree if it is $\mathbf{8 0}$ feet from where the ranger is standing.

The height of the tree is about \square feet.

BUILD YOUR VOCABULARY (page 252)

The line of sight and a horizontal line when looking up form the angle of elevation.

Angles of elevation can be measured \square using a hypsometer.

The line of sight and a horizontal line when looking
\square form the angle of depression.

Remember It

The inverse tangent is also called the arctangent.

Homework Assignment

Page(s):
Exercises:

EXAMPIE

Find $m \angle 1$ to the nearest tenth.

Your Turn

a. Find $Y Z$ to the nearest tenth of a foot.

b. The ranger sights the top of another tree at a 52° angle of elevation. Find the height of the tree if it is 20 feet from where he stands.

$\tan ^{-1}\left(\frac{22}{47}\right) \approx \square$ Definition of arctangent
The measure of $\angle 1$ is about \square

Your Turn
Find $m \angle 2$ to the nearest tenth.

13-5 Sine and Cosine Ratios

What You’ll Learn

- Use the sine and cosine ratios to solve problems.

FOLDABLES

OrGANIZE IT

Write the definitions of sine and cosine on the tab for Lesson 13-5. On the back of the tab, describe a similarity and a difference between sine and cosine.

EXAMPLE

(1) Find $\sin K, \cos K, \sin M$, and $\cos M$.

$\sin K$

$\cos K$
$=\frac{K L}{K M} \quad \frac{\text { adjacent }}{\text { hypotenuse }}$

$\sin M$

$$
\begin{aligned}
& =\frac{K L}{K M} \quad \frac{\text { opposite }}{\text { hypotenuse }} \\
& =\square \quad \text { Substitution } \\
& \approx \square
\end{aligned}
$$

$\cos M$
$=\frac{L M}{K M} \quad \frac{\text { adjacent }}{\text { hypotenuse }}$

Your Turn
Find $\sin 30^{\circ}, \cos 30^{\circ}, \sin 45^{\circ}, \cos 45^{\circ}, \sin 60^{\circ}$, $\cos 60^{\circ}$.
\square

EXAMPIE

2 Find the value of x to the nearest tenth.

$$
\sin 26=\frac{x}{200} \quad \frac{\text { opposite }}{\text { hypotenuse }}
$$

$200 \sin 26=x$
Multiplication Property of Equality

$$
\square \approx x
$$

Remember It

$\sin ^{-1}$ and $\cos ^{-1}$ are also known as arcsin and arccos.

Homework

 AssignmentPage(s):
Exercises:

EXAMPLE

(3) Find the measure of $\angle K$ to the nearest degree.
$\sin K=\frac{L M}{K M}$
$\frac{\text { opposite }}{\text { hypotenuse }}$
$\sin K=\frac{68}{82}$
Substitution
$m \angle K=\sin ^{-1}\left(\frac{68}{82}\right)$
Inverse sine
$m \angle K \approx \square$

Your Turn

a. Find the value of x to the nearest tenth.

b. Find the measure of $\angle A$ to the nearest degree.

Theorem 13-3

If x is a measure of an acute angle of a right triangle, then $\frac{\sin x}{\cos x}=\tan x$.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 13 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 13, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 252-253) to help you solve the puzzle.

13-1

Simplifying Square Roots

Simplify.

1. $\sqrt{63}$
2. $\frac{1}{\sqrt{3}}$

3. $\sqrt{10} \cdot \sqrt{8}$

4. Find the value of x if $\frac{2}{\sqrt{x}}=\frac{2 \sqrt{x}}{3}$.
\square

13-2

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangles

A fabric square is cut on the diagonal for a quilt. The perimeter of the square is 116 in .
5. What is the length of each leg/side?
\square
6. What is the length of the hypotenuse/diagonal?
\square
7. What is the measure of each leg of an isosceles right triangle if its hypotenuse measures 10 ?
\square

13-3

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

8. The Gothic arch, similar to the figure, is based on an equilateral triangle. Find the width of the base of the triangle if the median is 4 ft long.

Find the missing measure. Simplify all radicals.
9.

10.

13-4

Tangent Ratio
11. You spot a cat on the roof of a house 80 feet away from where you're standing. Your eye level is 5 feet above ground level, and the angle of elevation from eye level is 33°. How tall is the house?

13-5

Sine and Cosine Ratios

Find the missing measures.

12. If $y=20$, find x and z.
13. If $z=2.3$, find x and y.

14. If $x=9$, find y and z.

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 13.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 13 Practice Test on page 581 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 13 Study Guide and Review on pages 578-580 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 13 Practice Test on page 581.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 13 Foldable.
- Then complete the Chapter 13 Study Guide and Review on pages 578-580 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 13 Practice Test on page 581.

Student Signature

Parent/Guardian Signature

Circle Relationships

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with three sheets of plain $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold

Fold in half along the width.

Open
Open and fold the bottom to form a pocket. Glue edges.

Repeat

Repeat steps 1 and 2 three times and glue all three pieces together.

STEP 3

4

Label

Label each pocket with the lesson names. Place an index card in each pocket.

NOTE-TAKING TIP: When taking notes, define new terms and write about the new ideas and concepts you are learning in your own words. Write your own examples that use the new terms and concepts.

BUILD YOUR Vocabulary

This is an alphabetical list of new vocabulary terms you will learn in Chapter 14. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
external secant segment [SEE-kant]			
externally tangent [TAN-junt]			
inscribed angle			
intercepted arc			
internally tangent			

Vocabulary Term	Found on Page	Definition	Description or Example
point of tangency			
secant angle			
secant-tangent angle			
secant segment			
tangent-tangent angle			

14-1 Inscribed Angles

What You'll LEARN

- Identify and use properties of inscribed angles.

FOLDABLES

Organize It

Under the tab for Inscribed Angles, write the definition of an inscribed angle and draw a picture to illustrate the concept. Record the theorems and other important information from this lesson.

BUILD YOUR VOCABULARY (page 270)

An inscribed angle is an angle whose \square lies on a circle and whose sides contain \square of the circle.

An intercepted arc is an arc of a circle, formed by an angle, such that the \square of the arc lie on the sides of the angle and all other points of the arc lie on the \square of the angle.

EXAMPLE

(1) Determine whether $\angle A B C$ is an inscribed angle. Name the intercepted arc for the angle.

The vertex of $\angle A B C$, point B, is on
 circle Q. Therefore, $\angle A B C$ is an
 angle. The intercepted
arc is $A C$.

Your Turn

Determine whether $\angle J K L$ is an inscribed angle. Name the intercepted arc for the angle.

Theorem 14-1

The degree measure of an inscribed angle equals one-half the degree measure of its intercepted arc.

EXAMPLES

Refer to the figure.

2. If $m \widehat{A B}=76$, find $m \angle A D B$.
$m \angle A D B=\frac{1}{2}(m \widehat{A B}) \quad$ Theorem 14-1

$$
\begin{aligned}
& m \angle A D B=\frac{1}{2}(\square) \quad \text { Replace } m \widetilde{A B} . \\
& m \angle A D B=\square
\end{aligned}
$$

3 If $m \angle B D C=40$, find $m \widetilde{B C}$.

Write It

What is the difference between a central angle and an inscribed angle?

Remember It

There are 360° in a circle and 180° in a semicircle.

$$
\begin{aligned}
m \angle B D C & =\frac{1}{2}(m \widehat{B C}) & & \text { Theorem 14-1 } \\
40 & =\frac{1}{2}(m \overparen{B C}) & & \text { Replace } m \angle B D C . \\
2 \cdot 40 & =2 \cdot \frac{1}{2}(m \overparen{B C}) & & \text { Multiply each side by } 2 . \\
\square & =m \widehat{B C} & &
\end{aligned}
$$

Your Turn Refer to the figure.

a. If $m \widehat{Z W}=124$,
find $m \angle W X Z$.
b. If $m \angle Y X Z=49$, find $m \overline{Y Z}$.

Theorem 14-2

If inscribed angles intercept the same arc or congruent arcs, then the angles are congruent.

EXAMPLE

4. In circle A, suppose $m \angle T L N=6 y+7$ and $m \angle T W N=7 y$. Find the value of y. $\angle T L N$ and $\angle T W N$ both intercept $T N$.

$$
\begin{aligned}
\angle T L N & \cong \angle T W N \\
m \angle T L N & =m \angle T W N \\
\square & =\square \\
\square & =y
\end{aligned}
$$

> Definition of congruent angles

Replace $m \angle T L N$ and $m \angle T W N$.
Subtract $6 y$ from each side.

Write It

How does the measure of an inscribed angle relate to the measure of its intercepted arc?
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

14-2 Tangents to a Circle

What You'll Learn

- Identify and apply properties of tangents to circles.

BUILD YOUR VOGABULARY (page 271)

In a plane, a line is a tangent if and only if it intersects a circle in exactly \square point.

The point of intersection is the point of tangency.

Theorem 14-4

In a plane, if a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of tangency.

Theorem 14-5

In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is a tangent.

EXAMPIE

FOLDABLES

ORGANIZE IT

Under the tab for Tangents to a Circle, write the definition of tangent and draw a picture to illustrate the concept. Record the theorems and other important information from this lesson.

(1) $\overrightarrow{A B}$ is tangent to circle \boldsymbol{C} at \boldsymbol{B}. Find $\boldsymbol{B C}$. $\overrightarrow{A B} \perp \overline{C B}$ by Theorem 14-4, making $\angle C B A$ a right angle by definition. Therefore, $\triangle A B C$ is a right triangle.

Pythagorean Theorem
Replace $A B$ and $A C$.

Square \square and \square

Subtract 784 from each side.

$$
(B C)^{2}=\square
$$

$$
\sqrt{(B C)^{2}}=\sqrt{441}
$$

Take the square root of each side.

$$
B C=\square
$$

Your Turn $\overline{A E}$ is tangent to circle C at E. Find $A E$.

Theorem 14-6

If two segments from the same exterior point are tangent to a circle, then they are congruent.

EXAMPLE

2. $\overline{E F}$ and $\overline{E G}$ are tangent to circle H. Find the value of x.

$$
\begin{aligned}
\overline{E F} & \cong \overline{E G} & & \text { Theorem 14-6 } \\
\square & =\square & & \text { Replace } \overline{E F} \text { and } \overline{E G} . \\
3 x+10-\square & =43-\square & & \text { Subtract } 10 \text { from each side. } \\
3 x & =33 & & \\
\frac{3 x}{3} & =\frac{33}{3} & & \text { Divide each side by } \square .
\end{aligned}
$$

Homework

 AssignmentPage(s):

Exercises:

BUILD YOUR VOGABULARY (pages 270-271)

If two circles are tangent and one circle is
 the

BUILD YOUR Vocabulary (page 271)

What You'll Learn

- Find measures of arcs and angles formed by secants.

FOLDABLES

Organize It

Under the tab for Secant Angles, write the definition of a secant segment. Draw a picture of secant angles to illustrate the concept. Record the theorems and other important information from this lesson.

Theorem 14-7

A line or line segment is a secant to a circle if and only if it intersects the circle in two points.

Theorem 14-8

If a secant angle has its vertex inside a circle, then its degree measure is one-half the sum of the degree measures of the arcs intercepted by the angle and its vertical angle.

Theorem 14-9
If a secant angle has its vertex outside a circle, then its degree measure is one-half the difference of the degree measures of the intercepted arcs.

EXAMPIE

(1) Find $m \angle 1$.

The vertex of $\angle 1$ is inside circle P.

$m \angle 1=\frac{1}{2}(m \overline{A B}+m \overline{C D})$
Theorem 14-8

Your Turn
If $m \widehat{M A}=40$ and $m \widehat{H T}=50$,
find $m \angle 1$.

EXAMPIE

Remember It

The diameter of a circle is also a secant.

Homework Assignment

Page(s):
Exercises:

(2) Find $m \angle J$.

The vertex of $\angle J$ is outside circle Q.

$$
\begin{aligned}
& m \angle J=\frac{1}{2}(m \widehat{M N}-m \widehat{K L}) \\
& m \angle J=\frac{1}{2}(\square) \\
& m \angle J=\frac{1}{2}(\square) \text { or } \square
\end{aligned}
$$

Theorem 14-9

EXAMPIE

3 Find the value of x. Then find $m \widehat{\boldsymbol{C D}}$. The vertex lies inside circle P.

$57=\frac{1}{2}(9 x+6) \quad$ Combine like terms.

$$
2 \cdot 57=2 \cdot \frac{1}{2}(9 x+6) \quad \text { Multiply each side by } 2 .
$$

$$
114-6=9 x+6-6
$$

Your Turn

a. If $m \widehat{C E}=85$ and $m \widehat{B D}=40$, find $m \angle A$.

b. Find the value of x. Then find $m T H$.

What You'll Learn

- Find measures of arcs and angles formed by secants and tangents.

Theorem 14-10

If a secant-tangent angle has its vertex outside the circle, then its degree measure is one-half the difference of the degree measures of the intercepted arcs.

Theorem 14-11
If a secant-tangent angle has its vertex on the circle, then its degree measure is one-half the degree measure of the intercepted arc.

EXAMPLES

In the figure, $\overline{A D}$ is tangent to circle K at A.

Key Concept

Secant - Tangent Angles Vertex Outside the Circle Secant - tangent angle $P Q R$ intercepts $\widehat{P R}$ and $\widehat{P S}$.

Vertext on the Circle Secant - tangent angle $A B C$ intercepts $\widehat{A B}$.

FOLDABLES
Under the tab for Secant-Tangent Angles, write the definitions of secanttangent angles and tangent-tangent angles.

(1) Find $m \angle 1$.

Theorem 14-10
$m \angle 1=\frac{1}{2}(m \overline{A B}-m \widehat{A C})$
$m \angle 1=\frac{1}{2}(\square)$
$m \angle 1=\frac{1}{2}(\square)$ or \square

(2) Find $m \angle 2$.

Vertex A of the secant-tangent angle is on circle K.

$$
m \angle 2=\frac{1}{2}(m \overline{A C B})
$$

Theorem 14-11
$m \angle 2=\frac{1}{2}(\square+\square)$
$m \angle 2=\frac{1}{2}(\square)$ or \square

Remember It

The vertex of a secant-tangent angle cannot be located inside the circle.

ReVIEW IT

Explain the difference between a minor arc and a major arc of a circle. (Lesson 11-2)
\qquad
\qquad

Homework ASSIGNMENT

Page(s):
Exercises:

Your Turn

a. $\overline{A Z}$ is tangent to circle D at A. If $m A B=150$, find $m \angle Z$.

b. $\overrightarrow{E F}$ is tangent to circle D at E. If $m \overline{E G C}=230$, find $m \angle F E C$.

BUILD YOUR VOGABULARY (page 271)

A tangent-tangent angle is formed by two \square Its vertex is always outside the circle.

Theorem 14-12
The degree measure of a tangent-tangent angle is one-half the difference of the degree measures of the intercepted arcs.

EXAMPIE

3 Find $m \angle G$.
$\angle G$ is a tangent-tangent angle. Apply Theorem 14-12.

By definition of a right angle, $m \angle F O H=90$. So, $m F H=90$, because a minor arc is congruent to its central angle.
Since the sum of the measures of a minor arc and its major arc is 360°, major arc $F J H$ is $360^{\circ}-90^{\circ}=270^{\circ}$.
$m \angle G=\frac{1}{2}$ (major arc $\overline{F J H}-$ minor $\operatorname{arc} \overline{F H}$)
$m \angle G=\frac{1}{2}(270-90)$
$m \angle G=\frac{1}{2}(\square)$ or \square

Your Turn
 Find $m \angle B$.

14-5 Segment Measures

WHAT YOU'LL LEARN
- Find measures of
chords, secants, and
tangents.

FOLDABLES

Organize IT

Under the tab for Segment Measures, write the definition of an external secant segment. Record the theorems and other main ideas from this lesson.

BUILD YOUR VOGABULARY (page 270)

A segment is an external secant segment if and only if it is the part of a secant segment that is \square

Theorem 14-13

If two chords of a circle intersect, then the product of the measures of the segments of one chord equals the product of the measures of the segments of the other chord.

Theorem 14-14

If two secant segments are drawn to a circle from an exterior point, then the product of the measures of one secant segment and its external secant segment equals the product of the measures of the other secant segment and its external secant segment.

Theorem 14-15

If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment equals the product of the measures of the secant segment and its external secant segment.

EXAMPIE

(1) In circle A, find the value of x.
$P T \cdot T R=Q T \cdot T S$

$$
48=12 x
$$

$$
\frac{48}{4}=\frac{12 x}{4}
$$

$$
\square=x
$$

Theorem 14-13
Substitution

Divide each side by

Division Property

Your Turn
Find the value of x in the circle.

EXAMPLES

 between Theorem 14-13 and Theorem 14-14 in your own words.\qquad
\qquad
\qquad
(2) Find the value of x to the nearest tenth.

$$
\begin{aligned}
6 x+36-36 & =60-36 \\
6 x & =\square \\
\frac{6 x}{6} & =\frac{24}{6} \\
x & =\square
\end{aligned}
$$

Theorem 14-14
Distributive Property
Subtract \square from each side.

Divide each side by

\square

3 Use the value of \boldsymbol{x} to find the value of \boldsymbol{y}.

$$
\begin{aligned}
& y^{2}=(x+5) \cdot 5 \\
& y^{2}=(4+5) \cdot 5 \\
& y^{2}=\square \\
& \sqrt{y^{2}}=\sqrt{45} \\
& y=\square \approx \square
\end{aligned}
$$

Theorem 14-15
Substitution

$$
\sqrt{y^{2}}=\sqrt{45} \quad \text { Take the square root. }
$$

Your Turn

a. Find the value of x.

b. Find the value of x.

What You'll LEARN

- Write equations of circles using the center and the radius.

FOLDABLES

ORGANIZE IT

Under the tab for Equations of Circles, write the General Equation of a Circle, and draw a picture, labeling the center and radius. Record several examples to help you remember the main idea.

Theorem 14-16 General Equation of a Circle
The equation of a circle with center at (h, k) and a radius of r units is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

EXAMPIE

(1) Write the equation of a circle with center at $(-4,0)$ and a radius of 5 units.

$$
\begin{aligned}
&(x-h)^{2}+(y-k)^{2}=r^{2} \quad \text { Equation of a Circle } \\
& {[x-(\square)]^{2}+(y-\square}=\square \\
&\square+\square, k)=(-4,0), r=5
\end{aligned}
$$

The equation for the circle is \square

EXAMPLE

2 Find the coordinates of the center and the measure of the radius of a circle whose equation is

$$
\left(x+\frac{3}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

Rewrite the equation.

Since $h=\square, k=\square$, and $r=\square$, the center
of the circle is at \square Its radius is \square

Your Turn

a. Write the equation of a circle with center $C(5,-3)$ and a radius of 6 units.

b. Find the coordinates of the center and the measure of the radius of a circle whose equation is $(x+2)^{2}+(y+7)^{2}=81$.

Homework

Assignment

Page(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 14 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 14, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder
(pages 270-271) to help you solve the puzzle.
2. $m \angle C E D$ \square
3. $m A D$ \square

In circle $A, \overline{H E}$ is a diameter.
4. If $m \angle H T C=52$, find $m \overline{C H}$.

5. Find $m \overline{H C E}$.

6. If $m \angle H T C=52$, find $m \overline{C E H}$.
\square

14-2

Tangents to a Circle

Underline the best term to complete the statement.

7. If a line is tangent to a circle, then it is perpendicular to the radius drawn to the [point of tangency/vertex].
8. $\overline{A B}$ is tangent to circle C. Find the value of x.

9. Circle P is inscribed in right $\triangle C T A$. Find the perimeter of $\triangle C T A$ if the radius of circle P is $5, C T=18$, and $J T=11$.

14-3

Secant Angles

Underline the best term to complete the statement.

10. A [radius/secant segment] is a line segment that intersects a circle in exactly two points.

Find the value of \boldsymbol{x}.
11.

12.

14-4
Secant-Tangent Angles

Underline the best term to complete the statement.

13. The measure of $a(n)$ [tangent-tangent/inscribed] angle is always one-half the difference of the measures of the intercepted arcs.

Find the value of \boldsymbol{x}. Assume that segments that appear to be tangent are tangent.

15.

14-5

Segment Measures
Find the value of x.
16.

17.

14-6

Equations of Circles

18. Write the equation of the circle with center $(-5,9)$ and radius $2 \sqrt{5}$. \square
19. What are the coordinates of the center and length of the
radius for the circle $(x+4)^{2}+y^{2}=121$. \square

Checklist

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 14.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 14 Practice Test on page 627 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 14 Study Guide and Review on pages 624-626 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 14 Practice Test on page 627.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 14 Foldable.
- Then complete the Chapter 14 Study Guide and Review on pages 624-626 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 14 Practice Test on page 627.

Formalizing Proof

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with four sheets of $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ grid paper.

STEP 1 Fold

Fold each sheet of paper in half along the width. Then cut along the crease.

STEP 2 Staple
Staple the eight half-sheets together to form a booklet.

STEP 3 Cut

Cut seven lines from the bottom of the top sheet, six lines from the second sheet, and so on.

STEP 4 Label

Label each tab with a lesson number. The last tab is for vocabulary.

NOTE-TAKING TIP: To help you organize data, create a study guide or study cards when taking notes, solving equations, defining vocabulary words and explaining concepts.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 15. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
compound statement			
conjunction			
contrapositive			
coordinate proof			
deductive reasoning [dee-DUK-tiv]			
disjunction			
indirect proof			
indirect reasoning			
inverse			

Vocabulary Term	Found on Page	Definition	Description or Example
Law of Syllogism [SIL-oh-jiz-um]			
logically equivalent			
negation			
paragraph proof			
proof			
proof by contradiction			
truth value			
truth table			

15-1 Logic and Truth Tables

```
What You'll LEARN
- Find the truth values of simple and compound statements.
```


BUILD YOUR VOGABULARY (pages 290-291)

A statement is any sentence that is either true or false, but not both.

Every \square has a truth value, true (T) or false (F). If a statement is represented by p, then \square p is the negation of the statement.

The relationship between the \square of a statement are organized on a truth table.

When two statements are \square, they form a compound statement.

A conjunction is a \square statement formed by joining two statements with the word \square

A disjunction is a \square statement formed by joining two statements with the word \square

EXAMPLES

Let p represent "An octagon has eight sides" and q represent "Water does not boil at $90^{\circ} \mathrm{C}$."
(1) Write the negation of statement p.
$\sim p$: An octagon \square have eight sides.
2 Write the negation of statement q.
$\sim q$: Water \square boil at $90^{\circ} \mathrm{C}$.

Your Turn Let p represent "Tofu is a protein source" and q represent " π is not a rational number."
a. Write the negation of statement p.

b. Write the negation of statement q.

EXAMPLES

Let p represent " $9^{2}=99$ ", q represent "An equilateral triangle is equiangular", and r represent "A rectangular prism has six faces." Write the statement for each conjunction or disjunction. Then find the truth value.

Remember It

In the Negation truth table, p does not have to be a true statement and $\sim p$ is not necessarily a false statement.

$3 \sim p \wedge q$

$9^{2} \neq 99$ and an equilateral triangle is equiangular. Because p
\square because both $\sim p$ and q are \square
(4) $p \vee \sim r$
$9^{2}=99$ or a rectangular prism does not have six faces.
Because r is $\square, \sim r$ is \square. Therefore, $p \vee \sim r$ is
\square because both p and $\sim r$ are

(5) $\sim q \wedge \sim r$

An equilateral triangle is not equiangular and a rectangular prism does not have six faces. Because q is $\square, \sim q$ is

Therefore, $\sim q \wedge \sim r$ is \square because both $\sim q$ and $\sim r$ are \square.

Remember It

A disjunction is false only when both statements are false. The converse of a conditional is false when p is false and q is true. A conditional is false only when p is true and q is false.

Homework Assignment

Page(s):
Exercises:

```
    Exercises:
```


Your Turn
Let p represent " 0.5 is an integer", q represent "A rhombus has four congruent sides", and r represent "A parallelogram has congruent diagonals." Write the statement for each conjunction or disjunction. Then find the truth value.
a. $\sim p \wedge q$ \square
b. $\sim p \vee r$ \square
c. $\sim q \wedge \sim r$
\square

EXAMPLE

(6) Construct a truth table for the conjunction $\sim(p \wedge q)$.

Make columns with the
headings p, q, \square
and $\sim(p \wedge q)$. Then, list all possible combinations of truth values for p and q.
 Use these truth values to complete the last two columns of the \square and its \square

Your Turn

Construct
a truth table for the disjunction $\sim(p \vee q)$.

BUILD YOUR VOGABULARY (pages 290-291)

The inverse of a conditional is formed by \square both p and q.
The contrapositive of a conditional statement is formed by

15-2 Deductive Reasoning

What You'll LEARN

- Use the Law of Detachment and the Law of Syllogism in deductive reasoning.

BUILD YOUR VOCABULARY (pages 290-291)

Deductive reasoning is the process of using facts, rules, definitions, and properties in a logical order.

The Law of Detachment allows us to reach logical

The Law of Syllogism is similar to the Transitive Property of Equality.

EXAMPLES

Key Concept

Law of Detachment
If $p \rightarrow q$ is a true conditional and p is true, then q is true.

FOLDABLES
Under the tab for Lesson 15-2, summarize the Law of Detachment and the Law of Syllogism in your own words.

Use the Law of Detachment to determine a conclusion that follows from statements (1) and (2). If a valid conclusion does not follow, then write no valid conclusion.
(1) (1) In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other line.
(2) $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$ and $\overleftrightarrow{E F} \perp \overleftrightarrow{A B}$.

Statement (1) indicates that $p \rightarrow q$ is
 , and statement (2) indicates that p is \square . So, \square is true. Therefore, $\overleftrightarrow{E F} \perp \overleftrightarrow{C D}$.
2. (1) Two nonvertical lines have the same slope if and only if they are parallel.
(2) $\overleftrightarrow{A B}$ is a vertical line.
p : Two lines are nonvertical and \square
q : Two lines have the same

Statement (2) indicates that p is \square Therefore, there is no valid conclusion.

Remember It

In the Law of Syllogism, both conditionals must be true for the conclusion to be true.

Homework Assignment
Page(s):
Exercises:

15-3 Paragraph Proofs

What YOU'LL LEARN
- Use paragraph proofs
to prove theorems.

BUILD YOUR VOGABULARY (page 291)

A proof is a logical argument in which each statement is backed up by a \square that is accepted as \square

Statements and reasons are written in \square form in a paragraph proof.

EXAMPLES

FOLDABLES

Organize IT

Under the tab for Lesson 15-3, summarize what information is listed as "Given" and "Prove" in a paragraph proof.

1) In $\triangle R S T$, if $\overline{T X} \perp \overline{R S}$ and $\overline{T X}$ bisects $\angle R T S$, then $\overline{R X} \cong \overline{X S}$.

Given: $\overline{T X} \perp \overline{R S} ; \overline{T X}$ bisects $\angle R T S$.
Prove: $\overline{R X} \cong \overline{X S}$

Proof: If $\overline{T X} \perp \overline{R S}$, then $\angle R X T$ and $\angle T X S$ are \square angles and $\triangle R X T$ and \square are right triangles.

If $\overline{T X}$ bisects $\angle R T S$, then $\angle R T X \cong \angle S T X$ by the definition of angle \square. Also, $\overline{T X} \cong \square$ since congruence is \square. So, $\triangle R T X \cong \triangle S T X$ by the \square Theorem. Therefore, $\overline{R X} \cong \overline{X S}$ because \square parts of congruent triangles are congruent (CPCTC).
2. If $\angle 1$ and $\angle 2$ are congruent, then ℓ

ReView It

What can you say about corresponding angles formed when parallel lines are cut by a transversal? (Lesson 4-3)

Remember It

There is more than one way to plan a proof.

Homework Assignment

is parallel to m.

Given: $\angle 1 \cong \angle 2$

Prove: $\ell \|$

Proof: Vertical angles are congruent so $\angle 2 \cong \angle 3$. Since

corresponding angles are \square , then the lines are \square Therefore, \square

Your Turn

Write a paragraph proof for each conjecture.
a. If A is the midpoint of $\overline{D C}$ and $\overline{E B}$, then $\triangle D A E \cong \triangle C A B$.
Given: A is the midpoint of $\overline{D C}$ and $\overline{E B}$

b. If $\angle 3 \cong \angle 4$, then $\angle 5 \cong \angle 6$.

15-4 Preparing for Two-Column Proofs

BUILD YOUR VOGABULARY (page 291)

What You'll Learn

- Use properties of equality in algebraic and geometric proofs.

A two-column proof is a deductive argument with

columns.

EXAMPLE

(1) Justify the steps for the proof of the conditional. If $\angle X W Y \cong \angle X Y W$, then $\angle A W X \cong \angle B Y X$.

Remember It

You cannot write a statement unless you give a reason to justify it.

Write It

What information is always in the first statement of a proof? What information can always be found in the last satement?
\qquad
\qquad
\qquad
\qquad
\qquad

Your Turn

Justify the steps for the proof of the conditional. If $m \angle A O C=m \angle B O D$, then $m \angle A O B=m \angle C O D$.

Given: $m \angle A O C=m \angle B O D$
Prove: $m \angle A O B=m \angle C O D$

Proof:

EXAMPLE

2 Show that if $A=\frac{1}{2} b h$, then $b=\frac{2 A}{h}$.
Given: $A=\frac{1}{2} b h$
Prove: $b=\frac{2 A}{h}$
Proof:

Statements	Reasons
1. $A=\frac{1}{2} b h$	1. Given
2. $\square=b h$	2. Multiplication property
3. $\frac{2 A}{h}=b$	3. \square

4. $b=$

5.
6. Symmetric property

Homework Assignment

Page(s):
Exercises:

15-5 Two-Column Proofs

EXAMPLE

What You'll LEARN

- Use two-column proofs to prove theorems.

FOLDABLES

ORGANIZE IT

Under the tab for Lesson 15-5, summarize the process to write a two-column proof.

1 Write a two-column proof for the conjecture.
If $\angle 1=\angle 2$, then quadrilateral $A B C D$ is a trapezoid.
Given: $\angle 1=\angle 2$
Prove: $A B C D$ is a trapezoid

Proof:
Reasons

1. Given
2. \square
3.

4.

5. Quadrilateral $A B C D$ is a trapezoid.

3. Substitution
4. If two lines in a plane are cut by a transversal so that corresponding angles are congruent, then the lines are parallel.
5.

Your Turn

Write a two-column proof. If $\triangle X Y Z$ is isosceles with $\overline{X Z} \cong \overline{X Y}$ and $\overline{O Z} \cong \overline{N Y}$, then $\overline{O Y} \cong \overline{N Z}$.

Given: $\triangle X Y Z$ is isosceles with

$$
\overline{X Z} \cong \overline{X Y} \text { and } \overline{O Z} \cong \overline{N Y}
$$

Prove: $\overline{O Y} \cong \overline{N Z}$

Proof:

Statements Reasons
1.
2.
3.
4.
5.
6.
6.
1.
2.
3.
4.
5.
.
.
\qquad

EXAMPLE

(2) Write a two-column proof.

Your Turn
Write a two-column proof.
Given: $A D$ and $C E$ bisect each other.
Prove: $A E \| C D$

Proof:

Homework

 AssignmentPage(s):
Exercises:

15-6 Coordinate Proofs

What You'll LEARN
 - Use coordinate proofs to prove theorems.

Guidelines for Placing Figures on a Coordinate Plane

1. Use the origin as a vertex or center.
2. Place at least one side of a polygon on an axis.
3. Keep the figure within the first quadrant, if possible.
4. Use coordinates that make computations as simple as possible.

FOLDABLES

 Under the tab for Lesson 15-6, summarize the Guidelines for Placing Figures on a
Key Concept

 and polygon. Use coordinates that Coordinate Plane.

BUILD YOUR VOCABULARY (page 290)

A proof that uses \square on a coordinate plane is a coordinate proof.

EXAMPIE

(1) Position and label a rectangle with length b and height d on a coordinate plane.

- Use the origin as a \square
- Place one side on the x-axis and one side on the \square
- Label the $\square A, B, C$ and D.
- Label the coordinates $D(\square), C(\square, 0)$,

Your Turn Position and label an isosceles triangle with base m units long and height n units on a coordinate plane.

EXAMPIE

(2) Write a coordinate proof to prove that the opposite sides of a parallelogram are congruent.

Given: parallelogram $A B D C$
Prove: $\overline{A B} \cong \overline{C D}$ and $\overline{A C} \cong \overline{B D}$

Review It

What is slope and how would you determine the slope of a line? (Lesson 4-6)
\qquad
\qquad
\qquad
\qquad

Proof:

Label the vertices $A(0,0), B(a, 0)$, $D(a+b, c)$, and $C(b, c)$. Use the Distance Formula to find $A B, C D$, $A C$, and $B D$.

$$
\begin{aligned}
A B & =\sqrt{(a-0)^{2}+(0-0)^{2}} \\
& =\sqrt{a^{2}} \text { or } a
\end{aligned}
$$

$C D=\sqrt{[(a+b)-b]^{2}+(c-c)^{2}}=\square$ or a
$A C=\sqrt{(b-\square)^{2}+(c-\square)^{2}}=\sqrt{b^{2}+c^{2}}$
$B D=\sqrt{[(a+b)-\square]^{2}+(c-\square)^{2}}$

So, $A B=C D$ and $A C=B D$.
Therefore, \square and \square ; opposite
sides of a parallelogram are \square

Your Turn

Write a coordinate proof to prove that parallelogram $W X Y Z$ is a rectangle by proving the diagonals are congruent.

EXAMPIE

(3) Write a coordinate proof to prove that the length of the segment joining the midpoints of two sides of a triangle is one-half the length

Review It

What is the Midpoint Formula? (Lesson 2-5)

Homework

 AssignmentPage(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 15 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary Chapter 15, go to:
www.glencoe.com/sec/math/ t_resources/free/index.php

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 290-291) to help you solve the puzzle.

15-1

Logic and Truth Tables

Indicate whether the statement is true or false.

1. A table that lists all truth values of a statement is a truth table. \square
2. $p \rightarrow q$ is an example of a disjunction. \square
3. $\sim p \rightarrow \sim q$ is the inverse of a conditional statement. \square
4. $p \vee q$ is an example of a conjunction. \square
5. Complete the truth table.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{p}$	$\sim \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$\boldsymbol{p} \vee \boldsymbol{q}$	$\sim \boldsymbol{p} \rightarrow \sim \boldsymbol{q}$
T	T	\square	\square	\square	\square	\square
T	F	\square	\square	\square	\square	\square
F	T	\square	\square	\square	\square	\square
F	F	\square	\square	\square	\square	\square

15-2

Deductive Reasoning
Draw a conclusion from statements (1) and (2).
6. (1) All functions are relations.
(2) $x=y^{2}$ is a relation.
7. (1) Integers are rational numbers.
(2) (-6) is an integer.
\square
8. (1) If it is Saturday, I see my friends.
(2) If I see my friends, we laugh.
\square

15-3

Paragraph Proofs

Indicate whether the statement is true or false.
9. A proof is a logical argument where each statement is backed up by a reason accepted as true. \square

Write a paragraph proof.

10. Given: $m \angle 1=m \angle 2 ; m \angle 3=m \angle 4$

Prove: $m \angle 1+m \angle 4=90$

15-4
Preparing for Two-Column Proofs

Complete the statement.

11. A proof containing statements and reasons and is organized by steps is a \square proof.

Complete the proof.

12. Given: $\overline{A B}$ and $\overline{A R}$ are tangent to circle K.
Prove: $\angle B A K \cong \angle R A K$

Proof:

Statements

1. $\overline{A B}$ and $\overline{A R}$ are tange
to circle K
2. $\square \cong \square$
3. $\overline{B K} \cong \overline{R K}$
4.

5.

6.

Reasons
1.

2. If 2 segments from the same exterior point are tangent to a circle, then they are \cong.
3.

4.

5.

6. \square

15-5

Two Column Proofs

13. Write a two-column proof.

Given: $\overline{A B}$ is tangent to circle X at B. $\overline{A C}$ is tangent to circle X at C.
Prove: $\overline{A B} \cong \overline{A C}$

Proof:

Statements

1. $\overline{A B}$ is tangent to circle X
at $B . A C$ is tangent to at B. AU is tangent to circle X at C.
2. Draw $\overline{B X}, \overline{C X}$, and $\overline{A X}$.
3. $\angle A B X$ and $\angle A C X$ are

4. $\overline{B X} \cong \overline{C X}$
5.

6. $\triangle A X B \cong$ \square
7. \square

Reasons

1.

2. Through any 2 \square there is 1

3. If a line is tangent to a circle, then it is \perp to the radius drawn to the point of tangency.
4. \square
5. Reflexive Property
6. HL
7. CPCTC placed on the \square
15. Position and label a rhombus on a coordinate plane with base r and height t.

Checklist

Math nline

Visit geomconcepts.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 15.

ARE YOU READY FOR THE CHAPTER TEST?

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 15 Practice Test on page 671 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 15 Study Guide and Review on pages 668-670 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 15 Practice Test on page 671.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 15 Foldable.
- Then complete the Chapter 15 Study Guide and Review on pages 668-670 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 15 Practice Test on page 671.

More Coordinate Graphing and Transformations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with six sheets of graph paper and an $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ poster board.

STEP 1 Staple

Staple the six sheets of graph paper onto the poster board.

STEP 2 Label

Label the six pages with the lesson titles.

NOTE-TAKING TIP: When taking notes, mark anything you do not understand with a question mark. Be sure to ask your instructor to explain the concepts or sections before your next quiz or exam.

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 16. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
center of rotation			
composition of transformations			
dilation [dye-LAY-shun]			
elimination [ee-LIM-in-AY-shun]			
reflection			
rotation			
substitution [SUB-sti-TOO-shun]			
system of equations			
translation			

16-1 Solving Systems of Equations by Graphing

BUILD YoUR VOcABULARY (page 314)

What You'll LEARN

- Solve systems of equations by graphing.

FOLDABLES

ORGANIZE IT

On the page labeled Solving Systems of Equations by Graphing, sketch graphs of systems of equations. Explain why each graph produces the result that it does.

EXAMPL:S

Solve each system of equations by graphing.

1) $y=x-1$
$y=-x+3$
Find ordered pairs by choosing values for x and finding the corresponding y-values.

$\boldsymbol{y}=\boldsymbol{x}-\mathbf{1}$			
x	$x-1$	y	(x, y)
3	2	2	$(3,2)$
2	1	1	$(2,1)$
1	0	0	$(1,0)$

$\boldsymbol{y}=-\boldsymbol{x}+\mathbf{3}$			
x	$-x+3$	y	(x, y)
3	0	0	$(3,0)$
2	1	1	$(2,1)$
1	2	2	$(1,2)$

Graph the ordered pairs and draw the graphs of the equations. The graphs intersect at the point whose coordinates are \square Therefore, the solution of the system of equations is \square

2. $y=-2 x$
$y=-2 x+3$
Use the slope and y-intercept to graph each equation.

Equation	Slope	y-intercept
$y=-2 x$	-2	0
$y=-2 x+3$	-2	3

The slope of each line is \square so the graphs are
and do not intersect. Therefore, there is \square
\square

REVIEW IT

Explain how to graph $6 x-2 y=8$ using the slope-intercept method. (Lesson 4-6)

Write IT

Explain how to solve a system of equations by graphing.
\qquad
\qquad
\qquad

Your Turn

Solve each system of equations by graphing.
a. $x-2 y=2$
$3 x+y=6$

b. $3 x+2 y=12$
$3 x+2 y=6$

EXAMPLE

3 Toshiro wants a wildflower garden. He wants the length to be 1.5 times the width and he has 100 meters of fencing to put around the garden. If w represents the width of the garden and ℓ represents the length, solve the system of equations below to find the dimensions of the wildflower garden.

$$
\begin{aligned}
& \ell=1.5 w \\
& 2 w+2 \ell=100
\end{aligned}
$$

Solve the second equation for ℓ.

$$
\begin{array}{rlrl}
2 w+2 \ell & =100 & & \text { The peI } \\
2 w+2 \ell-2 w & =100-2 w & & \begin{array}{l}
\text { Subtrac } \\
\text { side. }
\end{array} \\
\frac{2 \ell}{2} & =\frac{100-2 w}{2} & & \text { Divide. } \\
\ell & =\square &
\end{array}
$$

Remember It

Check the solution to a system of equations by substituting it into each equation.

Use a graphing calculator to graph the equations \square and \square to find the coordinates of the intersection point. Note that these equations can be written as $y=1.5 x$ and $y=50-x$ and then graphed.

Enter: $-[y=] 1.5 \times$ ENTER $50 \square \triangle \square$ GRAPH

Next, use the intersection tool on 55 to find the coordinates of the point of intersection.
The solution is \square. Since $w=\square$ and $\ell=\square$,
the width of the garden is \square meters and the length is
\square meters.

Check your answer by examining the original problem. Is the length of the garden 1.5 times the width? Does the garden have a perimeter of 100 meters? The solution checks.

Your Turn

Ruth wants to enclose an area of her yard for her children to play. She has 72 meters of fence. The length of the play area is 4 meters greater than 3 times the width. What are the dimensions of the play area?

16-2 Solving Systems of Equations by Using Algebra

What You'll Learn

- Solve systems of equations by using the substitution or elimination method.

BUILD YOUR VOGABULARY (page 314)

One algebraic method for solving a system of equations is called substitution.

Another algebraic method for solving systems of equations is called elimination.

EXAMPIE

ORGANIZE IT

On the page labeled Solving Systems of Equations by Using Algebra, write a system of equations and solve it using substitution and elimination. Explain the process you used with each method.

Use substitution to solve the system of equations.

$$
\begin{aligned}
& y=x+4 \\
& 2 x+y=1
\end{aligned}
$$

Substitute $x+4$ for y in the second equation.

Substitute -1 for x in the first equation and solve for y.
$y=(-1)+4=\square$
The solution to this system of equations is \square

Your Turn Use substitution to solve $2 x-y=4$ and $x=y+5$.

EXAMPLE

2. Use elimination to solve the system of equations.

$$
\begin{aligned}
& \mathbf{3 x}-\mathbf{2 y}=\mathbf{4} \\
& \mathbf{4 x}+\mathbf{2 y}=\mathbf{1 0} \\
& 3 x-2 y=4 \\
&(+) 4 x+2 y=10 \\
& \hline 7 x+0=14 \\
& \frac{7 x}{7}=\frac{14}{7} \quad \text { Add the equations to eliminate the } y \text { terms. } \\
& x=\square
\end{aligned}
$$

The value of x in the solution is \square
Now substitute in either equation to find the value of y.

$$
\begin{array}{rlr}
\square & =\square & \text { Subtraction Property } \\
\frac{-2 y}{-2} & =\frac{-2}{-2} & \text { Divide each side by } \square . \\
y & =\square
\end{array}
$$

$3(\square)-2 y=4$

$$
6-2 y-6=4-6 \quad \text { Subtract } \square \text { from each side. }
$$

The value of y in the solution is \square

The solution to the system is \square

Your Turn Use elimination to solve $x+y=7$ and $2 x-y=-1$.

Write IT

Explain the difference between solving a system of equations by substitution or by the elimination method.
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

3 Use elimination to solve the system of equations.
$3 x+y=6$
$x-2 y=9$
$3 x+y=6 \xrightarrow{(\times 2)}$
$x-2 y=9 \longrightarrow$ $\begin{array}{r}6 x+2 y=12 \\ +\begin{array}{l}x-2 y=9\end{array} \\ \hline 7 x+0=21\end{array}$
Combine like terms.
$\frac{7 x}{7}=\frac{21}{7} \quad$ Divide.

$$
x=\square
$$

Substitute 3 into either equation to solve for y .

$$
3 x+y=6
$$

$$
3(\square)+y=6
$$

$9+y=6$
$9+y-9=6-9$
$y=\square$
Subtract \square from each side. Subtraction Property

The solution of this system is \square

Your Turn

Use elimination to solve $7 x+3 y=-1$ and $4 x+y=3$.

What You'll Learn
 - Investigate and draw translations on a coordinate plane.

OLDABLES

Organize IT

On the page labeled Translations, sketch graphs of several different translations. Explain why each translation produces the result it does.

Homework Assignment

Page(s):
Exercises:

BUILD YOUR VOCABULARY (page 314)

A translation is a slide of a figure from one position to another.

EXAMPIE

1 Graph $\triangle L M N$ with vertices $L(0,3), M(4,2)$, and $N(-3,-1)$. Then find the coordinates of its vertices if it is translated by (5,0). Graph the translation image.

To find the coordinates of the vertices of $\triangle L^{\prime} M^{\prime} N^{\prime}$, add 5 to each x-coordinate and add 0 to each y-coordinate of $\triangle L M N$: $(x+5, y+0)$.

$$
\begin{aligned}
L(0,3)+(5,0) & \rightarrow L^{\prime}(0+5,3+0)=L^{\prime} \square \\
M(4,2)+(5,0) & \rightarrow M^{\prime}(4+5,2+0)=M^{\prime} \square \\
N(-3,-1)+(5,0) & \rightarrow N^{\prime}(-3+5,-1+0)=N^{\prime}
\end{aligned}
$$

Your Turn

Graph $\triangle A B C$ with vertices $A(1,2), B(-3,-1)$, and $C(2,1)$. Then find the coordinates of its vertices if it is translated by $(3,-2)$. Graph the translation image.

What You’ll Learn

- Investigate and draw reflections on a coordinate plane.

BUILD YOUR VOCABULARY (page 314)

A reflection is the flip of a figure over a line to produce a mirror image.

EXAMPLES

1 Graph $\triangle A B C$ with vertices $A(0,0), B(4,1)$, and $C(1,5)$. Then find the coordinates of its vertices if it is reflected over the \boldsymbol{x}-axis and graph its reflection image.

To find the coordinates of the vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$, use the definition of reflection over the x-axis: $(x, y) \rightarrow(x,-y)$.

$B(4,1) \rightarrow B^{\prime} \square$

The vertices of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are \square
 and \square
2 In the same $\triangle A B C$, find the coordinates of the vertices of $\triangle A B C$ after a reflection over the y-axis. Graph the reflected image.

To find the coordinates of $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$, use the definition of reflection over the y-axis: $(x, y) \rightarrow(-x, y)$.

$B(4,1) \rightarrow B^{\prime \prime} \square$
$C(1,5) \rightarrow C^{\prime \prime} \square$

The vertices of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are \square
\square and
\square

Write It

Reflect a figure over the x-axis and then reflect its image over the y-axis. Is this double reflection the same as a translation? Explain.
\qquad
\qquad

ІІ!Н-медэつW/əоэиәэ

Homework

 AssignmentPage(s): Exercises:

Your Turn

a. Graph quadrilateral $Q U A D$ with vertices $Q(-3,3), U(3,2)$, $A(4,-4)$, and $D(-4,-1)$. Then find the coordinates of its vertices if it is reflected over the y-axis. Graph its reflection image.

b. Graph $\triangle S T U$ with vertices $S(1,2), T(4,4)$, and $U(3,-3)$. Then find the coordinates of its vertices if it is reflected over the y-axis and graph its reflection image.

What You'll LEARN

- Investigate and draw rotations on a coordinate plane.

BUILD YoUR VOGABULARY (page 314)

A rotation, also called a turn, is a movement of a figure around a point. The fixed point may be in the \square of the object or a point \square the object and is called the center of rotation.

EXAMPIE

ORGANIZE IT

On the page labeled Rotations, sketch graphs of several different rotations. Explain why each rotation produces the result it does.

(1) Rotate $\triangle A B C 270^{\circ}$ clockwise about point A.

- The center of rotation is A. Use a protractor to draw an angle of \square clockwise about point A, using $\overline{A B}$ as a baseline for your protractor.
- Draw segment $\overline{A^{\prime} B^{\prime}} \square$ to $\overline{A B}$.
- Trace the figure on a piece of paper and rotate the top paper clockwise, until the figure is rotated \square clockwise.
- Draw $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$.

Your Turn
Rotate $\triangle X Y Z 60^{\circ}$ counterclockwise about point Y.

EXAMPLE

2) Graph $\triangle X Y Z$ with vertices $X(-2,1), Y(2,-3)$, and $Z(3,5)$. Then find the coordinates of the vertices after the triangle is rotated 180° clockwise about the origin. Graph the rotation image.

- Draw a segment from the origin to point X.
- Use a protractor to reproduce $\overline{O X}$ at a 180° angle so that $O X=O X^{\prime}$.
- Repeat this procedure with points Y and Z.

The rotation image $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ has vertices X^{\prime} \square
\square

Your Turn
Rotate $\triangle A B C 90^{\circ}$ counterclockwise around the origin. The vertices are $A(0,4), B(3,1)$, and $C(4,3)$.

Homework

 AssignmentPage(s):
Exercises:

What You'll LEARN

- Investigate and draw dilations on a coordinate plane.

BUILD YOUR VOGABULARY (page 314)

A dilation is a transformation that alters the size of a figure, but not its shape. It enlarges or reduces a figure by a
\square

EXAMPLE

FOLDABLES

ORGANIZE IT

On the page labeled Dilations, sketch graphs of several different dilations. Explain why each dilation produces the result it does.

1 Graph $\overline{A B}$ with vertices $A(0,2)$ and $B(2,1)$. Then find the coordinates of the dilation image of $\overline{A B}$ with a scale factor of 3 , and graph its dilation image.

Since $k>1$, this is an enlargement. To find the dilation image, multiply each coordinate in the ordered pairs by 3 .
preimage \longrightarrow image

The coordinates of the endpoints of the dilation image are
\square

Your Turn Graph $\triangle J K L$ with vertices $J(1,-2), K(4,-3)$, and $L(6,-1)$. Then find the coordinates of the dilation image of $\triangle J K L$ with a scale factor of 2 , and graph its dilation.

$4 y$								
	4		8	8		12		
0								
-4								
-8								
-								
-12								
${ }^{12}$								
\downarrow								

EXAMPLE

Write IT

How can you determine whether a dilation is a reduction or an enlargement?
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

2 Graph $\triangle D E F$ with vertices $D(3,3), E(0,-3)$, and $F(-6,3)$. Then find the coordinates of the dilation image with a scale factor of $\frac{1}{3}$ and graph its dilation image.
Since $k<1$, this is a reduction.

$$
\begin{aligned}
& \text { preimage } \longrightarrow \text { image } \\
& D(3,3) \xrightarrow{\times \frac{1}{3}} D^{\prime} \square \\
& E(0,-3) \xrightarrow{\times \frac{1}{3}} E^{\prime} \square \\
& F(-6,3) \xrightarrow{\times \frac{1}{3}} F^{\prime} \square
\end{aligned}
$$

The coordinates of the vertices of the dilation image are

Your Turn Graph quadrilateral $M N O P$ with vertices $M(1,2), N(3,3), O(3,5)$, and $P(1,4)$. Then find the coordinates of the dilation image with a scale factor of $\frac{2}{3}$ and graph its dilation image.

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES'	VOCABULARY PUZZLEMAKER	BUILD YOUR YOCABULARY
Use your Chapter 16 Foldable to help you study for your chapter test.	To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 16, go to: www.glencoe.com/sed/math/ t_resources/free/index.php	You can use your completed Vocabulary Builder (page 314) to help you solve the puzzle.

16-1

Solving Systems of Equations by Graphing

Solve each system of equations by graphing.

1. $x-y=6$
$y=9$
2. $x+y=27$
$3 x-y=41$
\square
3. $y=4 x+2$
$12 x-3 y=9$
\square

16-2

Solving Systems of Equations by Using Algebra

Complete each statement.

4. Substitution and elimination are methods for solving
\square
5. A linear system of equations can have at most \square solution.

Solve the system of equations using substitution or elimination.

7. $y=3 x-8$
$y=4-x$

9. $3 x-5 y=11$
$x-3 y=1$
\square

16-3
Translations

Complete the statement.

10. When a figure is moved from one position to another without turning, it is called a \square
Find the coordinates of the vertices after the translation. Graph each preimage and image.
11. rectangle $W X Z Y$ with vertices $W(-2,-2), X(-2,-10)$, $Z(-7,-10)$, and $Y(-7,-2)$ translated $(6,9)$

12. $\triangle A B C$ with vertices $A(4,0), B(2,-1)$, and $C(0,1)$ translated ($0,-4$)

13. $\triangle J K L$ with vertices $J(-5,-2), \mathrm{K}(-2,7)$, and $L(1,-6)$ translated $(6,2)$

16-4

Reflections

Complete the statement.

14. A \square is a flip of a figure over a line.

Find the coordinates of the vertices after the reflection.
Graph each preimage and image.
15. quadrilateral $A B C D$ with vertices $A(1,1), B(1,4), C(6,4)$, and $D(6,1)$ flipped over the x-axis

16. quadrilateral $J K L M$ with vertices $J(3,5), K(4,0), L(0,-3)$, and $M(-1,2)$ flipped over the y-axis

17. $\triangle X Y Z$ with vertices $X(1,1), Y(4,1)$, and $Z(1,3)$ flipped over the x-axis

16-5

Rotations

Find the coordinates of the vertices after a rotation about the origin. Graph the preimage and image.
18. $\triangle R S T$ with vertices $R(-4,1), S(-1,5)$, and $T(-6,9)$ rotated 90° counterclockwise

16-6

Dilations

Underline the best term to complete the statement.

19. A [dilation/rotation] alters the size of a figure but does not change its shape.
20. A figure is [reduced/enlarged] in a dilation if the scale factor is between 0 and 1 .

Find the coordinates of the dilation image for the given scale factor. Graph the preimage and image.
21. quadrilateral $S T U V$ with vertices $S(2,1), T(0,2), U(-2,0)$, and $V(0,0)$ and scale factor 3

ARE YOU READY FOR
 THE CHAPTER TEST?

Checklist

Math nline

Visit geomconcepts.net to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 16.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 16 Practice Test on page 713 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 16 Study Guide and Review on pages 710-712 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 16 Practice Test on page 713 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 16 Foldable.
- Then complete the Chapter 16 Study Guide and Review on pages 710-712 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 16 Practice Test on page 713 of your textbook.

Parent/Guardian Signature

NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

