

Study Notebook

Algebra 1

The **McGraw·Hill** Companies

Mc Graw **Glencoe** Hill

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240

ISBN: 978-0-07-890844-6 MHID: 0-07-890844-2

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 047 14 13 12 11 10 09 08

Contents

Chapter 1

Before You Read1		
Key Points	2	
1-1 Variables and Expressions	3	
1-2 Order of Operations	5	
1-3 Properties of Numbers	7	
1-4 The Distributive Property	9	
1-5 Equations	11	
1-6 Relations		
1-7 Functions	15	
1-8 Logical Reasoning and		
Counterexamples	17	
Tie It Together	19	
Before the Test		

Chapter 2

	Before You Read		
Key	Points	22	
2-1	Writing Equations		
2-2	Solving One-Step Equations	25	
2-3	Solving Multi-Step Equations	27	
2-4	Solving Equations with the Variable		
	on Each Side	29	
2-5	Solving Equations Involving		
	Absolute Value	31	
2-6	Ratios and Proportions	33	
2-7	Percent of Change	35	
	Literal Equations and		
	Dimensional Analysis	37	
2-9	Weighted Averages	39	
Tie	It Together	41	
	ore the Test		

Chapter 3

Bef	Before You Read		
Key	Points	44	
3-1	Graphing Linear Relations	45	
3-2	Solving Linear Equations		
	by Graphing	47	
3-3	Rate of Change and Slope	49	
3-4	Direct Variation	51	
3-5	Arithmetic Sequences as		
	Linear Functions	53	
3-6	Proportional and Nonproportional		
	Relationships	55	
Tie It Together			
Before the Test			

Chapter 4

Before You Read		
Key Points		
4-1 Graphing Equations in Slope-Intercept		
Form 61		
4-2 Writing Equations in Slope-Intercept		
Form		
4-3 Writing Equations in Point-Slope		
Form		
4-4 Parallel and Perpendicular Lines		
4-5 Scatter Plots and Lines		
of Fit69		
4-6 Regression and Median-Fit Lines71		
4-7 Special Functions		
Tie It Together75		
Before the Test		

Chapter 5

Bef	ore You Read	77
Key	Points	78
5-1	Solving Inequalities by Addition and	
	Subtraction	79
5-2	Solving Inequalities by Multiplication	
	and Division	81
5-3	Solving Multi-Step Inequalities	83
5-4	Solving Compound Inequalities	85
5-5	Inequalities Involving Absolute	
	Value	87
5-6	Graphing Inequalities in Two	
	Variables	89
Tie	It Together	91
Bef	ore the Test	92

Chapter 6

Before You Read			
Key Points	94		
6-1 Graphing Systems of Equations	95		
6-2 Substitution	97		
6-3 Elimination Using Addition and			
Subtraction	99		
6-4 Elimination Using Multiplication 10)1		
6-5 Applying Systems of Linear			
Equations10)3		
6-6 Organizing Data Using Matrices 10)5		
6-7 Using Matrices to Solve			
Systems of Equations10)7		
6-8 Systems of Inequalities 10)9		
Tie It Together11	1		
Before the Test 11			

Chapter 7

Before You Read		
Key	Points	114
7-1	Multiplying Monomials	115
7-2	Dividing Monomials	117
7-3	Scientific Notation	119
7-4	Polynomials	121
7-5	Adding and Subtracting	
	Polynomials	123
7-6	Multiplying a Polynomial by a	
	Monomial	125
7-7	Multiplying Polynomials	127
7-8	Special Products	129
Tie	It Together	131
Bef	ore the Test	132

Chapter 8

Key Points1348-1 Monomials and Factoring1358-2 Using the Distributive Property1378-3 Quadratic Equations:138 $x^2 + bx + c = 0$ 1388-4 Quadratic Equations:1418-5 Quadratic Equations:1418-5 Quadratic Equations:1428-6 Quadratic Equations:1428-6 Quadratic Equations:1428-6 Quadratic Equations:1428-7 Guadratic Equations:1428-8 Provide Equations:1428-9 Represe1438-9 Represe1448-9 Represe144	Bef	ore You Read	133
8-2Using the Distributive Property	Key	/ Points	134
8-3 Quadratic Equations: $x^2 + bx + c = 0$	8-1	Monomials and Factoring	135
$x^2 + bx + c = 0$ 1388-4 Quadratic Equations: $ax^2 + bx + c = 0$ 1418-5 Quadratic Equations: Differences of Squares1438-6 Quadratic Equations: Perfects Squares145Tie It Together147	8-2	Using the Distributive Property	137
8-4 Quadratic Equations: $ax^2 + bx + c = 0$ 8-5 Quadratic Equations: Differences of Squares8-6 Quadratic Equations: Perfects Squares145Tie It Together	8-3	Quadratic Equations:	
$ax^2 + bx + c = 0$		$x^2 + bx + c = 0 \dots$	139
 8-5 Quadratic Equations: Differences of Squares	8-4	Quadratic Equations:	
Squares		$ax^2 + bx + c = 0 \dots$	141
 8-6 Quadratic Equations: Perfects Squares	8-5	Quadratic Equations: Differences of	
Squares		Squares	143
Tie It Together	8-6	Quadratic Equations: Perfects	
		Squares	145
Before the Test			

Chapter 9

Bef	ore You Read	149
Key	Points	150
9-1	Graphing Quadratic Functions	151
9-2	Solving Quadratic Equations by	
	Graphing	153
9-3	Transformations of Quadratic	
	Functions	155
9-4	Solving Quadratic Equations by	
	Completing the Square	157
9-5	Solving Quadratic Equations by	
	Using the Quadratic Formula	159
9-6	Exponential Functions	161
9-7	Growth and Decay	163
9-8	Geometric Sequences as	
	Exponential Functions	165
9-9	Analyzing Functions with Successive	
	Differences and Ratios	167
Tie It Together 169		
Bef	ore the Test	170

Chapter 10

Befo	Before You Read 171				
Key	Points1	72			
10-1	Square Root Functions1	73			
10-2	Simplifying Radical Expressions1	75			
10-3	Operations with Radical				
	Expressions1	77			
10-4	Radical Equations1	79			
10-5	The Pythagorean Theorem1	81			
10-5	The Distance and Midpoint				
	Formulas1	83			
10-7	Similar Triangles1	85			
10-8	Trigonometric Ratios1	87			
Tie It	t Together1	89			
Befo	re the Test1	90			

Chapter 11

Befo	Before You Read 191				
Key	Points	192			
11-1	Inverse Variation	193			
11-2	Rational Functions	195			
11-3	Simplifying Rational Expressions	197			
11-4	Multiplying and Dividing				
	Rational Expressions	199			
11-5	Dividing Polynomials	201			
11-6	Adding and Subtracting Rational				
	Expressions	203			
11-7	Mixed Expressions and Complex				
	Fractions	205			
11-8	Rational Equations and Functions	207			
Tie It Together					
Befo	re the Test	210			

Chapter 12

Before You Read	211	
Key Points	212	
12-1 Designing a Survey	213	
12-2 Analyzing Survey Results	215	
12-3 Statistics and Parameters	217	
12-4 Permutations and Combinations	219	
12-5 Probability of Compound Events	221	
12-6 Probability Distributions	223	
12-7 Probability Simulations	225	
Tie It Together	227	
Before the Test		

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	¥
such as	i.e.	approximately	*
with	w/	therefore	·.
without	w/o	versus	vs
and	+	angle	Z

- Use a symbol such as a star (★) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

Before You Read

Before you read the chapter, think about what you know about expressions, equations, and functions. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

OLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When taking notes, write down a question mark to anything you do not understand.

Before your next quiz, ask your instructor to explain these sections.

• When you take notes, be sure to listen actively.

Always think before you write, but don't get behind in your note-taking. Remember to enter your notes legibly.

Expressions, Equations, and Functions

Key P<u>oints</u>

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on properties of numbers, one fact might be that zero has no reciprocal (because any number times 0 is 0). After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
1-1 Variables and Expressions	
1-2 Order of Operations	
1-3 Properties of Numbers	
1-4 The Distributive Property	
1-5 Equations	
1-6 Relations	
1-7 Functions	
1-8 Logical Reasoning and Counterexamples	

1-1 Variables and Expressions

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson.
	1
	2
Active Vocabulary	New Vocabulary Match each term with its definition.
algebraic expression	the quantities being multiplied in an expression involving multiplication
term	consists of one or more numbers and variables along with one or more arithmetic operation
power	the result of a multiplication expression
factors	symbols used to represent unspecified numbers or values in algebra
product	indicates the number of times the base is used as a factor
variables	a part of an expression that may be a number, a variable, or a product or quotient of numbers and variables
	Vocabulary Link <i>Vary</i> is a word used in everyday English that is used to build the word <i>variable</i> . Find the definition of <i>vary</i> using a dictionary. Explain how its everyday definition can help you understand the meaning of <i>variable</i> in mathematics.

Main Idea	Deteile
Main luea	Details
Vrite Verbal Expressions	Write a verbal expression for each algebraic expression.
5	1. $4x + 10$
	2. <i>p</i> – 17
	3. $\frac{3y}{8}$

_____ DATE _____ PERIOD _

Write Algebraic Expressions p. 6 A model can be used to aid in translating a verbal expression into an algebraic expression. Write an algebraic expression for the following verbal expression.

Twelve more than the product of 8 and h.

Helping You Remember to 7 - w. You correct the classmate by saying it translates to w - 7. Your classmate

to 7 - w. You correct the classmate by saying it translates to w - 7. Your classmate responds by saying, "That is the same thing." Is your classmate correct? Support your answer with examples that either disprove or support your classmate.

1-2 Order of Operations

What You'll Learn	Skim Lesson 1-2. Predict two things that you expect to learn based on the headings and the Key Concept box.				
	1				
	2				
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lesson 1-1)				
►	symbols used to represent unspecified numbers or values				
►	the result of a multiplication expression				
▶	indicates the number of times the base is used as a factor				
	New Vocabulary Define the following terms in your own words.				
evaluate 🕨					
order of operations >					
	Vocabulary Link <i>Evaluate</i> is a word that is used in everyday English. Find the definition of <i>evaluate</i> using a dictionary. Explain how its English definition can help you understand				

its meaning in mathematics.

NAME	DATE PERIOD
Lesson 1-2 (continued)	
Main Idea	Details
Evaluate Numerical	Evaluate each expression.
Expressions pp. 10–11	1. 3 ³
	2. 4(2 + 3) – 8
	3. $(4+2)^2 \div 2$
Evaluate Algebraic Expressions	Complete the chart that shows the steps in evaluating an algebraic expression.
pp. 11–12	Replace the Apply the with their and label your assigned to the expression. necessary.
Helping You Rer correct order of operation	Complete each rung of the ladder with the ns. Start at the bottom and work your way to the top.
	Aunt Sally
	My Dear
Exc	cuse
Please	

1-3 Properties of Numbers

What You'll Learn	Scan the text in Lesson 1-3. Write two facts you learned about properties of numbers as you scanned the text.
	1
	2
Active Vocabulary	Review Vocabulary Define <i>variables</i> in your own words. (Lesson 1-1)
	New Vocabulary Fill in each blank with the correct term or phrase.
equivalent expressions 🕨	Two numbers whose product is 1 are called <i>multiplicative inverses</i> or
reciprocals >	Expressions that represent the same number are
Additive Identity >	The number 1 is known as the
Multiplicative Identity >	The number 0 is known as the
	Vocabulary Link <i>Identity</i> is a word that is used in everyday English. Find the definition of <i>identity</i> using a dictionary. Explain how its English definition can help you understand its meaning in mathematics, specifically when referring to additive and multiplicative identities.

Lesson 1-3

Lesson 1-3 (continued)		
Main Idea		Details
Properties of Equality and Identity	Fill in the blanks wi $5(9+3) \cdot (9-8) \cdot \frac{1}{60}$	th the property used in each step.
op. 16–17	$5(9+3) \cdot (9-8) \cdot \frac{1}{60} = 5(12) \cdot (1) \cdot \frac{1}{60} + (-3) \cdot \frac{1}$	
		9 + 3 = 12
	3	and $9 - 8 = 1$
	$= 5(12) \cdot (1) \cdot \frac{1}{60} + 0$	-5 + 5 = 0
	$= 60 \cdot (1) \cdot \frac{1}{60} + 0$	5(12) = 60
	$= 60 \cdot \frac{1}{60} + 0$	$60 \cdot 1 = 60$
	= 1 + 0	$60 \cdot \frac{1}{60} = 1$
	= 1	1 + 0 = 1
Use Commutative and	Use the Associative	Property to write two equivalent

Use Commutative and Associate Properties pp. 18–19

Use the Associative Property to write two equivalent expressions. Use the numbers 4, 6, and 9.

DATE _____ PERIOD _

Helping You Remember

Look up the meaning of the word *commute* in the dictionary. Find an everyday meaning that is close to the mathematical meaning and explain how it can help you remember the mathematical meaning.

1-4 The Distributive Property

What You'll Learn	Scan Lesson 1-4. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	Review Vocabulary Write the term next to each definition. (Lesson 1-2)
▶	to find the value of an expression
▶	the rules that let you know which operation to perform
	New Vocabulary In the diagram, underline the <i>coefficient</i> .
	10y + 7
	Define <i>simplest form</i> in your own words.

Vocabulary Link *Distribute* is a word that is used in everyday English. Find the definition of *distribute* using a dictionary. Explain how the English definition can help you remember how *distributive* is used in mathematics.

Lesson 1-4

NAME			DATE			
Lesson 1-4 (continued)						
Main Idea	,		De	etails		
Evaluate Expressions pp. 23–24	Caitlin works at the Dairy Whiz Monday through Friday. She earns \$8.25 per hour. The hours she worked this week are shown in the table below. Write two equivalent ways of finding her weekly pay.					
	Day	Mon	Tue	Wed	Thu	Fri
	Hours	3	2	$1\frac{1}{2}$	4	$1\frac{1}{2}$
	Method 1 Method 2					or the week
Simplify Expressions pp. 24–26	Model th algebra (-		-	sing or d	rawing

Helping You Remember

Write one example of evaluating an algebraic expression and explain how you simplified it.

NAME		DATE	PERIOD	
1-5 Equation	15			
What You'll Learn		amples in Lesson 1 ll learn about this l	-5. Predict two things y esson.	70U
	1			
	2			
Active Vocabulary		ary True or False? A xplain your answer	All open sentences are	
	Label the el	ements of the table	with the correct terms.	
equation				

	x	3x + 1 = 10	True or False?
equation >	2	3(2) + 1 = 10	False
replacement set 🕨	3	3(3) + 1 = 10	True
	4	3(4) + 1 = 10	False
solution >	5	3(5) + 1 = 10	False
	1	1	

Vocabulary Link In mathematics, *sets* are collections of objects or numbers. *Sets* can be illustrated by real-world examples, like a chess *set*. Write another example of a real-world *set*.

Lesson 1-5 (continued)

Main Idea	Details
Solve Equations pp. 31–33	How to solve multi-step linear equations
pp. 01 00	Remove all parentheses using the Distributive Property. $2(x + 5) + 3x = 45$ $2x + 10 + 3x = 45$ $3(x - 8) + 4x = 4$
	Combine like terms on each side of the equation. 2x + 10 + 3x = 45 $5x + 10 = 45$
	Isolate term(s) with a variable. 5x + 10 = 45 $-10 = -10$ $5x = 35$
	Isolate the variable. $5x = \frac{35}{5}$ $x = 7$

Solve Equations with Two Variables

рр. 33–35

Write and solve an equation for the following situation.

Mr. Ludwig wants to rent a post hole digger to build a deck. He pays a rate of \$5 per hour and \$12.50 for gas and insurance to rent the digger. what is the cost for a six-hour rental?

The cost of the ______ is a flat rate. The variable is the number of ______ h for which he rents the digger.

Helping You Remember

Look up the word *solution* in a dictionary. What is one meaning that relates to the way you use the word in algebra?

Skim the lesson. Write two things you already know about

Lesson 1-6

relations.

1.

2.

What You'll Learn

NAME	DA ⁻	TE PERIOD
Lesson 1-6 (continued)		
Main Idea		Details
Represent a Relation pp. 38–40	Complete the mapping shown below.	ng to represent the same relation
	ordered pairs	1. table
	$(0, 1) \\ (3, 3) \\ (4, 2)$	x y 0
	2. graph	3. mapping
	$ \begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ \hline \\ & & & &$	
Graphs of a Relation pp. 40–41		test grades, the more hours spent e grade. Identify the independent and

Helping You Remember

In the alphabet, x comes before y. Use this fact to describe a method for remembering how to write ordered pairs.

NAME	DATE PERIOD
1-7 Functions	5
What You'll Learn	Skim Lesson 1-7. Predict two things that you expect to learn based on the headings and the Key Concept box. 1.
	2
Active Vocabulary	Review Vocabulary Define <i>reciprocals</i> in your own words. (Lesson 1-3)
	New Vocabulary Fill in the blanks with the correct term or phrase.
	A graph that consists of points that are not connected is a
	A is a function graphed with a line or a smooth curve.
	A is a relationship between input and output.
	A test used to determine whether or not a graph represents a function is known as the
	Vocabulary Link <i>Function</i> is a word that is used in everyday English. Find the definition of <i>function</i> using a dictionary. Explain how the English definition can help you remember how <i>function</i> is used in mathematics.

Lesson 1-7

Main Idea	De	tails
dentify Functions p. 45–47	Fill in each blank to tell h relation is a function.	ow to determine if a
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Look at a table to see if each member of the corresponds to only member of the	
Find Function Values	For $f(x) = 7x - 4$, find each	h value.
	1. <i>f</i> (3)	2. <i>f</i> (-2)
	3. <i>f</i> (0)	4. <i>f</i> (-3)
following advice: Just rem	ember A student who was are different from relations that a <i>ember that functions are very su</i> night help you remember what a	trict and never give you a

16

1-8 Logical Reasoning and Counterexamples

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson. 1.
	2
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lesson 1-3)
$equivalent\ expressions\ \blacktriangleright$	
additive identity >	
multiplicative identity >	
reciprocal 🕨	
	New Vocabulary Match each term with its definition.
conditional statement	can be written in the form If A, then B
hypothesis	the process of using facts, rules, definitions, or properties to reach a valid conclusion
conclusion	the part of the statement immediately following the word if
deductive reasoning	a specific case in which the hypothesis is true and the conclusion is false
counterexample	the part of the statement that immediately follows the <i>then</i>
	Vocabulary Link Define the word <i>reciprocal</i> in your own words. (<i>Lesson 1-3</i>)

Main Idea	Details
Conditional Statements op. 54–55	Identify the hypothesis and conclusion of the statement.
	IF it rains THEN we will have indoor recess.
	Identify the if-then statement for the following equation. 6x + 5 = 47, x = 7
Deductive Reasoning nd Counterexamples p. 55–56	Find a counterexample for the conditional stateme If $x^4 = 16$, then $x = 2$.
Helping You Rem	write an example of a conditional statement

CHAPTER **Expressions, Equations, and Functions**

Tie It Together

Add details to each part of the graphic organizer.

Expressions, Equations, and Functions

Befor<u>e the Test</u>

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 1 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 1 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Set goals and priorities before studying. Then study the hardest material first, and complete assignments that have due dates before others.

Before You Read

Before you read the chapter, think about what you know about linear equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K What I know	W What I want to find out

OLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, circle, underline, or star anything the teacher emphasizes.

When your teacher emphasizes a concept, it will usually appear on a test, so make an effort to include it in your notes.

• Before going to class, look over your notes from the previous class, especially if the day's topic builds from the last one.

CHAPTER

Linear Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on ratios and proportions, one fact might be that the ratio of two measurements having different units of measure is called a rate. After completing the chapter, you can use this table to review for your chapter test.

DATE .

_ PERIOD .

Lesson	Fact
2-1 Writing Equations	
2-2 Solving One-Step Equations	
2-3 Solving Multi-Step Equations	
2-4 Solving Equations with the Variable on Each Side	
2-5 Solving Equations Involving Absolute Value	
2-6 Ratios and Proportions	
2-7 Percent of Change	
2-8 Literal Equations and Dimensional Analysis	
2-9 Weighted Averages	

Writing Equations 2-1

What You'll Learn	Skim Lesson 2-1. Write two things you already know about writing equations. 1. 2.
Active Vocabulary	Review Vocabulary Define equation in your own words. (Lesson 1-5)
	Vocabulary Link <i>Formula</i> is a word that is used in everyday English. Find the definition of <i>formula</i> using a dictionary. Explain how its English definition can help you understand the meaning of <i>formula</i> in mathematics.

Lesson 2-1 (continued)

Main Idea

Details

Write Verbal **Expressions** pp. 75–76

Use a model to help translate the sentence below into an equation.

Six more than a number squared is 30 less than five times the number.

Write Sentences from **Equations** pp. 77–78

Franslate eac	h equation	into a	sentence
----------------------	------------	--------	----------

1. 7x + 2 = 30

2. $p^2 + 18 = 7 - k$

2-2 Solving Equations

What You'll Learn	Skim Lesson 2-2. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2.
Active Vocabulary	Review Vocabulary Define <i>formula</i> in your own words. (Lesson 2-1)
	New Vocabulary Fill in each blank with the correct term or phrase.
$equivalent \ equations$ >	To find the value of the variable that makes the equation true is to
solve an equation \blacktriangleright	have the same solution.
	Vocabulary Link <i>Solution</i> is a word that is used in everyday English. Find the definition of <i>solution</i> using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.

Lesson 2-2

NAME	DATE PERIOD
Lesson 2-2 (continued)	
Main Idea	Details
Solving Equations Using Addition or Subtraction pp. 83–84	Adding the same quantity to two equal or "balanced" amounts, will yield scales that remain balanced.
	+14
	h-14
	$\begin{pmatrix} h \end{pmatrix}$ $\begin{pmatrix} 27 \end{pmatrix}$
Solving Equations Using Multiplication or Division pp. 84–85	Solve by multiplying.
	1. $\frac{g}{4} = 7$ 2. $\frac{m}{-5} = 3$
	Solve by dividing.
	3. $9y = 108$ 4. $5k = -115$

Helping You Remember

One way to remember something is to explain it to someone else. Write how you would explain to a classmate how to solve the equation $\frac{2}{3}x = 12$. One way to remember something is to explain it

2-3 Solving Multi-Step Equations

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about solving multi-step equations.
	1
	2
Active Vocabulary	Review Vocabulary Define <i>equivalent equations</i> in your own words. (Lesson 2-2)
>	New Vocabulary Write the correct term next to each definition. integers in counting order
►	the study of numbers and the relationships between them
►	an equation that requires more than one step to solve
	Vocabulary Link <i>Consecutive</i> is a word that is used in everyday English. Find the definition of <i>consecutive</i> using a dictionary. Explain how its English definition can help you understand the meaning of <i>consecutive</i> in mathematics.

Lesson 2-3

Solve Consecutive Integer Problems pp. 92-93

Write an equation for the following problem. Then solve the equation and answer the problem.

Find three consecutive even integers with a sum of 48.

Helping You Remember

Explain why working backward is a useful

strategy for solving equations.

Solving Equations with the Variable on 2-4 **Each Side** What You'll Learn Skim the Examples for Lesson 2-4. Predict two things you think you will learn about solving equations with the variable on each side. 1. 2. Active Vocabulary **Review Vocabulary** Match each term with its definition. (Lessons 2-1 through 2-3) formula equations that have the same solution solve an equation an equation that requires more than one step to solve. *number theory* integers in counting order *equivalent equations* the study of numbers and the relationships between them *multi-step equations* a rule for the relationship between certain quantities consecutive integers finding the value of the variable that makes an equation true **New Vocabulary** Define *identity* in your own words.

Vocabulary Link *Identity* is a word that is used in everyday English. Find the definition of *identity* using a dictionary. Explain how the English definition can help you remember how it is used in mathematics.

Lesson 2-4

Solve the equation 6y + 4 = 3(2y - 10).

Helping You Remember

In addition to the examples in this section of Chapter 2, there will be other occurrences of no solutions, as well as identities where there are endless possibilities of solutions. What are the symbols for these?

2-5 Solving Equations Involving Absolute Value

What You'll Learn	Scan the text in Lesson 2-5. Write two facts you learned about solving equations involving absolute value as you scanned the text. 1
Active Vocabulary	Review Vocabulary Label the elements of the diagram with the correct terms. (Lesson 1-1) $\underbrace{2y^3 + 5y - 8}_{A}$
algebraic expression 🕨	Å 1. The term 5y represents a(n)
power 🕨	2. Arrow "A" is pointing to a(n)
product >	3. Arrow "B" is pointing to a(n)
variable 🕨	4. Arrow "C" is pointing to a(n)
	Define <i>absolute value</i> in your own words.

Lesson 2-5 (continued)	
Main Idea	Details
Absolute Value Expressions p. 103	Evaluate the following absolute value expression in the space provided. f + 7 - 11 if $f = -9$
	Complete the organizer below. 3 types of open sentences involving absolute value n < 0 n = 0 n > 0
Absolute Value Equations pp. 103–105	Write an absolute value equation that fits the solution graphed below. Then, write the solution set.
	Sample answer: $ x - 16 = 3$ Solution set: {10, 16}
Helping You Ren your graph of an absolut	Solution set: {10, 16}

2-6 Ratios and Proportions

What You'll Learn	Scan Lesson 2-6. List two headings you would use to make an outline of this lesson.		
	1		
	2.		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
unit 🕨	In the proportion $2:5 = 6:15$, the numbers 5 and 6 are known as the		
ratio 🕨	A(n) is an equation stating that two ratios are equal.		
means 🕨	A(n) is a rate used when making a model of something that is too large or too small to be convenient at actual size.		
rate 🕨	The comparison of two numbers by division is known as a(n)		
model 🕨	A rate tells how many of one item is being compared to one of another item.		
extremes •	In the proportion $1:15 = 3:45$, the numbers 1 and 45 are known as the		
proportion >	The ratio of two measurements having different units of measure is called a(n)		
scale >	A scale is a three-dimensional reproduction of		

an item that has been reduced in size proportionally.

Main Idea	Details
Ratios and Proportions pp. 111–112	Use cross products to determine whether the pair of ratios forms a proportion. $\frac{3}{4}, \frac{4.2}{6}$
Solve Proportions pp. 113–114	Use the graphic organizer below to help solve the rate of growth proportion that follows. A women's exercise franchise opened 336 gyms during the past 3 years. If their growth rate remains constant, how many exercise gyms will they have opened after 5 years? Let g represent the number of gyms. $\underbrace{number of gyms}_{number of years} \rightarrow \underbrace{gyms}_{3 years} = \underbrace{gyms}_{5 years}$

2-7 **Percent of Change**

What You'll Learn	Scan Lesson 2-7. List two headings you would use to make an outline of this lesson. 1 2	
Active Vocabulary	Review Vocabulary Match each term with its definition.	
Active vocubulary	(Lesson 2-6)	
proportion	a ratio of two measurements having different units of measure	
ratio	an equation stating that two ratios are equal	
rate	a comparison of two numbers by division	
	New Vocabulary Fill in each blank with the correct term or phrase.	
	is the ratio of the change in an amount to the original amount expressed as a percent.	
	When the new number is less than the original number, the percent of change is a percent of	
	When the new number is greater than the original number, the percent of change is a percent of	
	Vocabulary Link <i>Change</i> is a word that is used in everyday English. Find the definition of <i>change</i> using a dictionary. Explain how the English definition can help you remember how <i>change</i> is used in mathematics.	

Lesson 2-7

NAME	DATE PERIOD
Lesson 2-7 (continued)	
Main Idea	Details
Percent of Change pp. 119–120	Use the graphic organizer to help you find the percent of change given an original amount of 30, and a final amount of 45.
	What is the original amount?To find a percent of change:What is the final amount? $r = the \%$
	The amount of change = – =
	$\frac{15}{45} = \frac{r}{100}$ solve for <i>r</i> and get $r = $
	Therefore, the percent of change is a % (increase or decrease).
Solve Problems pp. 120–121	Tess purchased a dress that originally cost \$110. The day she made the purchase it was on sale for 20% off. What was the sale price of her dress?

Helping You Remember

If you remember only two things about the ratio used for finding the percent of change, what should they be?

36

2-8 Literal Equations and Dimensional Analysis

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson.
	1
	2.
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or
	phrase. (Lessons 2-1, 2-4, and 2-7)
	are equations that are true for all values of the variables.
	The ratio of the change in an amount to the original amount expressed as a percent is known as the
	A(n) is a rule for the relationship between certain quantities.
	New Vocabulary Match each term with its definition.
dimensional analysis	a formula or equation that involves several variables
literal equation	the process of carrying units throughout a computation
unit analysis	another term for dimensional analysis
	Vocabulary Link <i>Literal</i> is a word that is used in everyday English. Find the definition of <i>literal</i> using a dictionary. Explain how the English definition can help you remember how <i>literal</i> is used in mathematics.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 2-8

Use Formulas pp. 127-128

The formula for the area of a rectangle is $A = \ell w$, where ℓ is its length, and w is the width. Find the length of a rectangular garden that has an area of 5400 square feet and a width of 90 feet.

Helping You Remember

When you give the dimensions of a rectangle, you have to tell how many units long it is and how many units wide it is. How can this help you remember what dimensional analysis involves?

Weighted Averages 2-9

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2.
Active Vocabulary	New Vocabulary Match each term with its definition. Note: two terms have the same definition.
rate problem	When referring to a set of data, it is the sum of the product of the number of units and the value per unit divided by the sum of the number of units.
uniform motion problem	problems in which two or more parts are combined into a whole
weighted average	problems in which an object moves at a certain speed or rate
mixture problem	a statement that requires a solution, usually by means of a mathematical operation
	Vocabulary Link <i>Problem</i> is a word that is used in everyday English. Find the definition of <i>problem</i> using a dictionary. Explain how the English definition can help you remember how <i>problem</i> is used in mathematics.

Lesson 2-9

		_ DATE	PERIOD	
Lesson 2-9 (continued)				
Main Idea		Detail	s	
Weighted Averages p. 132	In addition to the textbook, write a necessary to calc	nother exam	ple of when	n it might be
	Use the table pro rate problem.	ovided to aid	in solving t	he following
Problems	-	traveling from oath towards e g 20 kilometers 25 kilometers	opposite end ach other. Or s per hour, ar per hour. Ho	ls of a ne of the nd the other
Problems	rate problem. Two cyclists begin to 15-kilometer bike p cyclists is traveling cyclist is traveling to will it take for them	traveling from oath towards e g 20 kilometers 25 kilometers	opposite end ach other. Or s per hour, ar per hour. Ho	ls of a ne of the nd the other
Problems	rate problem. Two cyclists begin to 15-kilometer bike p cyclists is traveling cyclist is traveling	traveling from oath towards e g 20 kilometers 25 kilometers n to meet each	opposite end ach other. Of s per hour, ar per hour. Ho other?	ls of a ne of the nd the other w much time
Problems	rate problem. Two cyclists begin to 15-kilometer bike p cyclists is traveling cyclist is traveling to will it take for them	traveling from oath towards e g 20 kilometers 25 kilometers n to meet each	opposite end ach other. Of s per hour, ar per hour. Ho other?	ls of a ne of the nd the other w much time
Problems	rate problem. Two cyclists begin to 15-kilometer bike p cyclists is traveling cyclist is traveling will it take for them first cyclist	traveling from path towards e g 20 kilometers 25 kilometers n to meet each r	a opposite end each other. Or s per hour, an per hour. Ho n other? <u>t</u>	ls of a ne of the nd the other w much time
Uniform Motion Problems pp. 134–135	rate problem. Two cyclists begin to 15-kilometer bike provide the provided the pr	traveling from bath towards e g 20 kilometers 25 kilometers n to meet each <i>r</i> re an equation	a opposite end each other. Or s per hour, an per hour. Ho n other? <u>t</u>	ls of a ne of the nd the other w much time

CHAPTER **Linear Equations**

Tie It Together

Provide the indicated details in each graphic organizer.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Linear Equations

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 2.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 2 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 2 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Review information daily to keep it fresh and to reduce the amount of last-minute studying before test day. Look over the notes from class, readings, and corrected homework to review. If you have confusion about any concepts get them cleared up before test day.

NAME

Linear Functions

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an \mathbf{A} if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Before You Read	Linear Functions
	• The graph of a linear equation is a straight line.
	• A family of graphs is different equations that represent the same line.
	• Slope and rate of change are the same thing.
	• Slope is the change of <i>x</i> over the change of <i>y</i> .
	• The graph of a nonproportional relationship will not be a straight line.

Construct the Foldable as directed at the beginning of this chapter.

• When you take notes, write down the math problem and each step in the solution using math symbols.

Next to each step, write down, in your own words, exactly what you are doing.

• It is helpful to read through your notes before beginning your homework. Look over any page referenced material.

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving linear equations by graphing, one fact might be that the root of an equation is any value that makes the equation true or the solution. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
3-1 Graphing Linear Equations	
3-2 Solving Linear Equations by Graphing	
3-3 Rate of Change and Slope	
3-4 Direct Variation	
3-5 Arithmetic Sequences as Linear Functions	
3-6 Proportional and Nonproportional Relationships	

3-1 Graphing Linear Equations

What You'll Learn	Scan Lesson 3-1. List two headings you would use to make an outline of this lesson.		
	1		
	2		
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.		
linear equation	the <i>x</i> -coordinate of the point at which the graph of an equation crosses the <i>x</i> -axis		
standard form	a number		
x-intercept	an equation which forms a line when it is graphed		
constant	the <i>y</i> -coordinate of the point at which the graph of an equation crosses the <i>y</i> -axis		
y-intercept	a linear equation written in the form $Ax + By = C$		

Vocabulary Link Determine whether each of the following is a linear equation. Using a graphing calculator, sketch a graph of each equation.

y = 3x - 4	$y = 3x^2 - 4$	y = 0x - 4
y * + y * + * + * + * * * * * * * * * * * * * *		y
Linear? Yes No	Linear? Yes No	Linear? Yes No

Main Idea

Identify Linear Equations and Intercepts

pp. 153–155

Write a word problem that could be represented by the table of values. Label the independent variable and the dependent variable in the table. Graph the table of values, labeling the axes appropriately.

Details

x	0	1	2	3	4
у	100	75	50	25	0

Word Problem

Graph Linear Equations pp. 155–156

Describe the similarities and differences in finding the *x*-intercept of a line and finding the *y*-intercept of a line.

Similarities	γ	Differences
	ļ	

3-2 Solving Linear Equations by Graphing

What You'll Learn Active Vocabulary	about solving linear the text. 1		ng as you scanned
	3x + 6 = 4x - 8	3x + 9 = 3x - 8	3x + 7 = 4x + 7 - x
	New Vocabulary Wri	te the definition nex	t to each term.
linear function ►			
parent function \blacktriangleright	. <u> </u>		
family of graphs ►			
root 🕨			
zeros 🕨			

Lesson 3-2

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Estimate Solutions by Graphing p. 163

Write a function for the situation described below. Describe how to find the zero of this function. Determine what the zero of this function represents.

The salt reserve for a city's road crew was at 17 tons prior to the beginning of winter. Each time the roads are treated, the reserves are depleted by 3.25 tons of salt.

$$f(x) =$$

Algebraically	Graphically	What does the zero represent?

3-3 Rate of Change and Slope

What You'll Learn	Skim the lesson. Write two things you already know about rate of change and slope.
	1
	2.
Active Vocabulary	Review Vocabulary Write the definition of the word <i>ratio</i> and list the three ways that a ratio can be expressed. By scanning ahead, what is a ratio used to represent in this lesson?
rate of change 🕨	New Vocabulary Write the definition next to each term.
slope 🕨	

Lesson 3-3

NAME		DATE .		PERIOD	
Lesson 3-3 (continued)					
Main Idea			Details		
Rate of Change pp. 170–172	Complete th constant ray Table B has per minute.	te of change a constant	of 20 ga	llons per ho	our and
	Tab	le A		Tab	le B
	Hour	Gallons		Minutes	Inches
	1:00 p.m.			6	259.25
	4:00 р.м.				228.25
	6:00 p.m.	1250		12	
	10:00 р.м.				42.25
Find Slope pp. 172–173	Use each of slope of the	line describ	oed.		
	a line that basses through the points (-1, 5) and (-4, 5)		$(x_1, 5)$ as $(x_1, 5)$, y ₁) and (–1,	5) as (x_2, y_2) . 5) as (x_2, y_2) . ise = un = $\frac{ise}{un}$ =

Did you get the same slope all three times?

Helping You Remember

The word *rise* is associated with going up. Sometimes going from one point to another on a graph does not involve a rise and a run but a fall and a run. Describe how you could select points so that it is always a rise from the first point to a second point.

3-4 Direct Variation

What You'll Learn	Skim the Examples for Lesson 3-4. Predict two things you think you will learn about direct variation.
	1
	2.
Active Vocabulary	Review Vocabulary Write another possible point on each of the lines described. Use the slope formula to justify your answer. (<i>Lesson 3-3</i>)
	1. passes through (5, 8) with negative slope
	2. passes through (5, 8) with positive slope
	3. passes through $(5, 8)$ with zero slope
	4. passes through (5, 8) with no slope
	5. passes through (5, 8) with slope of 2
	New Vocabulary Label the equation with the correct terms.
direct variation \blacktriangleright	
	y = kx
constant of variation \blacktriangleright	

Lesson 3-4

DATE ____

_____ PERIOD _

Helping You Remember

Look up the word *constant* in a dictionary. How does this definition relate to the term *constant of variation*?

3-5 Arithmetic Sequences as Linear Functions

What You'll Learn	Skim Lesson 3-5. Predic based on the headings a				
	1				
	2.				
Active Vocabulary	Review Vocabulary Evalution for $x = -1, 0, 1, 2, 3$. (Let		4x + 2 and $g(x)$	x = -3x + 7	
	x -1 0	1	2	3	
	f (<i>x</i>)				
	g (<i>x</i>)				
	Describe the pattern yo				
	Describe the pattern you see in $g(x)$.				
	Describe the graph of the ordered pairs $(x, f(x))$.		Describe the gr ordered pairs (:	-	
	New Vocabulary Write the definition.	he correct t	erm beside ea	ch	
►	the numbers in a seque	nce			
►	a sequence in which the difference in successive terms is constant				
►	a set of numbers in a sp	ecific order	r		
►	the difference between t	the terms in	n an arithmeti	ic sequence	

Lesson 3-5

Lesson 3-5 (continued)	
Main Idea	Details
Recognize Arithmetic Sequences	Complete each question below.
pp. 187–189	1. Determine whether the sequence 3, −7, −14, −24, −31, −41 is an arithmetic sequence. Justify your answer.
	2. Determine the next four terms of the arithmetic sequence -17, -12, -7, -2, 3,
	 Write an equation for the <i>n</i>th term of the arithmetic sequence 14, 10, 6, 2, -2,
Arithmetic Sequences and Functions	Follow the steps below to write a function to represent the arithmetic sequence described.
р. 190	Anya is collecting cans to turn into the recycling center. The arithmetic sequence \$0.02, \$0.04, \$0.06, \$0.08, represents the amount of money she earns for turning in the cans.
	Use the function to determine her earnings for turning in 100 cans.
Determine the com	amon difference.
Substitute into the $a_n = a_1 + (n - 1)d$	<i>nth</i> term formula.
Evaluate the function	ion.

DATE ___

_____ PERIOD _

3-6 Proportional and Nonproportional Relationships

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	New Vocabulary Fill in the blanks with the correct terms or phrases.
inductive reasoning >	It is the process of using a to make a
	general When a pattern is
	found, a linear equation can be written. The relationship is
	if the linear equation is of the form $y = kx$.
	Vocabulary Link Explain how the use of the word <i>proportional</i> in geometry can help you remember its use in this lesson.

Lesson 3-6

Linear Functions

Tie It Together

Provide details in each graphic organizer.

Linear Functions

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a ${\bf D}$ if you disagree with the statement.

Linear Functions	After You Read
• The graph of a linear equation is a straight line.	
• A family of graphs is different equations that represent the same line.	
• Slope and rate of change are the same thing.	
• Slope is the change of <i>x</i> over the change of <i>y</i> .	
• The graph of a nonproportional relationship will not be a straight line.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 3.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 3 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 3 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• When studying for tests, create and use graphic organizers to show relationships between concepts.

4 Linear Functions and Relations

Before You Read

Before you read the chapter, think about what you know about linear functions and relations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W	
What I know	What I want to find out	
	1	

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- As soon as possible, go over your notes. Clarify any ideas that were not complete.
- If you find it difficult to write and pay attention at the same time, write down key words only.

Then go back and complete your notes.

Linear Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on scatter plots and lines of fit, one fact might be that scatter plots can show whether there is a trend in a set of data. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
4-1 Graphing Equations in Slope-Intercept Form	
4-2 Writing Equations in Slope-Intercept Form	
4-3 Writing Equations in Point-Slope Form	
4-4 Parallel and Perpendicular Lines	
4-5 Scatter Plots and Lines of Fit	
4-6 Regression and Median-Fit Lines	
4-7 Special Functions	

Graphing Equations in Slope-Intercept Form 4-1

Lesson 4-1

NAME		DATE P	ERIOD
Lesson 4-1 (continued)			
Main Idea		Details	
Slope-Intercept Form pp. 214–216	Complete each step in the chart below. Add details to each step for clarification.		
	Write the equation	in	form, if needed.
	Identify the	and the	
		П	
	Plot the	on a coordina	te plane.
	Plot another	using the	
Modeling Real-World Data	Write a linear equat		
pp. 216–217	-217 the year 2008, if the price of gas in 2008 is \$3.16 per gall and the price increases by \$0.55 per year.		
	slope or rate of change	y-intercept or starting value	linear equation y = mx + b

4-2 Writing Equations in Slope-Intercept Form

What You'll Learn	Skim the lesson. Write two things you already know about writing equations in slope-intercept form.		
	1		
	2		
Active Vocabulary	Review Vocabulary Rewrite each equation in <i>slope-intercept</i>		
	form. Circle the slope and underline the y-intercept. (Lesson 4-1)		
	$2y + 5x = -8 \qquad 3y + 5x = 5x + 7 \qquad y + 5x = 4$		
	New Vocabulary Fill in each blank with the correct terms.		
linear extrapolation ▶	a process in which you use a equation to make about a value that is outside the range of a given set of		
	Vocabulary Link Look up the word <i>extrapolate</i> in the dictionary. Write the non-mathematical definition of the word, a synonym for the word, and then use the word <i>extrapolate</i> in a non-mathematical sentence.		

Lesson 4-2

4-3 Writing Equations in Point-Slope Form

What You'll Learn	Scan the text in Lesson 4-3. Write two facts you learned about equations in point-slope form as you scanned the t		
	1		
	2		
Active Vocabulary	New Vocabulary Label the diagram using the terms at the left.		
$dependent\ variable$ \blacktriangleright			
slope 🕨			
$independent\ variable$ \blacktriangleright	$\dot{y} - y_1 = m(x - x_1)$		
x-coordinate of point on the line ►			
y-coordinate of point on the line ►			
	Vocabulary Link Write the point-slope formula and the slope formula below. Explain how the two formulas are related		

slope formula	point-slope form
How are they related?	

Lesson 4-3

Forms of Linear Equations pp. 232–233

Place a check mark in each box in which the specified characteristic applies. Describe the graphing method that you would use for each form identified as being convenient.

Form	Slope is easily identifiable.	The y-intercept is easily identifiable.	convenient form for graphing
point-slope form			
slope- intercept form			
standard form			

Parallel and Perpendicular Lines 4-4

What You'll Learn	Skim the Examples for Lesson 4-4. Predict two things you think you will learn about parallel and perpendicular lines.
	1
	2.
Active Vocabulary	Review Vocabulary Write the slope formula, and then write a verbal description of how to use the slope formula. (<i>Lesson 3-3</i>)
	New Vocabulary Write the correct term beside each definition.
►	lines in the same plane that never intersect and have the same slope
►	lines that intersect at right angles and have slopes that are opposite reciprocals

Lesson 4-4

NAME	[DATE	PERIOD
Lesson 4-4 (continued)			
Main Idea		Details	
Parallel Lines p. 237	Write an equation t intercept form.	for each line de	escribed in <i>slope-</i>
P	1. <i>x</i> -intercept of 3; <i>y</i>	-intercept of -1	
	2. parallel to the lin	e in Exercise 1	
	3. intersects the line	e in Exercise 1 a	t the y-intercept

Perpendicular Lines
pp. 238–240

Given two equations in standard form, determine whether the lines are parallel, perpendicular, or neither.

Helping You Remember

Explain to another person how you would use the *y*-intercept and slope to graph a linear equation.

4-5 Scatter Plots and Lines of Fit

What You'll Learn	Skim Lesson 4-5. Predict two things that you expect to learn based on the headings and the Key Concept box. 1.
	2
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.
bivariate data	a set of bivariate data graphed as ordered pairs on a coordinate plane
line of fit	a set of data which contains two variables
scatter plot	the process of using a linear equation to predict values inside the range of a set of data
linear interpolation	a line which closely approximates the scatter plot for a set of data
	Vocabulary Link Circle each word which would likely describe the given statistical relationship.1. the amount of allowance and the number of CDs owned by fifteen students randomly selected from an algebra class
	negative positive no weak strong
	correlation correlation correlation correlation
	2. the height in inches and the number of hours spent sleeping each week for ten adults selected at random
	negative positive no weak strong
	correlation correlation correlation correlation
	3. the number of hours worked and the number of hours spent watching TV each week by nine teenagers selected at random
	negative positive no weak strong
	correlation correlation correlation correlation

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 4-5 (continued)

DATE _

Main Idea

Investigate Relationships Using Scatter Plots p. 245 Describe a real-world situation and a set of corresponding data that would show a strong positive correlation. Describe the meaning of the correlation in terms of the real-world situation.

Details

Situation:

Correlation Meaning:

Use Lines of Fit

pp. 246–247

Make a scatter plot and describe the correlation. Determine a line of fit for the data. Use the line of fit to predict the number of hours exercised per week by a 15-year-old.

The table shows the number of hours spent exercising per week and the age of a random sample of seven people.

age	18	26	32	38	52	59
hours	10	5	2	3	1.5	1

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

4-6 **Regression and Median-Fit Lines**

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary best-fit line >	New Vocabulary Write the definition next to each term.
linear regression 🕨	
correlation coefficient ►	
median-fit line ▶	
	Vocabulary Link Consider the statement "There is a strong correlation between smoking cigarettes and developing lung cancer." Explain this statement mathematically and indicate a probable value for the correlation coefficient.

Record the keystrok egression on your c necessary. entering the data Use your graphing calc one for the following se erform both a <i>linear i</i> extrapolation.	es requ alculat perfo regre	tor. Provide to dete ta. Use	gra scat reg ermine the e this equa	aphing ter plot ression median tion to	the t and line
egression on your concessary.	perfo regre	tor. Provide to dete ta. Use	gra scat reg ermine the e this equa	aphing ter plot ression median tion to	the t and line
data Jse your graphing calc ine for the following se erform both a <i>linear i</i>	regree ulator f	to dete	ermine the e this equa	ter plot ression median tion to	t and line
ne for the following se erform both a <i>linear i</i>	et of dat	ta. Use	e this equa	tion to	n-fit
number of ads	2	5	8 8	10	12
sales (\$ thousands)	2	4	7 6	9	10
median-fit equation:					
interpolation		extra	apolation		
		1			
	median-fit equation: interpolation ber Explain how	median-fit equation: interpolation ber Explain how each o	median-fit equation: interpolation extra ber Explain how each of the for	median-fit equation: interpolation extrapolation ber Explain how each of the following ter	median-fit equation: interpolation extrapolation

Special Functions 4-7

Scan Lesson 4-7. List two headings you would use to make an outline of this lesson.
1
2.

Active Vocabulary

Review Vocabulary Graph each on a number line. (Lesson 2-5)

$$|x| < 4$$
all integers wh
value is greated
-5-4-3-2-1 0 1 2 3 4 5
$$-5-4-3-2-1 0$$

ose absolute r than 2 1 2 3 4 5

	New Vocabulary Match the term with its definition by drawing a line to connect the two.
piecewise-defined function	a function whose graph consists of disjointed line segments
step function	a function when given x , returns the greatest integer less than or equal to x
piecewise linear function	a function written using two or more expressions
absolute value function	a function which contains an algebraic expression within absolute value symbols
greatest integer function	a function written using one expression which results in a graph that consists of multiple lines

Lesson 4-7 (continued)

Main Idea

Evaluate each expression.

1. [[8.7]] **2.** [-8.2] + [16.2]**4.** [18.9 + 12.6] **3.** $[\![12.1]\!] + 8$

Provide either the graph or the function notation for each piecewise-defined function. Identify the domain and range for each.

Details

Function	Graph	Domain
$f(x) = \begin{cases} 3x - 5 \text{ if } x < 3\\ -\frac{2}{3}x - 4 \text{ if } x \ge \end{cases}$		{all real numbers}
		Range
	↓	Domain
		{all real numbers}
		Range
		{all real numbers}

Absolute Value Functions

Step Functions

pp. 261–262

pp. 262-264

Helping You Remember

Explain how you can use a number line to find the value of the greatest integer function for any real number.

Linear Functions and Relations

Tie It Together

Provide details for each titled graphic organizer. Supply a title and details for graphic organizers that are blank.

	Equation	n of a Line	
	Point-Slope Form	Slope-Intercept Form	Standard Form
General Equation			
Using to Graph a Line			
Using to Write the Equation of a Line			
Positive			Scatter Plot
Negative	Correlation	n	Estimate Values
None	Bivari	ate Data	Extrapolation
Lines of Fit	Lines	of Best Fit	Interpolation
Regression	n Line	Median-	fit Line

DATE _

4 Linear Functions and Relations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 4 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 4 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Make up an invented sentence (acrostic) to remember lists or sequences. Please Excuse My Dear Aunt Sally is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract).

NAME

Linear Inequalities

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Linear Inequalities
	• Inequalities are solved by isolating the variable.
	• If both sides of an inequality are multiplied by a negative number, the inequality sign is reversed.
	• A graph of an inequality has an open circle when the symbol is "greater than or equal to".
	• The order of operations does not apply when solving inequalities.
	• Inequalities with absolute values are undefined.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- **Remember to study your notes daily.** Reviewing small amounts at a time will help you retain the information.
- When you take notes, it may be helpful to sit as close as possible to the front of the class.

There are fewer distractions and it is easier to hear.

Linear Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving inequalities by addition and subtraction, one fact might be that when solving inequalities, the goal is to isolate the variable on one side of the inequality. After completing the chapter, you can use this table to review for your chapter test.

DATE _

_ PERIOD _

Lesson	Fact
5-1 Solving Inequalities by Addition and Subtraction	
5-2 Solving Inequalities by Multiplication and Division	
5-3 Solving Multi-Step Inequalities	
5-4 Solving Compound Inequalities	
5-5 Inequalities Involving Absolute Value	
5-6 Graphing Inequalities in Two Variables	

78

5-1 Solving In	equalities by Addition and
Subtractio	n
What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Write a word description for each inequality symbol and write a true mathematical sentence using the symbol. (<i>Lesson 1-1</i>)
	1. > 2. <
	3. ≥
	4. ≤
	New Vocabulary Label the parts of the <i>set builder notation</i> below using the phrases given at the left. Show the set builder notation on the number line.
such that \blacktriangleright	
the set of all numbers b \blacktriangleright	$\{b \mid \underline{b \leq 5}\}$
b is less than or equal ► to 5	
	-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 10 11

Lesson 5-1

Lesson 5-1 (continued)

Main Idea

Details

Solve Inequalities by Addition

pp. 283–284

Fill in the chart with the missing solution set representations.

Verbal Description	Set Builder Notation	Graphical Representation
all numbers greater than 3		-4 -3 -2 -1 0 1 2 3 4
	$\{x \mid x < -3\}$	-4 -3 -2 -1 0 1 2 3 4

Solve Inequalities by Subtraction pp. 284–285

Write a linear inequality to represent the following problem. Solve the inequality. Provide a complete sentence to answer the problem.

Raul needs at least \$150 to purchase a digital audio player. Currently, Raul has \$102. How much more money does Raul need before he can purchase a digital audio player?

	-
Inequality:	Answer the problem:
Solution:	

Helping You Remember

Teaching someone else can help you remember something. Explain how you would teach another student to solve the inequality $2x + 4 \le 3x$.

5-2 Solving Inequalities by Multiplication and Division		
What You'll Learn	Scan Lesson 5-2. List two head an outline of this lesson.	lings you would use to make
	1	
	2	
Active Vocabulary	Review Vocabulary Explain how of Equality and the Division Pa be used to solve the equation 3	roperty of Equality can both
	Multiplication Property of Equality	Division Property of Equality

Vocabulary Link Solve the inequality below by following the outlined steps.

NAME	DATE PERIOD
Lesson 5-2 (continued)	
Main Idea	Details
Solve Inequalities by Multiplication pp. 290–291	Compare and contrast the process for solving the inequalities $-\frac{1}{3}x > -12$ and $\frac{1}{3}x > 12$ and for showing the solutions sets on a number line.
	Similarities:
	Differences:
Solve Inequalities by Division	Classify each inequality listed in the chart below.
p. 292	$3x > -12, -4x < 15, -\frac{2}{3}x \le -15, x - 5 > -15, \frac{1}{4}x \ge -8, -x > 9, x + 14 < -6, \frac{3}{2}x > -7$
	2
	The inequality symbol is not reversed when solving.The inequality symbol is reversed when solving.

5-3 Solving Multi-Step Inequalities

What You'll Learn	Skim the Examples for Lesson &	
	think you will learn about solvi	ng multi-step inequalities.
	1	
	2	
Active Vocabulary	Review Vocabulary Use the Distr	ributive Property to simplify
	each expression. (Lesson 1-3)	
	1. $3(2x - 7)$	2. $-4x + 2(3x + 1)$
	3. $2(x+5) + 3(2x+1)$	4. $-4(2x-6) - (x+7)$
	Vocabulary Link Fill in a missing	r torm in each equation to
	satisfy the given solution. Justi	
	each equation.	
	1. $4x - 12 = 6x + $	Solution: $x = -2$
	2. $2x - 10 = 2x +$	Solution: Ø
	3. $3x + 11 = $ + 11	Solution: {all real numbers}

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 5-3

Main Idea	Details
Solve Multi-Step Inequalities pp. 296–297	Solve each inequality using the indicated first step. Show the solution set using set builder notation and on a number line.
	$5 - 6z \ge 13$ Subtract 5 from each side.
	$5 - 6z \ge 13$ Add 6z to each side.
Solve Inequalities Involving the Distributive Property	Explain how to identify an inequality that has either "all real numbers" or "Ø" as the solution.
pp. 297–298	All Real numbers:
	Ø:
Helping You Rem	Make a checklist of steps for solving inequalities.

Solving Compound Inequalities 5-4

What You'll Learn	Skim the lesson. Write two things you already know about solving compound inequalities. 1. 2.
Active Vocabulary	Review Vocabulary Match each verbal description to the correct inequality symbol. (<i>Lesson 1-1</i>).
$x \ge 12$	is no more than 12
12 < x	is less than 12
$x \le 12$	is at least 12
x < 12	is more than 12
	New Vocabulary Write the correct term beside each definition.
▶	Corresponds to the word "and". Solutions are common to both inequalities in a compound inequality.
	The name given to two inequalities considered together.
►	Corresponds to the word "or". Solutions are from one, the other, or both inequalities in a compound inequality.
	Vocabulary Link Shade the <i>intersection</i> of sets A and B in Diagram I. Shade the <i>union</i> of sets A and B in Diagram II.

Lesson 5-4

Lesson 5-4 (continued)	
Main Idea	Details
Inequalities Containing and	Complete the diagram to solve the inequality.
p. 304	$-11 \le 2x - 3 < 7$ Split into two inequalities using "and" and solve each inequality.
	$-11 \le 2x - 3$ AND $2x - 3 < 7$
	Combine the two solutions into one inequality.
Inequalities Containing or pp. 305–306	To be on the Tiny Tigers Tennis Team, a child must be at least 6 years old, but less than 9 years old. Write two <i>compound inequalities</i> : one representing the ages of children who can be on the team, and the other representing the ages of children who cannot be on the team.
	Children on the team:
	Children not on the team:
0	One way to remember something is to connect it iliar to you. Write two <i>true</i> compound statements about yord <i>and</i> and other using the word <i>or</i> .

_ DATE ___

_____ PERIOD __

5-5

Inequalities Involving Absolute Value

What You'll Learn	Scan the text in Lesson 5-5. Write tw about inequalities involving absolute the text.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Solve each <i>absolut</i> (Lesson 2-5)	te value equation.
	1. $ x = 12$	2. $ x - 5 = -20$
	3. $4 x-6 = 16$	4. $ 3x - 1 + 2 = 18$
	Vocabulary Link Shade the areas on t which meet the conditions. Describe	

Lesson 5-5

NAME	DATE PERIOD
Lesson 5-5 (continued)	
Main Idea	Details
main raca	Details
Inequalities Involving Absolute Value	Complete the chart below for solving absolute value inequalities.
pp. 310–311	
	ax+b > c
	Rewrite as $ax + b > c$ I
	$\begin{vmatrix} \text{or} \\ ax + b < -c \end{vmatrix}$
	and
	solve for <i>x</i> .
	Show the solution set on a number line.
	Solve each inequality.
	$ x+3 > 5$ $ 2x-1 \le 3$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Helping You Rem	ember
	Recall that $ x $ tells you how many units the the number line. Explain the meaning of $ x = n$, $ x < n$ and

number x is from zero on the number line. Explain the meaning of |x| = n, |x| < n and |x| > n by using the idea of the distance from x to zero.

5-6 Graphing Inequalities in Two Variables

What You'll Learn	Skim Lesson 5-6. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
half-plane •	
closed half-plane ►	
open half-plane 🕨	

Lesson 5-6 (continued)

DATE __

Main Idea

Graph Linear Inequalities pp. 315–316

Details

Sequence the steps for graphing a linear inequality by placing one step in each box. Add details in the box next to each step.

Shade the graph, Graph the boundary line, Determine if the boundary line is solid or shaded, Pick a point not on the line to test, Check a point not in the shaded region

Solve Linear Inequalities

pp. 316–317

Use an inequality in two variables to solve $-2x - 3 \le -5$.

Write the related function.

31	ra	ph	t	he	e fi	un	ct	io	n.	
				4	y					
_									X	
					0					
					h					

Pick/Test a Point. Shade the graph.

Tie It Together

Provide the indicated details in the graphic organizer.

DATE _

NAME

Linear Inequalities

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Linear Inequalities	After You Read
• Inequalities are solved by isolating the variable.	
• If both sides of an inequality are multiplied by a negative number, the inequality sign is reversed.	
• A graph of an inequality has an open circle when the symbol is "greater than or equal to".	
• The order of operations does not apply when solving inequalities.	
• Inequalities with absolute values are undefined.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 5.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 5 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 5 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• On handouts, homework, and workbooks that can be written in, underline and highlight significant information.

Before You Read

Before you read the chapter, think about what you know about systems of linear equations and inequalities. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

🕖 Note Taking Tips

• If your instructor points out definitions or procedures from your text, write a reference page in your notes.

You can then write these referenced items in their proper place in your notes after class.

• When you take notes, listen or read for main ideas.

Then record concepts, define terms, write statements in if-then form, and write paragraph proofs.

Systems of Linear Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on graphing systems of equations, one fact might be that if a consistent system has an infinite number of solutions, it is dependent. After completing the chapter, you can use this table to review for your chapter test.

	Lesson	Fact
6-1	Graphing Systems of Equations	
6-2	Substitution	
6-3	Elimination Using Addition and Subtraction	
6-4	Elimination Using Multiplication	
6-5	Applying Systems of Linear Equations	
6-6	Organizing Data Using Matrices	
6-7	Using Matrices to Solve Systems of Equations	
6-8	Systems of Inequalities	

Graphing Systems of Equations 6-1

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson. 1									
	2									
Active Vocabulary		v Voca ion <i>x</i> -					values	s whic	h sati	sfy the
	x	-5	-4	-3	-2	-1	0	1	2	3
	У	18	17	16	15	14	13	12	11	10
	How	can yo	u shov	w all o	f the o	ordere	d pair	rs for t	the eq	uation?
		/ocabu ling a li	-	Iatch	the te	rm wi	th its	defini	tion b	у
consistent	a set varia	of two bles	or mo	ore equ	ation	s that	conta	in the	e same	9
inconsistent	a syst	em of	equat	ions t	hat ha	as at le	east o	ne solu	ution	
system of equations	a syst soluti	tem of ons	equat	ions tl	hat ha	ıs an i	nfinit	e num	ber of	
independent	a syst	em of	equat	ions t	hat ha	as exa	ctly or	ne solu	ition	
dependent	a syst	em of	equat	ions t	hat ha	ıs no s	olutio	ns		

Lesson 6-1

Lesson 6-1 (continued)

Main Idea

Details

Possible Number of Solutions

pp. 333-334

Add a line to each graph so that the given condition is satisfied.

Solve by Graphing

Solve the system of equations by graphing.

pp. 334-335

Step 3 Find the solution. The lines intersect at point

Helping You Remember

Describe how you can solve a system of

equations by graphing.

6-2 Substitution

What You'll Learn	Scan the text in Lesson 6-2. Write two facts you learned about solving systems by substitution as you scanned the text. 1 2
Active Vocabulary	Review Vocabulary Solve the equation after substituting the given value for each variable. (<i>Lesson 2-3</i>) 1. $3x + 7y = 8$, given $x = -2$ 2. $-2y + 2x = 12$, given $y = 0$ 3. $y - \frac{2}{3x} = 9$, given $x = -6$ 4. $0.5y + 6x = -5$, given $y = 4$
substitution ►	New Vocabulary Write the definition next to each term.

Lesson 6-2 (continued)

Main Idea

Details

Solve by Substitution pp. 342–344

Solve the system of equations twice using the substitution method. In the first column, solve for x initially. In the second, solve for y initially.

Solve Real-World Problems

p. 344

Write a system of equations to represent the following problem. Identify the variables. Solve the system.

A total of 150 tickets were sold for the annual concert. Student tickets were \$4 and non-student tickets were \$8. If the total revenue was \$840, how many tickets of each type were sold?

Let $s =$	system	Solve and answer.
Let $n =$		

Helping You Remember

What is usually the first step in solving a system

of equations by substitution?

6-3 Elimination Using Addition and Subtraction

What You'll Learn	Scan Lesson 6-3. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	Review Vocabulary Match each linear equation with the appropriate form. (Lessons 4-2 and 4-3)
slope-intercept form	$y = -\frac{3}{4}x + 3$
point-slope form	3x + 4y = 12
standard form	y + 3 = (x - 8)
	Do these equations represent the same line? Justify your answer.
	New Vocabulary Fill in the blanks with the correct term or phrase.
$elimination$ \blacktriangleright	It is a method to a system in which the
	equations are written so that like with the
	same or opposite coefficients are The equations
	are or subtracted to eliminate one
	The value for one variable is found and is
	into one of the equations to solve for the
	other variable.

Lesson 6-3

Main Idea		Details	
Elimination Using Addition pp. 348–349	Solve each system method. Fill in bot missing steps.		
	Given	$\begin{array}{r} -5y + 3x = -9\\ 4x + 5y = 23 \end{array}$	3x = 4y + 11 $2y = 3x - 7$
	L.	↓ _	↓
	Line up the variables and coefficients.		
	-		
		7x = 14	
		$\bigcup_{i \in \mathcal{I}} f_i(x_i) = f_i(x_i) + f_i(x_i$	↓
	Solve the one-variable equation.		
	ſ		↓
		3(2) - 5y = -9 -5y = -15 y = 3	
	L		
			(1, -2)
Elimination Using Subtraction	Create a system of (2, 4) and can be so		
pp. 350–351			

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

ĺ

Elimination Using Multiplication 6-4

What You'll Learn	Skim Lesson 6-4. Predict two things that you expect to learn based on the headings and the Key Concept box.	
	1	
	2	
Active Vocabulary	Review Vocabulary Write the property of represented by each example. (<i>Lessons</i>	
	4x = 9 is equivalent to $4x - 18 = -9$.	
	3x + 2y = 12 is equivalent to $6x + 4y =$	= 24.
	3x = 12 is equivalent to $3x + 8 = 20$.	
	Vocabulary Link Add the two linear equipart third. Graph all three equations on the happens?	
	2x - 3y = -8	
	-x + 2y = 6	
		× × ×
		0

Lesson 6-4

Lesson 6-4 (continued)

Elimination Using

Multiplication

pp. 355-356

Main Idea

Details

Solve Real-World Problems p. 357

Write a system of equations to represent the following problem. Identify the variables. Solve the system using elimination.

On Monday, Arnold paid \$3.40 for three donuts and two coffees. On Tuesday, he paid \$3.60 for two donuts and three coffees. On Wednesday, he bought one donut and one coffee. What was his bill for one donut and one coffee?

Let $d =$	system	Solve and answer.
Let $c =$	3d + 2c = 3.40 2d + 3c = 3.60	

Helping You Remember

If you are going to solve a system by elimination, how do you decide whether you will need to multiply one or both equations by a number?

6-5 **Applying Systems of Linear Equations**

What You'll Learn	Skim the Examples for Lesson think you will learn about app 1 2	lying systems of equations.
Active Vocabulary	Review Vocabulary Solve the sy of the four methods. (Lessons $e x - 2y = 4$) Graphing	
	Solution:	Solution:
	Elimination Using Subtraction	Elimination Using Multiplication
	Solution:	Solution:

103

Lesson 6-5

Main Idea	Deta	ils
Determine the Best Method pp. 362–363	Summarize when to use each methods in your own words.	
	Substitution	Graphing
	Methods for Systems of	
	Addition and Subtraction with Multiplication	Addition and Subtraction
Apply Systems of Linear Equations p. 364	Write a word problem that c the following system of equa variable. 4b + 3m = 1.45; 2b + 5m = 1.23	tions. Identify each
		Word Problem

_____ DATE ____

_____ PERIOD _

Organizing Data Using Matrices 6-6

What You'll Learn	Skim the lesson. Write two things you already know about organizing data using matrices.	
	1	
	2	
Active Vocabulary	New Vocabulary Write the correct term beside each definition.	
►	the number of rows and columns in a matrix, written as $m \times n$, where <i>m</i> is the number of rows and <i>n</i> is the number of columns	
►	a constant that is multiplied by a matrix	
►	the name given to each number in a matrix	
►	a rectangular array of variables or constants in horizontal rows and columns	
►	the operation of multiplying each element of a matrix by the scalar	
	Vocabulary Link Explain how scalar multiplication is similar to using the Distributive Property in an algebraic expression. Explain how matrix addition/subtraction is similar to combining like terms in an algebraic expression.	
	Scalar multiplication & Distributive Property	
	Matrix addition/subtraction & combining like terms	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 6-6

NAME	DATE PERIOD	
Lesson 6-6 (continued)		
Main Idea	Details	
Organize Data Using Matrices pp. 369–370	Use matrix A to answer the following questions. $A = \begin{bmatrix} -2 & 7 & -10 & 1 & 12 \\ 3 & 0.5 & 2 & -1 & -5 \\ 5 & 6 & 0 & 4 & 0.75 \end{bmatrix}$	
	What are the dimensions of Matrix <i>A</i> ?	
	What is the element in row 2, column 4?	
	What is the position of the circled element?	
	What is the sum of the elements in column 3?	
	What is the sum of the elements in row 1?	
Matrix Operations pp. 370–371	Perform each matrix operation.	

$$-3\begin{bmatrix} -2 & 4\\ 1 & 7 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix} - \begin{bmatrix} 5 & -1 \\ 3 & 8 \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ \end{bmatrix}$$

6-7 Using Matrices to Solve Systems of Equations

What You'll Learn		
Active Vocabulary	Review Vocabulary Eliminate the system. Do not solve the system 2x - 3y = -13 $5x - 12y = -46$ Eliminate x. Multiply 1st equation by Multiply 2nd equation by Multiply 2nd equation by	n. (Lesson 6-4) 4x + 3y = 48 $3x + 2y = 34$ Eliminate y. Multiply 1st equation by Multiply 2nd equation by
constant coefficient identity matrix augmented matrix	$\begin{bmatrix} 4 & 3 \\ -2 & 7 \end{bmatrix}$	94

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

þ1

0

0

1

NAME	DATE PERIOD
Lesson 6-7 (continued)	
Main Idea	Details
Augmented Matrices p. 376	Write a system of equations from the augmented matrices. Use <i>x</i> and <i>y</i> as the variables.
	$\begin{bmatrix} 4 & 8 & 1 \\ 3 & -1 & 5 \end{bmatrix}$
Solve Systems of Equations pp. 376–378	Use an augmented matrix to solve the system of equations $x - y = 12$ and $2x + y = 3$. Fill in the missing steps.
	$\begin{bmatrix} 1 & -1 & 12 \\ 2 & 1 & 3 \end{bmatrix} \longrightarrow$
	Make the 2nd element in the 1st row a 0 by adding the 2nd row to the 1st.
	$\begin{bmatrix} 1 & 0 & 5 \\ 2 & 1 & 3 \end{bmatrix} \rightarrow$
	Make the 1st element in the 2nd row a 0 by multiplying the 1st row by -2 and adding to the 2nd.

Helping You Remember A student in your class is having difficulty understanding why the goal of row reduction is to achieve an identity matrix. How can you explain this to the student?

6-8 Systems of Inequalities

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.	
	1	
	2	
Active Vocabulary	New Vocabulary Fill in the blank with the correct term or phrase.	
system of inequalities \blacktriangleright	It is a set of or more inequalities with the same	
	The solution of the system is the set of	
	that satisfy all of the inequalities in the	
	system. These ordered pairs are the of the	
	graphs of each individual inequality.	

Vocabulary Link Intersecting regions can be represented using a Venn diagram. Place the terms "solutions of y > 2x - 4", "solutions of $y \le -0.5x + 3$ ", and "solutions of y > 2x - 4 and $y \le -0.5x + 3$ " in the Venn diagram below.

How could you use the Venn diagram to represent "solutions of y > 2x - 4 or $y \le -0.5x + 3$ "?

Lesson 6-8

AME	DATE	PERIOD
esson 6-8 (continued)		
Main Idea	Det	tails
ystems of Inequalities p. 382–383	Sequence the steps for solv inequalities. Solve the two	
-	Graph the first inequality and both lines in slope-intercept for of the shaded regions, Graph t shade appropriately.	rm, Determine the intersections
	Example 1	↓ y
	y > x - 1	
	y < x + 3	
	Example 2	
	$4x - 3y \le 3$	
	$2x + y \ge 2$	

Helping You Remember

Describe how you would explain the process of using a graph to solve a system of inequalities to a friend.

Systems of Linear Equations and Inequalities

Tie It Together

Fill in each graphic organizer. Add details if space permits.

Solving Systems of Equations			
Method	How to Use	When to Use	
Graphing			
Substitution			
Elimination with Addition/ Subtraction			
Elimination with Multiplication			
	Possible Solution Sets		
Algebraically Solve		Algebraically Solved	
Graphically Solved	Graphically Solved	↓ Graphically Solved	

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 6.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 6 Study Guide and Review in the textbook.
- \Box I took the Chapter 6 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

• Use the SQ3R method of reading: Survey, Question, Read, Recite, and Review. Survey the text by previewing the headings, boldface words, and examples. Ask questions about what you survey, read with purpose, recite out loud the main points and concepts without looking at the text, and review your text notes or use the chapter review at the end of the chapter.

NAME

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Polynomials
	• To multiply exponents with the same base, find the product of the base and the exponents.
	• A simplified expression is without fractions, duplicate bases, and powers of powers.
	• A base with a negative exponent is written with a positive exponent when it is a denominator.
	• To subtract polynomials, subtract like terms.
	• To multiply polynomials, use the Commutative Property.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When taking notes, writing a paragraph that describes the concepts, the computational skills, and the graphics will help you to understand the math in the lesson.
- Before each lesson, skim through the lesson and write any questions that come to mind in your notes.

As you work through the lesson, record the answer to your question.

CHAPTER

Polynomials

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on dividing monomials, one fact might be that the order of magnitude of a quantity is the number rounded to the nearest power of 10. After completing the chapter, you can use this table to review for your chapter test.

DATE _

_____ PERIOD _

Lesson	Fact
7-1 Multiplying Monomials	
7-2 Dividing Monomials	
7-3 Scientific Notation	
7-4 Polynomials	
7-5 Adding and Subtracting Polynomials	
7-6 Multiplying a Polynomial by a Monomial	
7-7 Multiplying Polynomials	
7-8 Special Products	

Lesson 7-1

7-1 Multiplying Monomials

What You'll Learn	Skim the Examples for Lesson 7-1. Predict two things you think you will learn about multiplying monomials. 1 2
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
constant 🕨	A constant is a monomial that is a
monomial 🕨	A monomial is a number, a, or the
	product of a number and one or more variables with
	nonnegative integer
	Vocabulary Link The word <i>constant</i> has a place in a number of real-world applications. Think of a real-world example where you would describe something as constant. Then look up the word and explain how its everyday meaning relates to its mathematical meaning.

Chapter 7

NAME . DATE ___ _____ PERIOD _ **Lesson 7-1** (continued) **Main Idea** Details Complete the table by circling the property of powers **Monomials** that can be used to simplify each expression. Then pp. 401–403 simplify the expression. Simplified Expression **Property Expression Product of Powers** Power of a Power $(w^3)^5$ Power of a Product **Product of Powers** c^2 . c^4 Power of a Power Power of a Product

Simplify Expressions p. 404

Simplify each expression.

1. $(2mn^2)^2(3m^2n^4)^3$

 $(2mn)^{3}$

2. $(4c^2d^3)^2[(-3c^2d^4)^3]^2$

Product of Powers Power of a Power

Power of a Product

Helping You Remember

Write an example of each of the three properties of powers discussed in this lesson. Then, using the examples, explain how the property is used to simplify them.

7-2 Dividing Monomials

What You'll Learn	Skim the lesson. Write two things you already know about dividing monomials.
	1
	2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition or expression.
►	$\left(\frac{c}{5}\right)^0 = 1$
►	for a given quantity, the number rounded to the nearest power of 10
►	$a^{-2} = \frac{1}{a^2}$
	Vocabulary Link Look up the definition of magnitude. Tell how the meaning compares to the order of magnitude of a quantity.

NAME . _ DATE _____ PERIOD _ **Lesson 7-2** (continued) **Main Idea** Details Complete the table by circling the property of powers **Quotients of Monomials** that can be used to simplify each expression. Then pp. 408-410 simplify the expression. **Expression Property** Simplified **Expression** Quotient of Powers a^2b^4 ab^2 Power of a Quotient Quotient of Powers $\left(\frac{4z^3}{5}\right)^2$ Power of a Quotient **Simplify Expressions** Simplify each expression. Assume that no denominator is equal to zero. pp. 411–412 $\left(rac{7c^2d^5}{21c^3d^2}
ight)^0$ 2. $\frac{(m^{-1}n^3)^{-4}}{m^3n^3}$ 1. **Helping You Remember** Describe how you would help a friend who needs to simplify the expression $\frac{4x^2}{2x^5}$.

7-3 Scientific Notation

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Write the definition next to each term.
constant 🕨	(Lesson 7-1)
monomial >	
	New Vocabulary Write the definition of the term.
scientific notation \blacktriangleright	

Lesson 7-3

Main Idea	Details
Scientific Notation pp. 416–417	Follow the steps below to write 5.18×10^7 in standard form.
	Step 1: Identify the exponent. $n = $
	Step 2: Move the decimal point n places to the right. $5.18 \times 10^7 \rightarrow $
	Step 3: Rewrite using commas. $5.18 \times 10^7 =$
Products and Quotients in Scientific Notation pp. 417–418	Evaluate each expression. Express the results in bot scientific notation and standard form.
pp. 117-110	1. $(1.3 \times 10^{-6})(5.2 \times 10^{8})$ 2. $\frac{2.04 \times 10^{9}}{1.2 \times 10^{13}}$

is to explain it to someone else. How would you tell a friend to write the decimal 0.00000012 using scientific notation?

7-4 Polynomials

What You'll Learn	Skim Lesson 7-4. Predict two things that you expect to learn based on the headings and figures in the lesson.
	1
	2
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	a monomial or the sum or difference of monomials, each called a <i>term</i>
►	the coefficient of the first term of a polynomial when written in standard form
►	the sum of the exponents of all the variables of a monomial
►	the sum or difference of three monomials
►	the form of a polynomial that is written with the terms in order from greatest degree to least degree
►	the sum or difference of two monomials
►	the greatest degree of any term in a polynomial

Lesson 7-4

NAME		_ DATE PE	RIOD	
Lesson 7-4 (continued)				
Main Idea		Details		
Degree of a Polynomial pp. 424–425		Complete the table below for each monomial, binomial, or trinomial.		
pp. 424–420	Expression	Number of Terms	Monomial, Binomial, or Trinomial?	
	$32x^2y$			
	4x + 2y - 6			
	$9x^2 - 81y^2$			
	-7			
	8y + 3			
Polynomials in Standard Form pp. 425–426	Write each polyr leading coefficie 1. $y^2 + 32 - y + 4$		orm. Identify the	
	2. $32 - x^4 + 10x^2$			
	3. $5z + 7z^2 + 6$			
	4. $12a^2 - 15 - 8a$	$a + 9a^{6}$		

Helping You Remember

Use a dictionary to find the meaning of the terms ascending and descending. Write their meanings and then describe a situation in your everyday life that relates to them.

7-5 Adding and Subtracting Polynomials

What You'll Learn	Scan the text in Lesson 7-5. Write two facts you learned about adding and subtracting polynomials as you scanned the text. 1.
	2.
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lessons 7-1 and 7-4</i>)
polynomial 🕨	A polynomial is a monomial or the sum or difference of
	monomials, each called a of the polynomial.
constant >	A constant is a that is a real number.
binomial 🕨	A binomial is the sum or of two monomials.
leading coefficient 🕨	The leading coefficient of a polynomial is the coefficient of the
	first term when written in
monomial >	A monomial is a, a variable, or the
	of a number and one or more variables with
	nonnegative integer exponents.

NAME	DATE PERIOD
Lesson 7-5 (continued)	
Main Idea	Details
Add Polynomials	Find each sum.
p. 433	1. $(3x^2 + 8) + (4x^2 - 6x)$
	2. $(-x^3 + 5x) + (2x^3 + 10x)$
	3. $(4x^2 - x + 2) + (x^2 - 3x - 8)$
	4. $(3x^4 + 2x^2 + 1) + (x^3 - 5x - 4)$
Subtract Polynomials pp. 434–435	Compare and contrast the processes of adding and subtracting polynomials by listing any similarities and differences.
	Adding and Subtracting Polynomials
	Similarities Differences

Helping You Remember

A good way to gain a greater understanding of a mathematical process is to relate it to previously learned processes. Describe how adding and subtracting polynomials vertically is like adding and subtracting decimals vertically.

7-6 Multiplying a Polynomial by a Monomial

What You'll Learn	Scan Lesson 7-6. List two headings you would use to make an outline of the lesson. 1 2
Active Vocabulary	Review Vocabulary Label the diagram with the correct terms. (Lesson 7-4)
leading coefficient	
degree	$12x^4 - x^3 + 2x + 5$
	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (<i>Lessons 7-2 and 7-4</i>)
order of magnitude	the sum or difference of two monomials
trinomial	for a given quantity, the number rounded to the nearest power of 10
degree of a monomial	the sum of the exponents of all the variables of a monomial
binomial	the sum or difference of three monomials

NAME	DATE PERIOD
Lesson 7-6 (continued)	
Main Idea	Deteile
Main Idea	Details
Polynomial Multiplied by Monomial	Follow the steps below to find $-2x^2(5x^2 - 3x + 1)$.
pp. 439–440	Step 1: Write the original expression.
	Step 2: Use the Distributive Property.
	Step 3: Multiply the terms.
	Step 4: Simplify the expression.
Solve Equations with Polynomial Expressions	Solve the equation below for <i>m</i> . Show your work.
p. 441	m(m-4) - m(m+2) = -4m - 10
	<i>m</i> =
Helping You Reme 5x(x + 7) = 9 to show how	Use the equation $2x(x - 5) + 3x(x + 3) =$ you would explain the process of solving equations with
polynomial expressions to a	

7-7 Multiplying Polynomials

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you
	will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lessons 7-1 and 7-2)
order of magnitude \blacktriangleright	
constant 🕨	
	New Vocabulary Fill in each blank with the correct term or phrase.
$FOIL method \blacktriangleright$	To multiply two binomials using the FOIL method, find the
	sum of the products of <i>F</i> the, <i>O</i> the outer
	terms, I the inner terms, and L the
$quadratic\ expression\ ightarrow$	A quadratic expression is an expression in one with a degree of 2.

Lesson 7-7

Main Idea	Details
Multiply Binomials op. 447–449	Use the FOIL method to find the product $(x + 8)(x - 5)$. First terms: Outer terms: Inner terms: Last terms: The product is
Multiply Polynomials p. 449	Use the Distributive Property to find the product $(x + 1)(x^2 + x - 1)$. Show your work.
Helping You Rem product combinations used your method using words o	l in the FOIL method for multiplying two binomials. Describe

7-8 Special Products

What You'll Learn	Scan the text in Lesson 7-8. Write two facts you learned about special products as you scanned the text. 1
	2
Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (<i>Lessons 7-1, 7-3, 7-4, and 7-7</i>)
monomial	an expression in one variable with a degree of 2
quadratic expression	a monomial or the sum or difference of monomials, each called a <i>term</i>
polynomial	a form of a number that is written as $a \times 10^n$, where $1 \le a < 10$ and n is an integer
scientific notation	a number, a variable, or the product of a number and one or more variables with nonnegative integer exponents
first 🕨	Review Vocabulary Label the diagram with the correct terms. (Lesson 7-7)
outer 🕨	
inner 🕨	$(x-2)(x+3) = x^2 + 3x - 2x - 6$
last 🕨	

Lesson 7-8

Main Idea		Details
Squares of Sums and Differences	Complete	the tables to illustrate two special products
pp. 453–454		Square of a Sum
	Words	The square of $a + b$ is
	Symbols	$(a + b)^2 = a^2 + 2ab + b^2$
	Example	$(n+5)^2 = n^2 + 10n + 25$
		Square of a Difference
	Words	The square of $a - b$ is
	Symbols	$(a-b)^2 = a^2 - 2ab + b^2$
	Example	$(h - 7)^2 = h^2 - 14n + 49$
Product of a Sum and a Difference	Find the p	product $(p-2)(p+2)$. Show your work.
o. 455		
Helping You Representation remember how many te		explain how the FOIL method can help you ecial products studied in this lesson.

Tie It Together

Fill in the graphic organizer with details from the chapter.

Laws of Exponents/Powers

	Laws of Expo		
Law	Notation	Verbal Description	Example
Product of Powers			
Power of Powers			
Power of a Product			
Quotient of Powers			
Power of a Quotient			
Zero Exponent Property			
Negative Exponent Property			

Polynomials

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Systems of Linear Equations and Inequalities	After You Read
• To multiply exponents with the same base, find the product of the base and the exponents.	
• A simplified expression is without fractions, duplicate bases, and powers of powers.	
• A base with a negative exponent is written with a positive exponent when it is a denominator.	
• To subtract polynomials, subtract like terms.	
• To multiply polynomials, use the Commutative Property.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 7 Study Guide and Review in the textbook.
- \Box I took the Chapter 7 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Use flash cards to study for tests by writing the concept on one side of the card and its definition on the other.

Before You Read

Before you read the chapter, think about what you know about factoring and quadratic equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

W
What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, always write clear and concise notes so they can be easily read when studying for a quiz or exam.
- A visual study guide like the Foldable shown above helps you organize what you know and remember what you have learned.

You can use them to review main ideas or keywords.

Factoring and Quadratic Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on monomials and factoring, one fact might be that the product of the common prime factors is called their greatest common factor. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Monomials and Factoring	
8-2 Using the Distributive Property	
8-3 Quadratic Equations: $x^2 + bx + c = 0$	
8-4 Quadratic Equations: $ax^2 + bx + c = 0$	
8-5 Quadratic Equations: Differences of Squares	
8-6 Quadratic Equations: Perfect Squares	

8-1 Monomials and Factoring

What You'll Learn	Skim the lesson. Write two things you already know about monomials and factoring.
	1
	2.
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
factored form \blacktriangleright	A monomial is in factored form when it is expressed as the of prime numbers and,
	and no variable has an exponent greater than 1.
greatest common factor (GCF) ►	Two or more whole numbers may have some prime factors. The greatest common factor (GCF) is the
	greatest that is a factor of both original numbers.
	Vocabulary Link You have likely learned how to find the greatest common factor of two whole numbers before. Describe how finding the greatest common factor of two monomials is similar.

Main Idea	Details
Factor Monomials	Factor each monomial completely.
p. 471	1. $-8x^3y$
	2. $15c^2d^2$
	3. $36kp^4$
	4. $-9x^2yz^2$
	5. $-16a^4b$
	6. $20r^3s^2$
Greatest Common Factor p. 471	Write each monomial as a product of its prime factors. Circle any common factors to find the GC
-	$14m^3n^2q =$
	$21m^2nq^3 =$
	GCF:
	member How can the two words that make up the ter

_____ DATE _____ PERIOD ___

8-2 Using the Distributive Property

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
factoring >	·
factoring by grouping >	
Zero Product Property 🕨	

Main Idea		Details	
U se the Distributive Property to Factor op. 476–477		Complete the following table illustrating when a polynomial can be factored by grouping. Factoring by Grouping	
-			
	Words	A polynomial can be factored by grouping only if all of the following conditions exist.	
	~		
	Symbols	§	
Solve Equations by	Solve	the following equation by factoring.	
Factoring op. 478–479	$4x^2 + 2$	20x = 0	
	()() = 0	
		= 0 or = 0	
	<i>x</i> =	or $x =$	
possible to use the Zero	ody else. Hov Product Proj	A good way to remember a mathematical concept w would you help a classmate understand when it is perty to solve an equation? Give an example of an e Zero Product Property.	

_____ DATE _____ PERIOD ____

8-3 Quadratic Equations: $x^2 + bx + c = 0$

What You'll Learn		h Lesson 8-3. Predict two things that you expect to learn d on the headings and the Key Concept box.
	1.	
	2.	

Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (<i>Lessons 8-1 and 8-2</i>)
factored form	a process that involves finding the completely factored form of a polynomial
factoring	the largest number that is a factor of two numbers
greatest common factor (GCF)	a monomial that is expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1
	New Vocabulary Write the correct term next to the definition.
>	a type of equation that can be written in the standard form

 $ax^2 + bx + c = 0$, where $a \neq 0$

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
Lesson 8-3 (continued)		
Main Idea	Detail	S
Factor x ² + bx + c op. 485–487	Factor $x^2 + 10x + 16$ by making the factors of 16.	ig an organized list of
	Factors of 16	Sum of factors
	$x^2 + 10x + 16 = ($) ()
Solve Equations by Factoring	Solve the quadratic equation factoring.	$x^2 - 6x - 40 = 0$ by
o. 488	()()= 0	
	= 0 or =	: 0
	x = or $x =$	
Helping You Rer	nember If you are using the pat	(m + m)(m + m) + c
	form $x^2 + bx + c$, how can you use you	

factor a trinomial of the form $x^2 + bx + c$, how can you use your knowledge of multiplying integers to help you remember whether m and n are positive or negative?

8-4 Quadratic Equations: $ax^2 + bx + c = 0$

What You'll Learn	Scan the text in Lesson 8-4. Write two facts you learned about quadratic equations of the form $ax^2 + bx + c = 0$ as you scanned the text.
	1
	2
Active Vocabulary prime polynomial	New Vocabulary Write the definition next to the term.
	Vocabulary Link Recall the definition of a prime number. Describe how this definition relates to the definition of a prime polynomial.

Lesson 8-4

Main Idea	Details
Factor $ux^{2} + bx + c = 0$ op. 493–495	Follow the steps below to factor the polynomial $2x^2 + 9x + 10$. Step 1 Apply the pattern of factoring by
	grouping to write the desired form.
	$2x^2 + 9x + 10 = 2x^2 + ____ + 10$
	Step 2 Find two numbers that have a product of 2×10 or 20 and a sum of 9.
	Factors of twenty Sum of factors
	Step 3 Use grouping to find the factors. Check your answer.
	$2x^2 + 9x + 10 = (___) + (___)$
Solve Equations by	Solve each equation. Check your solutions.
Factoring pp. 495–496	1. $2x^2 + 5x - 3 = 0$ 2. $3x^2 - 10x - 8 =$
	<i>x</i> = <i>x</i> =
-	nember A good way to remember a mathematical e steps of the procedure. What are the steps you would use to omial written in the form $ax^2 + bx + c = 0$?

_____ DATE _____ PERIOD ____

8-5 Quadratic Equations: Differences of Squares

What You'll Learn	Skim the Examples for Lesson 8-5. Predict two things y think you will learn about polynomials and quadratic equations that are differences of squares.	
	1	
	2	
Active Vocabulary	New Vocabulary Circle each polynorepresents a difference of squares	
difference of squares ►	$x^2 - 15$	$4b^2 - 49$
	$3x^2 - 81$	$100n^2 - 1$
	$16p^2 - 25$	$8r^2 - 12$
	$256t^2 - 16$	$25h^2-4$
	Vocabulary Link Describe how you <i>difference of squares</i> to recognize this form.	

NAME		DATE	PERIOD	
Lesson 8-5 (continued)				
Main Idea		Details		
Factor Differences of Squares pp. 499–500	-	ocess of factoring a squares by comple		
		Difference of S	quares	
	Symbols	$a^2 - b^2 = ($) ()
	Examples	$x^2 - 16 = ($) ()
		$4y^2 - 1 = ($) ()
		$25 - 9g^2 = ($) ()
Solve Equations by Factoring p. 501	Solve 4 <i>n</i> ² – 28	5 = 0 for <i>n</i> . Show y	our work.	

5 F

Helping You Remember

A good way to remember a new mathematical concept is to explain it to a friend. Suppose a classmate is having difficulty remembering how to factor a difference of squares. How would you explain this concept to her?

Lesson 8-6

8-6 Quadratic Equations: Perfect Squares

What You'll Learn	Scan Lesson 8-6. List two headings you would use to make an outline of this lesson. 1.
	2.
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lessons 8-1, 8-2, 8-3, and 8-4)
>	a monomial that is expressed as the product of prime numbers and variables, and no variable has an exponent greater than 1
►	a process that involves writing a polynomial as the product of its factors
►	a type of equation that can be written in the standard form $ax^2 + bx + c = 0$, where $a \neq 0$
►	a polynomial that cannot be written as a product of two polynomials with integral coefficients
	New Vocabulary Fill in the blank with the correct term or phrase.
perfect square trinomials ▶	Perfect square trinomials are trinomials that are the squares of

NAME			DD DC
Lesson 8-6 (continued)			
Main Idea		Details	
Factor Perfect Square Trinomials pp. 505–507	-	ocess of factoring a polyno e trinomial by completing	
	Fact	oring Perfect Square Trin	omials
	Symbols	$a^2 + 2ab + b^2 = ($)2
		$a^2 - 2ab + b^2 = ($)2
	Examples	$x^2 + 8x + 16 = ($)2
		$b^2 - 10b + 25 = ($)2
Solve Equations with Perfect Squares pp. 507–509	-	re Root Property to solve Check your solutions.	the equation
pp. 307–309			

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Helping You Remember

Sometimes it is easier to remember a set of instructions if you can state them in a short sentence or phrase. Summarize the conditions that must be met in order for a trinomial to be factored as a perfect square trinomial.

Tie It Together

Fill in the graphic organizer. Use examples from the chapter to add details if space permits.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME

B Factoring and Quadratic Equations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 8 Study Guide and Review in the textbook.
- \Box I took the Chapter 8 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• To answer a multiple-choice question, read all of the answer choices first. Cross out any choices that you know are not correct, and look for hints in other parts of the test for clues to the answer. Don't change the answer you decide upon unless you know it is not correct.

_ PERIOD _

Quadratic and Exponential Functions

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Quadratic and Exponential Functions
	• The graph of a quadratic function is a parabola.
	• When <i>a</i> < 0 in a quadratic function, the parabola opens up and has a minimum value.
	• The graph of $f(-x)$ flips the graph $f(x) = x^2$ across the <i>x</i> -axis.
	• Factoring, using square roots, graphing, and the quadratic formula are methods to solve quadratic functions.
	• In an exponential function, the base is a variable and the exponent is a constant.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

FOLDA BLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, draw a visual (graph, diagram, picture, chart) that presents the information introduced in the lesson in a concise, easy-to-study format.
- In addition to writing important definitions in your notes, be sure to include your own examples of the concepts presented.

Quadratic and Exponential Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on transformations of quadratic functions, one fact might be that a transformation changes the position or size of a figure. After completing the chapter, you can use this table to review for your chapter test.

	Lesson	Fact
9-1	Graphing Quadratic Functions	
9-2	Solving Quadratic Equations by Graphing	
9-3	Transformations of Quadratic Functions	
9-4	Solving Quadratic Equations by Completing the Square	
9-5	Solving Quadratic Equations by Using the Quadratic Formula	
9-6	Exponential Functions	
9-7	Growth and Decay	
9-8	Geometric Sequences as Exponential Functions	
9-9	Analyzing Functions with Successive Differences and Ratios	

9-1 Graphing Quadratic Functions

What You'll Learn	Skim Lesson 9-1. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	a function with a graph that is not a straight line
▶	a nonlinear function that can be written in the form $f(x) = ax^2 + bx + c$, where $a \neq 0$
►	the form of a quadratic function when it is written as $f(x) = ax^2 + bx + c$
►	the shape of the graph of a quadratic function
►	the central line about which a parabola is symmetric
▶	the point of intersection between a parabola and its axis of symmetry
>	the lowest point on a parabola
>	the highest point on a parabola

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE PERIOD
Lesson 9-1 (continued)	
Main Idea	Details
Characteristics of Quadratic Functions pp. 525–528	Fill in the boxes with the correct terms.
pp. 020-020	
Graph Quadratic Functions	Graph the quadratic function $f(x) = x^2 + 3x + 2$ on the coordinate grid below.
pp. 528–530	
	$-4-3-2-1$, O 1 2 3 4 \overline{x}

Helping You Remember Look up the word *vertex* in a dictionary. You will find that it comes from the Latin word vertere, which means to turn. How can you use the idea of "to turn" to remember the vertex of a parabola?

9-2 Solving Quadratic Equations by Graphing

What You'll Learn	Scan Lesson 9-2. List two headings you would use to make an outline of this lesson. 1 2
Active Vocabulary	Review Vocabulary Match each term with its definition by drawing a line to connect the two. (Lesson 9-1)
nonlinear function	the shape of the graph of a quadratic function
minimum	the central line about which a parabola is symmetric
parabola	a function with a graph that is not a straight line
axis of symmetry	the point of intersection between a parabola and its axis of symmetry
vertex	the lowest point on a parabola
double root ▶	New Vocabulary Write the definition next to the term.

NAME		DATE	PERIOD
Lesson 9-2 (continued)			
Main Idea		De	tails
Solve by Graphing pp. 537–538			ble illustrating the number s of a quadratic equation.
		Solutions of Qua	adratic Equations
		Number of real solutions	Relationship with the <i>x</i> -axis
		0	
		1	
		2	
Estimate Solutions p. 539	int		on below by graphing. If ound, estimate the roots to
	x^2 -	+3x-2=0	

Helping You Remember

Describe how you can remember that the word zero is used when you are talking about functions, but the word root is used when you are talking about equations.

9-3

Transformations of Quadratic Functions

What You'll Learn	Skim the lesson. Write two things you already know about transformations of quadratic functions.
	1
	2
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
dilation >	A dilation makes the graph narrower or wider than
	the
reflection >	A reflection flips a figure over a
transformation >	A transformation changes the or
	of a figure.
translation >	A translation moves a figure, down, or

Lesson 9-3

Main Idea Franslations 5. 544	Describe how the graph or related to the graph of f(.	
	1. $f(x) = x^2 - 6$ 2.	
Dilations and Reflections op. 545–546	Complete the table below h each transformation of $f(x)$	
	Transformation:	Transformation:
	you already know. Translations are ed <i>flips</i> . Explain how these terms a	

_ DATE _____ PERIOD __ **Solving Quadratic Equations by Completing** 9-4 the Square What You'll Learn Scan the text in Lesson 9-4. Write two facts you learned about solving quadratic equations by completing the square as you scanned the text. 1. 2. **Active Vocabulary Review Vocabulary** Label each diagram with the correct term to describe the transformation. (Lesson 9-3) x $dilation \triangleright$ Ŷ 0 $translation \triangleright$ New Vocabulary Fill in the blank with the correct term or phrase. Any quadratic expression in the form $x^2 + bx$ can be made completing the square \blacktriangleright into a trinomial by using a method

called completing the square.

Lesson 9-4

AME		DATE PERIOD	
esson 9-4 (continued)			
Main Idea	Details		
C omplete the Square pp. 552–553	Complete the following table to show the steps that you must follow to complete the square.		
		Completing the Square	
	Words	To complete the square for any expression of the form $x^2 + bx$, steps below.	
		Step 1	
		Step 2	
		Step 3	
	Symbols	$x^2 + bx +$	
Solve Equations by Completing the Square	Solve x ² + your wor	6x = 27 by completing the squa	re. Show
рр. 553–554			
Helping You Rem method you use to determ		How is completing the square relate trinomial is a perfect square trinom	
0		1 1	

Solving Quadratic Equations by Using 9-5 the Quadratic Formula

What You'll Learn	Skim the Examples for Lesson 9-5. Predict two things you think you will learn about solving quadratic equations by using the quadratic formula.	
	1	
	2	
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (<i>Lesson 9-1</i>)	
>	the shape of the graph of a quadratic function	
►	the central line about which a parabola is symmetric	
▶	the highest point on a parabola	
	New Vocabulary Write the correct term next to each definition.	
>	the formula that gives the solutions to the general quadratic equation, $ax^2 + bx + c = 0$, as $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
►	the expression under the radical sign in the quadratic formula, $b^2 - 4ac$	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME		DATE	PERIOD	
Lesson 9-5 (continued)				
Main Idea		Detail	6	
		Detail	5	
Quadratic Formula pp. 558–561	Quadratic Fo	Solve the equation $x^2 + 5x + 3 = 0$ by using the Quadratic Formula. Determine the exact solutions. Show your work.		
The Discriminant			to show the relationship	
p. 561	between the its solutions		quadratic equation and	
		The Discriminant		
	Value	Number of real solutions	Relationship between graph and the <i>x-axis</i>	
	$b^2 - 4ac > 0$			
	$b^2 - 4ac = 0$			
	$b^2 - 4ac < 0$			

Helping You Remember

To help remember the methods for solving a quadratic equation, explain how you would choose the best method for solving a form of the quadratic equation $ax^2 + bx + c = 0$.

9-6 Exponential Functions

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.	
	1.	
	-	
	2.	

Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 9-1, 9-2, and 9-3)
reflection	the point of intersection between a parabola and its axis of symmetry
double root	a transformation that moves a figure up, down, or diagonally
translation	two zeroes of a quadratic equation that are the same number
vertex	a transformation that flips a figure over a line
$exponential$ function \blacktriangleright	New Vocabulary Write the definition next to the term.

Lesson 9-6 (continued)

Main Idea

Details

Graph Exponential Functions

pp. 567–569

Complete the following table of function values and use it to help you graph the exponential function $y = 2^x$.

x	2^x	у

Identify Exponential Behavior

p. 569

Determine whether the set of data shown below displays exponential behavior. Write *yes* or *no*. Explain why or why not.

x	0	2	4	6	8	10
у	128	64	32	16	8	4

9-7 Growth and Decay

What You'll Learn	Skim the Examples for Lesson 9-7. Predict two things you think you will learn about growth and decay. 1
	2
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
$compound \ interest$ >	Compound interest is interest or
	on both the initial investment and
	previously interest.
exponential decay 🕨	In exponential decay, the original
	decreases by the same over a period of
	time.
exponential growth \blacktriangleright	In exponential growth, the original amount
	by the same percent over a period of time.
	Vocabulary Link Think of some real-world examples that involve exponential growth and decay.

xponential Growth	Details Label each of the parts of the general equation	
p. 573–574	exponential growth shown below. Use the terms initial amount, final amount, time, and growth i	
	$\mathbf{y} = \mathbf{a}(1+\mathbf{r})^{tr}$	
E xponential Decay b. 574	Suppose a particular species of bird on an islan decreasing at an annual rate of 5.4%. The specie originally had a population of 12,600.	
	a. Write an equation to represent the decrease in population.	
	b. Estimate the number of birds on the island after 4	4 year
Helping You Rer	A good way to help you remember a new co wn words. The general equations for exponential growth an	
	ery similar. Explain how you can determine if an equation	

9-8 Geometric Sequences as Exponential Functions

What You'll Learn	Skingeon	n the lesson. Write two things you already know about netric sequences as exponential functions.
	1.	
	2.	
Active Vocabulary	New	Vocabulary Write the definition next to each term.
common ratio 🕨		
geometric sequence 🕨		

Lesson 9-8

Lesson 9-8 (continued)		
Main Idea	De	etails
Recognize Geometric Sequences pp. 580–581	Determine whether each a geometric, or neither. Exp 1. 12, 9, 6, 3, 0,	
	2. 3, -6, 12, -24, 48,	
Geometric Sequences and Functions pp. 581–582	What is the 12th term of t 24, 48,? Step 1: Compare consecutive terms to	
and Functions	24, 48,?	he geometric sequence 6,

9-9 Analyzing Functions with Successive Differences and Ratios

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2.
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lessons 9-1, 9-3, 9-4, 9-5, 9-6, and 9-8)
►	a function with a graph that is not a straight line
►	the form of a quadratic function when it is written as $f(x) = ax^2 + bx + c$
►	a transformation that makes a function wider or narrower than the parent function
►	the expression under the radical sign in the quadratic formula, $b^2 - 4ac$
▶	a function of the form $y = ab^x$, where $a \neq 0, b > 0$, and $b \neq 1$
•	the ratio of two consecutive terms in a geometric sequence

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 9-9 (continued)

Main Idea

Identify Functions pp. 586–587

Complete the table below by writing the general form of each function and sketching a sample graph.

Details

_____ PERIOD _

DATE ___

Linear, Quadratic, and Exponential Functions					
Linear Function	Quadratic Function	Exponential Function			
y = mx + b	$y = ax^2 + bx + c$	$y = ab^x$			
	y ↓ y ↓ 0 x x y ↓	y ↓ y ↓ 0 x x 0 x			

Write Equations

pp. 587–588

Determine which model best describes the data in the table. Then write an equation for the function that models the data.

x	-5	-4	-3	-2	-1
У	160	80	40	20	10

Helping You Remember

A good way to remember a mathematical concept is to explain it in your own words. Explain how you can determine the type of a function simply by looking at its graph.

Tie It Together

Fill in each graphic organizer paying attention to the depicted relationships between the organizers. Add details for each organizer.

DATE _

0

CHAPTER **Quadratic and Exponential Functions**

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an **A** if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Quadratic and Exponential Functions	After You Read
• The graph of a quadratic function is a parabola.	
• When <i>a</i> < 0 in a quadratic function, the parabola opens up and has a minimum value.	
• The graph of $f(-x)$ flips the graph $f(x) = x^2$ across the <i>x</i> -axis.	
• Factoring, using square roots, graphing, and the quadratic formula are methods to solve quadratic functions.	
• In an exponential function, the base is a variable and the exponent is a constant.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- □ I used my Foldable to complete the review of all or most lessons.
- □ I completed the Chapter 9 Study Guide and Review in the textbook.
- \Box I took the Chapter 9 Practice Test in the textbook.
- □ I used the online resources for additional review options.
- □ I reviewed my homework assignments and made corrections to incorrect problems.
- □ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an **A** if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Before You Read	Radical Functions and Geometry
	• The graph of a square root function includes both positive and negative values.
	• $tan A = \frac{opposite}{adjacent}$
	• The product of two conjugates is a rational number.
	• In a Pythagorean triplet, two or three numbers can be equal.
	• The midpoint formula is derived from the Pythagorean Theorem.

FOLDA BLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Take notes in such a manner that someone who did not understand the topic will understand after reading what you have written.
- When you take notes, write a summary of the lesson, or write in your own words what the lesson was about.

10 Radical Functions and Geometry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on the Pythagorean Theorem, one fact might be that in a right triangle, the side opposite the right angle is the hypotenuse. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
10-1 Square Root Functions	
10-2 Simplifying Radical Expressions	
10-3 Operations with Radical Expressions	
10-4 Radical Equations	
10-5 The Pythagorean Theorem	
10-6 The Distance and Midpoint Formulas	
10-7 Similar Triangles	
10-8 Trigonometric Ratios	

10-1 Square Root Functions

What You'll Learn	Skim the lesson. Write two things you already know about square root functions.
	1
	2.
Active Vocabulary	New Vocabulary Match the term with its definition by
radicand	drawing a line to connect the two. a function that contains a variable under a radical sign
radical function	a function that contains the square root of a variable
square root function	the expression under the radical sign
	Vocabulary Link Recall that the square root of a negative number is not defined to be a real number. Explain what effect this has on the domain of a square root function.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea		Details	
Dilations of Radical Functions p. 605	Graph $f(x) = \frac{1}{2}\sqrt{x}$. State the domain and range.		
	Step 1: Make a table of function values.	x 0 1 4 9 10 f(x)	
	Step 2: Plot the points on a coordinate grid. Step 3: Connect the points with a smooth curve.	8 9 6 4 2 2 02 4 6 10 12 14 14 16 16 10 17 14 16 10 16 10 17 14 16 16 16 16 16 16 16 16 16 16 17 16 18 10 19 10 10 12 14 16 16 16 16 16 17 16 18 10 19 10 10 12 14 16 16 16 16 16 16 16 16 16 16 16 16 16 17 16 18 16 19 16 10 16 10 16 10 16 16 16 17 16 18	
Reflections and Translations of Radical Functions pp. 606–607	meters is given by the fu the constant, 9.8 meters the velocity of an object is dropped from a heigh	t dropped from a height of h unction $v = \sqrt{2gh}$, where g is per second squared. What is when it hits the ground if it t of 100 meters? Show your nswer to the nearest tenth.	
	$v \approx$ m/s		

_____ DATE _____ PERIOD ____

Simplifying Radical Expressions 10-2

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.		
	1		
	2		
Active Vocabulary	Review Vocabulary Write the definition next to the term.		
radicand >	(Lesson 10-1)		
	New Vocabulary Fill in each blank with the correct term or phrase.		
conjugate 🕨	Binomials of the form $a \sqrt{b} + c \sqrt{d}$ and are called conjugates.		
radical expression \blacktriangleright	A radical expression contains a, such as a square root.		
rationalizing the ► denominator	Rationalizing the denominator of a fraction with a radical eliminates all from the		

NAME		DATE	PERIOD
Lesson 10-2 (continued)			
Main Idea		Detai	ls
Product Property of Square Roots		ne following table Square Roots.	to illustrate the Produc
рр. 612–613	Р	roduct Property o	of Square Roots
	Words		ative real numbers a and b , of ab is equal
	Symbols	$\sqrt{ab} =$	
	Symbols	$\sqrt{16 \bullet 25} =$	
Quotient Property of Square Roots pp. 613–614	Simplify the	e expression $\frac{2}{4+}$	$\frac{1}{5}$. Show your work.
pp. 010-014			
Helping You Rem	ember 🛄	at should you room	mbon to aboat for where
you want to determine if a		•	ember to check for when rm?

10-3 Operations with Radical Expressions

What You'll Learn	Skim the Examples for Lesson 10-3. Predict two things you think you will learn about operations with radical expressions.		
	1		
	2		
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lessons 10-1 and 10-2)		
►	a function that contains the square root of a variable		
►	an expression that contains a radical, such as a square root		
►	the expression under the radical sign		
►	binomials of the form $a\sqrt{b} + c\sqrt{d}$ and $a\sqrt{b} - c\sqrt{d}$		
>	a function that contains a variable under a radical sign		
►	a process that eliminates all radicals from the denominator of a fraction		

Main Idea	<u></u>	Details
Add or Subtract Radical Expressions pp. 619–620		on in the table illustrating how g radical expressions is similar ting monomials.
	Monomials	Radical Expressions
	$\begin{array}{c} 6b + 3b = \underline{} \\ = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$ \begin{array}{c c} $
	$12m - 5m = _$	$ \begin{array}{c} 12\sqrt{3} - 5\sqrt{3} = \\ = \\ \end{array} $
Multiply Radical Expressions	Simplify each expressi	on. Show your work.
pp. 620–621	1. $6\sqrt{5}(2\sqrt{5})$	2. $2\sqrt{3} (6\sqrt{7} - \sqrt{7})$

10-4 Radical Equations

What You'll Learn	Scan Lesson 10-4. List two headings you would use to make an outline of this lesson.
	1
	2.
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
$radical \ equations$ >	Equations that contain variables in the, like $h = 1.34\sqrt{\ell}$, are called radical equations.
extraneous solutions ►	Squaring each side of an equation sometimes produces a that is not a solution of the original These are called extraneous solutions.
	Vocabulary Link Look up the definition of <i>extraneous</i> in a dictionary. Describe how this definition applies to the concept of extraneous solutions.

NAME	DATE PERIOD
Lesson 10-4 (continued)	
Main Idea	Details
Radical Equations	Solve the equation $\sqrt{n+4} + 2 = 5$. Show your work.
pp. 624–625	
Extraneous Solutions p. 625	Follow the steps below to solve the equation $x = \sqrt{x+3} - 1$. Check your solutions.
	Step 1: Isolate the radical on one side.
	Step 2: Square each
	side to eliminiate the radical.
	Step 3: Solve. Check
	for extraneous solutions.
	solution(s): extraneous solution(s):
Helping You Rem	ember
	Acronyms can be a useful tool for remembering al process. For example, the acronym FOIL reminds you to
multiply the First, Outer,	Inner, and Last terms when multiplying two binomials. How to remember the three steps in solving a radical equation?

10-5 The Pythagorean Theorem

What You'll Learn	Skim Lesson 10-5. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lessons 10-1 and 10-4)
radical function ►	
$radical \ equation$ >	
	New Vocabulary Match the term with its definition by drawing a line to connect the two.
converse	the two shorter sides of a right triangle
hypotenuse	the result when the hypothesis and conclusion of an if-then statement are exchanged
legs	a group of three whole numbers that satisfy the equation $c^2 = a^2 + b^2$, where <i>c</i> is the greatest number

Pythagorean Triple the side opposite the right angle in a right triangle

terms <i>leg</i> and <i>hypot</i>	ne right triangle shown using t e <i>nuse</i> . Then write an equation thagorean Theorem.
8	17 15
	mbers below that represent
	2. 18, 24, 30
	4. 30, 40, 50
5. 9, 40, 41	6. 8, 12, 20
	terms <i>leg</i> and <i>hypote</i> demonstrate the Pyra

Chapter 10

10-6 (The Distance and Midpoint Formulas

What You'll Learn	Scan the text in Lesson 10-6. Write two facts you learned about the distance and midpoint formulas as you scanned the text. 1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
Distance Formula ► midpoint ►	
Midpoint Formula ►	Vocabulary Link Think of how the word <i>distance</i> is used in everyday life. How does this compare to the concept of distance on the coordinate plane?

Main Idea		Det	ails
Distance Formula pp. 636–637	Complete the follow between points $A(2$		ps to find the distance B(-4, 6).
	<i>d</i> =		Distance Formula
	<i>d</i> =		Substitute A(2, 9), B(-4, 6).
	<i>d</i> =		Simplify.
	<i>d</i> =		Evaluate squares.
	$d = \$ or about		Simplify.
Midpoint Formula p. 638	Find the coordinat	es of the	midpoint of segment CD
Helping You Reprint you can state it in words	Sometimes		er to remember a formula if ormula in easy-to-remember

10-7 Similar Triangles

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.		
	1		
	2		
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (<i>Lessons 10-2, 10-5, and 10-6</i>)		
►	a formula that is used to find the distance between two points on the coordinate plane		
►	an expression that contains a radical sign, such as a square root		
>	the side opposite the right angle in a right triangle		
►	the point is equidistant from both endpoints of a line segment		
	New Vocabulary Fill in each blank with the correct term or phrase.		
similar triangles \blacktriangleright	Similar triangles have the same, but not		
	necessarily the same		

Trigonometric Ratios 10-8

What You'll Learn	Scan Lesson 10-8. List two headings you would use to make an outline of this lesson. 1 2
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	the ratio of the opposite leg to the hypotenuse of a right triangle
►	a function that has a rule given by a trigonometric ratio
►	the measure of $\angle A$ if sin A is known
►	the study of triangle measurement
►	the measure of $\angle A$ if tan A is known
►	finding all unknown sides and angles of a right triangle
►	the ratio of the adjacent leg to the hypotenuse of a right triangle
►	the measure of $\angle A$ if $\cos A$ is known
►	a ratio of the lengths of two sides of a right triangle
>	the ratio of the opposite leg to the adjacent leg of a right triangle

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea	Details
'rigonometric Ratios p. 649–650	Complete the chart to show the trigonometric ratios for angles <i>R</i> and <i>S</i> .
	$\sin R = \underline{\qquad} \qquad $
	$\sin S =$
	$\cos R = $
	$\cos S = $
	$\tan R = \underline{\qquad} \qquad $
	$\tan S = ___$
Jse Trigonometric Catios	Use a calculator to find the measure of $\angle M$ to the nearest tenth.
p. 650–651	L $m \angle M \approx$
	N 11 M
	member How can the co in cosing help you to remember

10 Radical Functions and Geometry

Tie It Together

Fill in details in each the organizer.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME

Radical Functions and Geometry

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

DATE _

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Radical Functions and Geometry	After You Read
• The graph of a square root function includes both positive and negative values.	
• $tan A = \frac{opposite}{adjacent}$	
• The product of two conjugates is a rational number.	
• In a Pythagorean triplet, two or three numbers can be equal.	
• The midpoint formula is derived from the Pythagorean Theorem.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 10.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 10 Study Guide and Review in the textbook.
- \Box I took the Chapter 10 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• To prepare to take lecture notes, make a column to the left about 2 inches wide. Use this column to write additional information from your text, place question marks, and to summarize information.

Before You Read

Before you read the chapter, think about what you know about rational functions and equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When taking notes, place a question mark next to anything you do not understand.

Then be sure to ask questions before any quizzes or tests.

• When you take notes in geometry, be sure to make comparisons among the different formulas and concepts.

For example, how are pyramids and cones similar? Different? This will help you learn the material.

Rational Functions and Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on rational functions, one fact might be that a line that the graph of a function approaches is called an asymptote. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Inverse Variation	
11-2 Rational Functions	
11-3 Simplifying Rational Expressions	
11-4 Multiplying and Dividing Rational Expressions	
11-5 Dividing Polynomials	
11-6 Adding and Subtracting Rational Expressions	
11-7 Mixed Expressions and Complex Fractions	
11-8 Rational Equations and Functions	

11-1 Inverse Variation

What You'll Learn		the Examples you will learn			t two things you 1.
	1				
	-				
	2				
	-				
Active Vocabulary		-	in each bla	ank with the	correct term or
inverse variation >	phra A rel		een r and v	, that can be	represented by
	the e	quation rse variation.	-		
product rule 🕨		equation se variations.		_ is called the	e product rule for
		bulary Link Lool ain how the def tion.			

NAME	DATE PERIOD
Lesson 11-1 (continued)	
Main Idea	Details
dentify and Use Inverse Variations	Determine whether the data in the table represent an <i>inverse</i> or a <i>direct</i> variation. Explain.
ор. 670–672	x 4 8 12 16
	y 36 18 12 9
ariations	Sketch a sample direct and inverse variation on the coordinate grids below, and complete the table.
	-
Variations	-
Variations	Direct Variation Inverse Variation
Graph Inverse Variations op. 672–673	Direct Variation Inverse Variation
Variations	coordinate grids below, and complete the table. Direct Variation Inverse Variation Image: problem of the table of table of the table of t

Helping You Remember

A good way to help you remember mathematical concepts is to state them in your own words. To remember how to set up a proportion to solve a problem involving inverse variation, write a sentence describing the form the proportion should have.

11-2 Rational Functions

What You'll Learn	Skim the lesson. Write two things you already know about rational functions.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
asymptote 🕨	
excluded value 🕨	
rational function ►	
	Vocabulary Link Explain why the term <i>rational</i> is used to describe a rational function.

Lesson 11-2

Main Idea	Details
Identify Excluded Values pp. 678–679	State the excluded value for each function. 1. $y = \frac{7}{x+6}$ 2. $y = \frac{-5}{4x-20}$
	3. $y = \frac{4}{3x + 21}$ 4. $y = \frac{-1}{-2x - 8}$
dentify and Use Asymptotes	The rational function $y = \frac{1}{x-3} + 2$ is graphed below Identify the asymptotes.
op. 679–680	$ \begin{array}{c} 6 \\ 4 \\ -12 \\ -8 \\ -4 \\ -6 \\ $
-	member A good way to remember a mathematical concept ne else. Suppose a classmate is having difficulty finding the ional function. How would you explain the process?

Simplifying Rational Expressions 11-3

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 11-1 and 11-2)
rational function	a line that the graph of a rational function approaches, but never crosses or touches
asymptote	a relationship between <i>x</i> and <i>y</i> that can be represented by the equation $y = \frac{k}{x}$ or $xy = k$
inverse variation	a value that results in zero in the denominator of a rational function
excluded value	a function that can be described by the equation $y = \frac{p}{q}$, where <i>p</i> and <i>q</i> are polynomials and $q \neq 0$
	New Vocabulary Write the correct term next to the definition.
►	an algebraic fraction whose numerator and denominator are polynomials, such as $\frac{2x-1}{x^2+5x+9}$

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Multiplying and Dividing Rational Expressions 11-4

_ DATE _____ PERIOD _

11-5 Dividing Polynomials

What You'll Learn	Skim Lesson 11-5. Predict two things that you expect to learn based on the headings and figures in the lesson.
	1
	2.
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lessons 11-1, 11-2, and 11-3)
asymptote 🕨	
excluded value ►	
rational expression ►	
inverse variation \blacktriangleright	

Main Idea	D	etails
Divide Polynomials by Monomials p. 700	Find each quotient. Show 1. $(5x^2 - 10x) \div 5x$	your work. 2. $(2n^2 - 9n + 4) \div 2n$
	3. $(12m^2 + 9m) \div -3m$	4. $(4y^2 + 18y - 6) \div 6y$
Divide Polynomials by Binomials pp. 701–702	Find $(h^2 + 6h - 40) \div (h - Show your work.$	- 4) by using long division

Lesson 11-6

11-6 Adding and Subtracting Rational Expressions

What You'll Learn	Scan Lesson 11-6. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (<i>Lessons 1-1, 11-2, and 11-3</i>)
►	an algebraic fraction whose numerator and denominator are polynomials
►	a value that results in zero and the denominator of a rational
►	the quantities being multiplied in an expression involving multiplication
►	the result of a multiplication expression
	New Vocabulary Fill in each blank with the correct term or phrase.
least common ► denominator (LCD)	To add or subtract fractions with unlike,
uenominator (LCD)	you need to rename using the least
	common multiple of the denominators, called the least common denominator (LCD).
least common	The least common multiple (LCM) is the least
multiple (LCM)	that is a of two or more numbers or
	polynomials.

NAME		_ DATE	PERIOD
Lesson 11-6 (continued)			
Main Idea	Details		5
Add and Subtract Rational Expressions with Like Denominators pp. 706–707	Find each sum. 1. $\frac{3k}{k-2} + \frac{4}{k-2}$	2	2. $\frac{4n}{2n+5} + \frac{3n}{2n+5}$
Add and Subtract Rational Expressions with Unlike	Complete the table below to illustrate the steps involved in subtracting rational expressions with unlike denominators.		

Denominators

pp. 707-710

Add or Subtract Rational Expressions with Unlike Denominators			
Step 1			
Step 2			
Step 3			
Step 4			

Helping You Remember

How can you use what you know about addition and subtraction of rational numbers that have like denominators to remember how to add and subtract rational expressions that have like denominators?

11-7 Mixed Expressions and Complex Fractions

What You'll Learn	Scan the text in Lesson 11-7. Write two facts you learned about mixed expressions and complex fractions as you scanned the text. 1
	2.
	۷
Active Vocabulary	New Vocabulary Label the expressions with the correct terms. Write <i>mixed expression</i> or <i>complex fraction</i> in each blank.
$complex \ fraction $	$5 - \frac{2}{x-1}$
mixed expression \blacktriangleright	
	$2 + \frac{3}{x} - \frac{2}{x^2}$
	$\frac{x-1}{2-\frac{5}{x+2}}$
	$\frac{\frac{2x^2y}{5xy^3}}{\frac{3x^5y^3}{4xy}}$

11-8 Rational Equations

What You'll Learn	Skim the Examples for Lesson 11-8. Predict two things you think you will learn about rational equations. 1. 2.		
Active Vershulers			
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
$extraneous \ solution$ \blacktriangleright	When a solution of a rational equation results in in the, that solution must be excluded. Such solutions are called extraneous		
	solutions.		
$rational \ equation$ \blacktriangleright	A rational equation contains one or more rational		
rate problem ►	Rational equations can be used to solve rate problems, such		
	as problems involving		
work problem \blacktriangleright	You can use to solve work problem		
	or problems involving work rates.		

Lesson 11-8

esson 11-8 (continued)			
Main Idea Solve Rational Equations	Details Solve the rational equation $\frac{4}{x-3} = \frac{6}{x-2}$. Check the solution.		
op. 720–722	Solution.		
U se Rational Equations to Solve Problems op. 722–723	Raymond can mow a lawn in 45 minutes using a push mower. Alex can mow the same lawn in 20 minutes using a riding mower. How long would it take them to mow the lawn working together?		
	Step 1: Find the		
	portion of the job each person does in 1 minute.		
	Step 2: Write a		
	rational equation.		
	Step 3: Solve for t .		
	Derve d to the mean of		
	Round to the nearest		

equation.


```
Tie It Together
```

Fill in the graphic organizer. Add details if space permits.

DATE _

11 Rational Functions and Equations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 11 Study Guide and Review in the textbook.
- □ I took the Chapter 11 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- \Box I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Statistics and Probability	
	• Unbiased surveys are random.	
	• The sum of the probabilities for all values of <i>x</i> is 1.	
	• A graph that shows a cluster of data about the mean is an average distribution.	
	• Theoretical probability is the frequency of an outcome to the total number of events or trials.	
	• In a permutation, order matters; but in a combination, order does not matter.	

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, it is often a good idea to use symbols to emphasize important concepts.
- When taking notes, make annotations.

Annotations are usually notes taken in the margins of books you own to organize the text for review or study.

Statistics and Probability

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on statistics and parameters, one fact might be that a parameter is a measure that describes a characteristic of a population. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
12-1 Designing a Survey	
12-2 Analyzing Survey Results	
12-3 Statistics and Parameters	
12-4 Permutations and Combinations	
12-5 Probability of Compound Events	
12-6 Probability Distributions	
12-7 Probability Simulations	

Lesson 12-1

12-1 Designing a Survey

What You'll Learn	Scan Lesson 12-1. List two headings you would use to make an outline of this lesson. 1
	2
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	a sample that favors one group over another
►	a method of data collection in which a process is implemented and responses are studied
►	a method of data collection in which a sample is observed for certain patterns or behaviors
►	the entire group about which conclusions are to be drawn
►	a portion of a larger group
>	a sample that is equally likely to be chosen as any other sample from the population
►	a method of data collection in which responses are gathered from a sample of the population
	Vocabulary Link <i>Bias</i> is a word that is used in everyday English. Find the definition of <i>bias</i> using a dictionary. Write how the definition of <i>bias</i> can help you remember the mathematical definition of <i>biased sample</i> .

NAME		DATE	
esson 12-1 (continued)			
Main Idea		Detai	ils
Design a Survey pp. 740–741	whether or not	shoppers wou ributes 500 qu	nterested in finding out ald like an exotic foods uestionnaires to people
	a. Identify the sa which it was s		ermine the population from
	b. Classify the ty manager.	pe of data coll	ection used by the store
	manager.	andom sampl	ing technique shown in
	manager Describe each r	andom sampl your own wo Random S	ing technique shown in rds.
	manager Describe each r	andom sampl your own wo	ing technique shown in rds.
	manager. Describe each r the table using	andom sampl your own wo Random S	ing technique shown in rds.
Sampling Techniques p. 742	manager. Describe each r the table using ; Type simple random	andom sampl your own wo Random S	ing technique shown in rds.

Helping You Remember To remember what a stratified random sample is, look up the word *stratified* in a dictionary. What everyday meaning do you find that seems closest to the mathematical meaning presented in this lesson?

12-2 Analyzing Survey Results

What You'll Learn	Scan the text in Lesson 12-2. Write two facts you learned about analyzing survey results as you scanned the text.
	1
	2
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
measure of central \blacktriangleright	Data from a survey can be summarized according to three
tendency	measures of central tendency: the, the
	, and the
	Vocabulary Link Explain the meaning of central tendency in your own words. Describe how the mean, median, and mode can each be used to describe the central tendency of a data set.

Main Idea	r	Details
Summarize Survey Results		easure of central tendency for the data now your work.
p. 746		3, 11, 12, 10, 7}
]	Measures of Central Tendency
	mean	
	median	
	mode	
Evaluate Survey Results pp. 747–749	popular wee person at a l weekend act	commission wants to determine the mos kend activities. One Saturday, every 10th ocal park is surveyed about their favorit ivities, and a conclusion is drawn. validity of the survey and conclusion.
	Question:	What is your favorite weekend activity?
	Conclusion:	Spending time at the park is the most popular weekend activity.

concepts is to be able to describe them and their applications in your own words. Describe when the mean, median, or mode might be the best choice for a measure of central tendency.

Statistics and Parameters 12-3

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson. 1. 2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	the average of the absolute values of the differences between the mean and each value in the data set
►	the range, quartiles, and interquartile range
►	a measure that describes a characteristic of the population
►	data that can be given as a numerical value
►	data that cannot be given as a numerical value
►	a measure that describes a characteristic of the sample
►	using the statistics of a sample to draw conclusions about the entire population
►	a value that shows how the data deviates from the mean of the set of data
>	the square of the standard deviation

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 12-3

Main Idea	Details
Statistics and Parameters p. 756	A random sample of 500 pet owners in the United States is surveyed about the number of times they visit the veterinarian each year. The mean number of visits is calculated. Identify the sample and the population. Then describe the sample statistic and the population parameter.
	Sample:
	Population:
	Statistic:
	Parameter:
Statistical Analysis pp. 757–758	Follow the steps below to find the standard deviation of the data set {5, 7, 8, 10, 5}.
	Step 1: Find the mean of the data set. Step 2: Find the
	variance of the data.
	Step 3: Take the square root of the variance.
-	nember A good way to remember a mathematical concept ody else. Suppose a classmate is having difficulty distinguishing d qualitative data. Explain the difference to him and give an

_____ DATE _____ PERIOD ____

12-4 / Permutations and Combinations

What You'll Learn	Scan Lesson 12-4. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2.
Active Vocabulary	New Vocabulary Write the definition next to each term.
combination ►	
factorial 🕨	
permutation >	
sample space 🕨	
	Vocabulary Link <i>Permutation</i> is a word that is used in everyday English. Find the definition of <i>permutation</i> using a dictionary. Write how the definition of <i>permutation</i> can help you remember the mathematical definition of a <i>permutation</i> .

Lesson 12-4

Lesson 12-4 (continued)

Main Idea

Permutations

pp. 764–765

Tina has 4 chores to do today. Complete the following table to determine the number of different ways Tina can do her chores if she does one at a time.

Details

Number of Permutations	Choices for 1st chore	Choices for 2nd chore	Choices for 3rd chore	Choices for 4th chore
P				
Fund	lamental (Counting 1	Principle	
	P =			

There are _____ different ways Tina can do her chores if she does one at a time.

Combinations pp. 765–767

There are 10 players on a basketball team. How many different 5-player starting lineups are possible? Show your work.

Helping You Remember

To help you remember how the terms *permutation* and *combination* are different, think of everyday words that start with the letters P and C that illustrate the meaning of each term. Explain how the words illustrate the two terms.

12-5 Probability of Compound Events

What You'll Learn	Skim the lesson. Write two things you already know about probability of compound events.
	1
	2
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.
compound event	events in which the outcome of one event does not affect the outcome of the other event
conditional probability	an event that is made up of two or more simple events
dependent events	events that cannot occur at the same time
independent events	events in which the outcome of one event affects the outcome of the other event
mutually exclusive events	the probability that an event will occur, given that another event has already occurred
	Vocabulary Link Think of the meaning of the word <i>dependent</i> . Explain how this makes sense in the context of dependent events.

	DATE PERIOD
esson 12-5 (continued)	
Main Idea	Details
Independent and Dependent Events pp. 771–772	Model the probability of two independent events by sketching a Venn diagram in the box below.
Mutually Exclusive Events	A number cube labeled 1 through 6 is rolled. Find each probability.
рр. 773–774	1. <i>P</i> (1 or 4) 2. <i>P</i> (even number)

Helping You Remember

Look up the following terms in a dictionary. Write the definitions that best relate to the way these terms are used in probability.

Independent	
Dependent	
Exclusive	
Inclusive	

12-6 Probability Distributions

What You'll Learn	Skim the Examples for Lesson 12-6. Predict two things you think you will learn about probability distributions.		
	1		
	2.		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
discrete random variable 🕨	A discrete random variable is a random variable with a		
	number of possibilities.		
expected value >	Expected value is the sum of all possible values for a		
	random variable, each value multiplied by its		
probability distribution \blacktriangleright	A probability distribution is the probability of every possible		
	value of the		
probability histogram 🕨	A probability histogram is a histogram that displays		
	a probability		
random variable 🕨	A random variable is a variable with a value that is the		
	of a random event.		

Lesson 12-6 (continued)

Main Idea

Random Variables and Probability

p. 779

The table shows the grade distribution on a final exam. Find the probability that a randomly chosen student earned a B.

Details

DATE ____

_____ PERIOD _

Grade	Number of students
А	6
В	12
С	9
D	1

Probability Distributions

p. 780

Complete the following table to show the probability distribution for the number of heads when three coins are tossed.

Probability Distribution				
Number of Heads	Probability			
0				
1				
2				
3				

Helping You Remember

good way for you to remember a more complicated mathematical concept. Show how you can use the outcomes of tossing a coin to describe how the probabilities of the possible outcomes add up to 1.

12-7 Probability Simulations

What You'll Learn	Scan the text in Lesson 12-7. Write two facts you learned about probability simulations as you scanned the text.			
	1			
	2			
Active Vocabulary experimental probability	New Vocabulary Write the definition next to each term.			
relative frequency 🕨				
simulation >				
theoretical probability \blacktriangleright				

Lesson 12-7

Main Idea	Details				
Fheoretical and Experimental Probability p. 787	Claire correctly answered 17 questions out of 20 on multiple choice test. What is the experimental probability that she answers a question correctly? Express your answer as a percent.				
Performing Simulations op. 788–789	2 out of 3 field goal attempts. Describe how a field goal attempt. Perform the simulation predict the number of field goals the kicket in his next 20 attempts.				
		Roll	Number	-	
Helping You Reme	ember _{Ma}	thematical co	ncepts are eas	ier to remember if	
you can explain them in yo	ur own words. H		a describe the		

CHAPTER **Probability and Statistics**

Tie It Together

Fill in each graphic organizer with a term from the chapter.

NAME

CHAPTE

Probability and Statistics

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

DATE _

- **1.** Write an **A** if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Statistics and Probability	After You Read
• Unbiased surveys are random.	
• The sum of the probabilities for all values of <i>x</i> is 1.	
• A graph that shows a cluster of data about the mean is an average distribution.	
• Theoretical probability is the frequency of an outcome to the total number of events or trials.	
• In a permutations, order matters; but in a combination, order does not matter.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 12.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- \Box I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 12 Study Guide and Review in the textbook.
- \Box I took the Chapter 12 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.