Glencoe McGraw-Hill

Study Notebook

A!GODRET

Mc Snaw Hill

The McGraw-Hill companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240

ISBN: 978-0-07-890844-6
MHID: 0-07-890844-2

Printed in the United States of America
Chapter 1
Before You Read 1
Key Points
1-1 Variables and Expressions 3
1-2 Order of Operations 5
1-3 Properties of Numbers 7
1-4 The Distributive Property 9
1-5 Equations 11
1-6 Relations 13
1-7 Functions 15
1-8 Logical Reasoning and Counterexamples 17
Tie It Together. 19
Before the Test 20
Chapter 2
Before You Read 21
Key Points 22
2-1 Writing Equations 23
2-2 Solving One-Step Equations 25
2-3 Solving Multi-Step Equations 27
2-4 Solving Equations with the Variable on Each Side 29
2-5 Solving Equations Involving Absolute Value 31
2-6 Ratios and Proportions 33
2-7 Percent of Change 35
2-8 Literal Equations and Dimensional Analysis 37
2-9 Weighted Averages 39
Tie It Together. 41
Before the Test 42
Chapter 3
Before You Read 43
Key Points 44
3-1 Graphing Linear Relations 45
3-2 Solving Linear Equations by Graphing 47
3-3 Rate of Change and Slope. 49
3-4 Direct Variation. 51
3-5 Arithmetic Sequences as Linear Functions 53
3-6 Proportional and Nonproportional Relationships 55
Tie It Together. 57
Before the Test 58
Chapter 4
Before You Read 5960
4-1 Graphing Equations in Slope-Intercept 61Form
4-2 Writing Equations in Slope-Intercept Form 63
4-3 Writing Equations in Point-Slope Form 65
4-4 Parallel and Perpendicular Lines 67
4-5 Scatter Plots and Lines of Fit 69
4-6 Regression and Median-Fit Lines 71
4-7 Special Functions 73
Tie It Together 75
Before the Test 76
Chapter 5
Before You Read 77
Key Points 78
5-1 Solving Inequalities by Addition and Subtraction 79
5-2 Solving Inequalities by Multiplication and Division 81
5-3 Solving Multi-Step Inequalities 83
5-4 Solving Compound Inequalities 85
5-5 Inequalities Involving Absolute Value 87
5-6 Graphing Inequalities in Two Variables 89
Tie It Together 91
Before the Test 92
Chapter 6
Before You Read 93
Key Points 94
6-1 Graphing Systems of Equations 95
6-2 Substitution 97
6-3 Elimination Using Addition and Subtraction 99
6-4 Elimination Using Multiplication 101
6-5 Applying Systems of Linear Equations 103
6-6 Organizing Data Using Matrices 105
6-7 Using Matrices to Solve Systems of Equations 107
6-8 Systems of Inequalities 109
Tie It Together 111
Before the Test 112
Chapter 7
Before You Read 113
Key Points 114
7-1 Multiplying Monomials 115
7-2 Dividing Monomials 117
7-3 Scientific Notation 119
7-4 Polynomials 121
7-5 Adding and Subtracting Polynomials 123
7-6 Multiplying a Polynomial by a Monomial 125
7-7 Multiplying Polynomials 127
7-8 Special Products 129
Tie It Together 131
Before the Test 132
Chapter 8
Before You Read 133
Key Points 134
8-1 Monomials and Factoring 135
8-2 Using the Distributive Property 137
8-3 Quadratic Equations:
$x^{2}+b x+c=0$ 139
8-4 Quadratic Equations: $a x^{2}+b x+c=0$ 141
8-5 Quadratic Equations: Differences of Squares 143
8-6 Quadratic Equations: Perfects Squares 145
Tie It Together 147
Before the Test 148
Chapter 9
Before You Read 149
Key Points 150
9-1 Graphing Quadratic Functions 151
9-2 Solving Quadratic Equations by Graphing 153
9-3 Transformations of Quadratic Functions 155
9-4 Solving Quadratic Equations by Completing the Square 157
9-5 Solving Quadratic Equations by Using the Quadratic Formula 159
9-6 Exponential Functions 161
9-7 Growth and Decay 163
9-8 Geometric Sequences as Exponential Functions 165
9-9 Analyzing Functions with Successive Differences and Ratios 167
Tie It Together 169
Before the Test 170
Chapter 10
Before You Read 171
Key Points 172
10-1 Square Root Functions 173
10-2 Simplifying Radical Expressions 175
10-3 Operations with Radical Expressions 177
10-4 Radical Equations 179
10-5 The Pythagorean Theorem 181
10-5 The Distance and Midpoint Formulas 183
10-7 Similar Triangles 185
10-8 Trigonometric Ratios 187
Tie It Together. 189
Before the Test 190
Chapter 11
Before You Read 191
Key Points 192
11-1 Inverse Variation 193
11-2 Rational Functions 195
11-3 Simplifying Rational Expressions 197
11-4 Multiplying and Dividing Rational Expressions 199
11-5 Dividing Polynomials 201
11-6 Adding and Subtracting Rational Expressions 203
11-7 Mixed Expressions and Complex Fractions 205
11-8 Rational Equations and Functions 207
Tie It Together 209
Before the Test 210
Chapter 12
Before You Read 211
Key Points 212
12-1 Designing a Survey 213
12-2 Analyzing Survey Results 215
12-3 Statistics and Parameters 217
12-4 Permutations and Combinations 219
12-5 Probability of Compound Events 221
12-6 Probability Distributions 223
12-7 Probability Simulations 225
Tie It Together. 227
Before the Test 228

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.
\qquad

Expressions, Equations, and Functions

Before You Read

Before you read the chapter, think about what you know about expressions, equations, and functions. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- When taking notes, write down a question mark to anything you do not understand.
Before your next quiz, ask your instructor to explain these sections.
- When you take notes, be sure to listen actively.

Always think before you write, but don't get behind in your note-taking. Remember to enter your notes legibly.
\qquad

Chapter
 Expressions, Equations, and Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on properties of numbers, one fact might be that zero has no reciprocal (because any number times 0 is 0). After completing the chapter, you can use this table to review for your chapter test.

Lesson	
1-1 Variables and Expressions	
1-2 Order of Operations	
1-3 Properties of Numbers	
1-4 The Distributive Property	
1-5 Equations	
1-6 Relations	
1-8 Functions	
Logical Reasoning and	

\qquad
\qquad

1-1 Variables and Expressions

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

algebraic expression
term
power
factors
product
variables

New Vocabulary Match each term with its definition.
the quantities being multiplied in an expression involving multiplication
consists of one or more numbers and variables along with one or more arithmetic operation
the result of a multiplication expression
symbols used to represent unspecified numbers or values in algebra
indicates the number of times the base is used as a factor
a part of an expression that may be a number, a variable, or a product or quotient of numbers and variables

Vocabulary Link Vary is a word used in everyday English that is used to build the word variable. Find the definition of vary using a dictionary. Explain how its everyday definition can help you understand the meaning of variable in mathematics.
\qquad
\qquad

Lesson 1-1 (continued)

Main Idea

Details

Write Verbal Expressions

p. 5

Write a verbal expression for each algebraic expression.

1. $4 x+10$
2. $p-17$
\qquad
3. $\frac{3 y}{8}$
\qquad

Write Algebraic
Expressions
p. 6

A model can be used to aid in translating a verbal expression into an algebraic expression. Write an algebraic expression for the following verbal expression.

Twelve more than the product of 8 and h.

Helping You Remember

A classmate states that 7 less than w translates to $7-w$. You correct the classmate by saying it translates to $w-7$. Your classmate responds by saying, "That is the same thing." Is your classmate correct? Support your answer with examples that either disprove or support your classmate.
\qquad
\qquad

1-2 Order of Operations

What You'll Learn

Skim Lesson 1-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lesson 1-1)
symbols used to represent unspecified numbers or values the result of a multiplication expression
indicates the number of times the base is used as a factor

New Vocabulary Define the following terms in your own words.
evaluate
order of operations

Vocabulary Link Evaluate is a word that is used in everyday English. Find the definition of evaluate using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.
\qquad
\qquad
\qquad
Lesson 1-2 (continued)

Main Idea

Details

Evaluate Numerical Expressions

pp. 10-11

Evaluate each expression.

1. 3^{3} \qquad
2. $4(2+3)-8$ \qquad
3. $(4+2)^{2} \div 2$ \qquad

Complete the chart that shows the steps in evaluating an algebraic expression.

Replace the with their assigned	Apply the	
		and label your answer, if
	to the expression.	necessary.

Evaluate Algebraic Expressions
pp. 11-12

Helping You Remember

Complete each rung of the ladder with the correct order of operations. Start at the bottom and work your way to the top.

\qquad
\qquad
\qquad

1-3 Properties of Numbers

What You'll Learn
 Scan the text in Lesson 1-3. Write two facts you learned about properties of numbers as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Define variables in your own words. (Lesson 1-1)

New Vocabulary Fill in each blank with the correct term or phrase.
equivalent expressions - Two numbers whose product is 1 are called multiplicative inverses or \qquad .
reciprocals Expressions that represent the same number are
\qquad —.

Additive Identity \quad The number 1 is known as the \qquad .

Multiplicative Identity
The number 0 is known as the \qquad .

Vocabulary Link Identity is a word that is used in everyday English. Find the definition of identity using a dictionary. Explain how its English definition can help you understand its meaning in mathematics, specifically when referring to additive and multiplicative identities.
\qquad
\qquad

Lesson 1-3 (continued)

Main Idea

Details

Properties of Equality and Identity

pp. 16-17
Fill in the blanks with the property used in each step.

$$
\begin{aligned}
& 5(9+3) \cdot(9-8) \cdot \frac{1}{60}+(-5+5) \\
& =5(12) \cdot(1) \cdot \frac{1}{60}+(-5+5) \\
& 9+3=12 \\
& \text { and } 9-8=1 \\
& =5(12) \cdot(1) \cdot \frac{1}{60}+0 \quad-5+5=0 \\
& =60 \cdot(1) \cdot \frac{1}{60}+0 \quad 5(12)=60 \\
& =60 \cdot \frac{1}{60}+0 \quad 60 \cdot 1=60 \\
& =1+0 \quad 60 \cdot \frac{1}{60}=1 \\
& =1 \quad 1+0=1
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Use Commutative and Associate Properties

pp. 18-19

Use the Associative Property to write two equivalent expressions. Use the numbers 4,6 , and 9 .

Helping You Remember

Look up the meaning of the word commute in the dictionary. Find an everyday meaning that is close to the mathematical meaning and explain how it can help you remember the mathematical meaning.
\qquad
\qquad

1-4 The Distributive Property

What You'll Learn

2.

Scan Lesson 1-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the term next to each definition.
(Lesson 1-2)
to find the value of an expression
the rules that let you know which operation to perform

New Vocabulary In the diagram, underline the coefficient.

$$
10 y+7
$$

Define simplest form in your own words.

Vocabulary Link Distribute is a word that is used in everyday English. Find the definition of distribute using a dictionary. Explain how the English definition can help you remember how distributive is used in mathematics.
\qquad
\qquad

Evaluate Expressions
pp. 23-24

Caitlin works at the Dairy Whiz Monday through Friday. She earns $\$ 8.25$ per hour. The hours she worked this week are shown in the table below. Write two equivalent ways of finding her weekly pay.

Day	Mon	Tue	Wed	Thu	Fri
Hours	3	2	$1 \frac{1}{2}$	4	$1 \frac{1}{2}$

Method 1 : hourly rate of pay times total hours for the week

Method 2: hourly rate of pay times daily hours worked

Simplify Expressions pp. 24-26

Model the expression $4(x+3)$ by using or drawing algebra tiles. Then simplify.
\qquad
\qquad

1-5 Equations

What You'll Learn

Skim the Examples in Lesson 1-5. Predict two things you think you will learn about this lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary True or False? All open sentences are equations. Explain your answer.

Label the elements of the table with the correct terms.

equation	\boldsymbol{x}	$3 x+1=10$	True or False?
	2	$3(2)+1=10$	False
	3	$3(3)+1=10$	True
replacement set \downarrow	4	$3(4)+1=10$	False
solution	5	$3(5)+1=10$	False
	1	1	

Vocabulary Link In mathematics, sets are collections of objects or numbers. Sets can be illustrated by real-world examples, like a chess set. Write another example of a realworld set.
\qquad
\qquad
\qquad

Lesson 1-5 (continued)

Main Idea

Solve Equations

pp. 31-33

Details
How to solve multi-step linear equations

Remove all parentheses using the Distributive Property.	$\rightarrow\left[\begin{array}{l}2(x+5)+3 x=45 \\ 2 x+10+3 x=45\end{array}\right.$	You try: $3(x-8)+4 x=4$
Combine like terms on each side of the equation.	$\rightarrow \begin{aligned} & 2 x+10+3 x=45 \\ & 5 x+10=45\end{aligned}$	
Isolate term(s) with a variable.	$\rightarrow \begin{aligned} 5 x+10 & =45 \\ -10 & =-10 \\ 5 x & =35\end{aligned}$	
Isolate the variable.	$\rightarrow \begin{aligned} & \frac{5 x}{5}=\frac{35}{5} \\ & x=7 \end{aligned}$	

Solve Equations with Two Variables
pp. 33-35

Write and solve an equation for the following situation.

Mr. Ludwig wants to rent a post hole digger to build a deck. He pays a rate of $\$ 5$ per hour and $\$ 12.50$ for gas and insurance to rent the digger. what is the cost for a six-hour rental?

The cost of the \qquad is a flat rate. The variable is the number of \qquad h for which he rents the digger.

Helping You Remember

Look up the word solution in a dictionary. What is one meaning that relates to the way you use the word in algebra?
\qquad
\qquad
\qquad

1-6 Relations

What You'll Learn

Skim the lesson. Write two things you already know about relations.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

x-coordinate x-axis
y-coordinate
y-axis ordered pair
origin

New Vocabulary Label the elements of the diagram with the correct terms.

1. The numbers $(3,4)$ represent $a(n)$ \qquad .
2. In the ordered pair (3, 4), 3 represents a(n) \qquad .
3. In the ordered pair (3, 4), 4 represents a(n) \qquad .
4. Arrow " A " is pointing to the \qquad .
5. Arrow " B " is pointing to the \qquad .
6. Arrow " C " is pointing to the \qquad .
\qquad
\qquad
\qquad

Lesson 1-6 (continued)

Main Idea

Details

Represent a Relation

pp. 38-40

Complete the mapping to represent the same relation shown below.
ordered pairs

2. graph

1. table

\boldsymbol{x}	\boldsymbol{y}
0	
3	
4	

3. mapping

Graphs of a Relation
pp. 40-41

In a relation involving test grades, the more hours spent studying, the higher the grade. Identify the independent and dependent variables.
\qquad
\qquad

Helping You Remember In the alphabet, x comes before y. Use this fact to describe a method for remembering how to write ordered pairs.
\qquad
\qquad
\qquad

1-7 Functions

What You'll Learn

2.

Skim Lesson 1-7. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad

Review Vocabulary Define reciprocals in your own words. (Lesson 1-3)

New Vocabulary Fill in the blanks with the correct term or phrase.

A graph that consists of points that are not connected is a

A \qquad is a function graphed with a line or a smooth curve.

A \qquad is a relationship between input and output.

A test used to determine whether or not a graph represents a function is known as the \qquad _.

Vocabulary Link Function is a word that is used in everyday English. Find the definition of function using a dictionary. Explain how the English definition can help you remember how function is used in mathematics.
\qquad
\qquad
\qquad
\qquad

Lesson 1-7 (continued)

Main Idea

Identify Functions

pp. 45-47

Details

Fill in each blank to tell how to determine if a relation is a function.
1.

\boldsymbol{x}	\boldsymbol{y}
1	-2
3	4
4	6
1	5

2.

Look at a table to see if each member of the \qquad corresponds to only \qquad member of the \qquad -.

Use the \qquad test. If no vertical line can be drawn so that it intersects the graph more than \qquad then it is a function.

Find Function Values \quad For $f(x)=7 x-4$, find each value.

p. 48

1. $f(3)$ \qquad 2. $f(-2)$ \qquad
2. $f(0)$ \qquad
3. $f(-3)$ \qquad

Helplig You Remember A student who was trying to help a friend

 remember how functions are different from relations that are not functions gave the following advice: Just remember that functions are very strict and never give you a choice. Explain how this might help you remember what a function is.\qquad
\qquad
\qquad
\qquad

1-8 Logical Reasoning and Counterexamples

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
2.

\qquad
.

Active Vocabulary

Review Vocabulary Write the definition next to each term. (Lesson 1-3)
equivalent expressions
additive identity
multiplicative identity
reciprocal
conditional statement
hypothesis
conclusion
deductive reasoning counterexample

New Vocabulary Match each term with its definition. can be written in the form If A, then B
the process of using facts, rules, definitions, or properties to reach a valid conclusion
the part of the statement immediately following the word if a specific case in which the hypothesis is true and the conclusion is false
the part of the statement that immediately follows the then
Vocabulary Link Define the word reciprocal in your own words. (Lesson 1-3)
\qquad
\qquad
\qquad
Lesson 1-8 (continued)

Main Idea

Details

Conditional Statements

pp. 54-55

Deductive Reasoning

 and Counterexamplespp. 55-56

Identify the hypothesis and conclusion of the statement.

Identify the if-then statement for the following equation.
$6 x+5=47, x=7$

Find a counterexample for the conditional statement.
If $x^{4}=16$, then $x=2$.

Helping You Remember

Write an example of a conditional statement you would use to teach someone how to identify a hypothesis and a conclusion.
\qquad
\qquad
\qquad

Expressions, Equations, and Functions

Tie It Together

Add details to each part of the graphic organizer.

\qquad

CHAPTER
 Expressions, Equations, and Functions

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 1 Study Guide and Review in the textbook.I took the Chapter 1 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Set goals and priorities before studying. Then study the hardest material first, and complete assignments that have due dates before others.
\qquad
\qquad

CHAPTER
 2 Linear Equations

Before You Read

Before you read the chapter, think about what you know about linear equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

FOLDABLS Study Organizer Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- When you take notes, circle, underline, or star anything the teacher emphasizes.
When your teacher emphasizes a concept, it will usually appear on a test, so make an effort to include it in your notes.
- Before going to class, look over your notes from the previous class, especially if the day's topic builds from the last one.
\qquad
\qquad

anupter
 2 Linear Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on ratios and proportions, one fact might be that the ratio of two measurements having different units of measure is called a rate. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
2-1 Writing Equations	
2-2 Solving One-Step Equations	
2-3 Solving Multi-Step Equations	
2-4 Solving Equations with the Variable	
on Each Side	
2-5Solving Equations Involving Absolute Value	
2-6 Ratios and Proportions	
2-9 Percent of Change	
2-8 Literal Equations and Dimensional	
Analysis	

\qquad
\qquad

2-1 Writing Equations

What You'll Learn Skim Lesson 2-1. Write two things you already know about writing equations.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Define equation in your own words.
(Lesson 1-5)
\qquad
\qquad

New Vocabulary Define the term formula from this lesson.

Vocabulary Link Formula is a word that is used in everyday English. Find the definition of formula using a dictionary. Explain how its English definition can help you understand the meaning of formula in mathematics.
\qquad
\qquad

Lesson 2-1 (continued)

Main Idea

Details

Write Verbal
 Expressions

pp. 75-76

Write Sentences from Equations
pp. 77-78

Use a model to help translate the sentence below into an equation.

Six more than a number squared is 30 less than five times the number.

Translate each equation into a sentence.

1. $7 x+2=30$
\qquad
\qquad
2. $p^{2}+18=7-k$
\qquad
\qquad

Helping You Remember
 If you cannot remember all the steps of the

 Four-Step Problem-Solving Plan, try to remember the first letters of the first word in each step. Write those letters with their associated words.U
\qquad
\qquad

2-2 Solving Equations

What You'll Learn

2.

Skim Lesson 2-2. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Define formula in your own words. (Lesson 2-1)
\qquad
\qquad

New Vocabulary Fill in each blank with the correct term or phrase.
To find the value of the variable that makes the equation true is to \qquad solve an equation \qquad have the same solution.

Vocabulary Link Solution is a word that is used in everyday English. Find the definition of solution using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 2-2 (continued)

Details

Solving Equations Using Addition or Subtraction pp. 83-84

Solving Equations

 Using Multiplication or Divisionpp. 84-85

Adding the same quantity to two equal or "balanced" amounts, will yield scales that remain balanced.

Solve by multiplying.

1. $\frac{g}{4}=7$
2. $\frac{m}{-5}=3$

Solve by dividing.
3. $9 y=108$
4. $5 k=-115$

Helping You Remember

One way to remember something is to explain it to someone else. Write how you would explain to a classmate how to solve the equation $\frac{2}{3} x=12$.
\qquad
\qquad
\qquad

2-3 Solving Multi-Step Equations

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about solving multi-step equations.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Define equivalent equations in your own words. (Lesson 2-2)

New Vocabulary Write the correct term next to each

definition.

integers in counting order
the study of numbers and the relationships between them
an equation that requires more than one step to solve

Vocabulary Link Consecutive is a word that is used in everyday English. Find the definition of consecutive using a dictionary. Explain how its English definition can help you understand the meaning of consecutive in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 2-3 (continued)

Main Idea

Details

Solve Multi-Step Equations
pp. 91-92

Solve Consecutive Integer Problems pp. 92-93

Solve the equation.

Write an equation for the following problem. Then solve the equation and answer the problem.

Find three consecutive even integers with a sum of 48 .

Helping You Remember

strategy for solving equations.
Explain why working backward is a useful
\qquad

2-4 Solving Equations with the Variable on Each Side

What You'll Learn

Active Vocabulary

formula
solve an equation number theory equivalent equations multi-step equations consecutive integers

Skim the Examples for Lesson 2-4. Predict two things you think you will learn about solving equations with the variable on each side.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Match each term with its definition. (Lessons 2-1 through 2-3)
equations that have the same solution
an equation that requires more than one step to solve.
integers in counting order
the study of numbers and the relationships between them a rule for the relationship between certain quantities
finding the value of the variable that makes an equation true

New Vocabulary Define identity in your own words.

Vocabulary Link Identity is a word that is used in everyday English. Find the definition of identity using a dictionary. Explain how the English definition can help you remember how it is used in mathematics.
\qquad
\qquad

Lesson 2-4 (continued)

Main Idea

Details

Variables on

 Each Sidepp. 97-99

Complete the flow chart to describe the steps in solving the equation.

$$
7(2 x-3)=12 x-5
$$

Solve the equation $6 y+4=3(2 y-10)$.

Helping You Remember

In addition to the examples in this section of Chapter 2, there will be other occurrences of no solutions, as well as identities where there are endless possibilities of solutions. What are the symbols for these?
\qquad
\qquad
\qquad

2-5 Solving Equations Involving Absolute Value

What You'll Learn

Scan the text in Lesson 2-5. Write two facts you learned about solving equations involving absolute value as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Label the elements of the diagram with the correct terms. (Lesson 1-1)

algebraic expression
power
product
variable

1. The term $5 y$ represents $\mathrm{a}(\mathrm{n})$ \qquad
2. Arrow " A " is pointing to $a(n)$ \qquad
3. Arrow " B " is pointing to $a(n)$ \qquad
4. Arrow "C" is pointing to $\mathrm{a}(\mathrm{n})$ \qquad

Define absolute value in your own words.
\qquad
\qquad
\qquad

Details

Absolute Value Expressions

p. 103

Evaluate the following absolute value expression in the space provided.

$$
|f+7|-11 \text { if } f=-9
$$

Complete the organizer below.

Absolute Value Equations

pp. 103-105

Write an absolute value equation that fits the solution graphed below. Then, write the solution set.

Sample answer: $|x-16|=3$
Solution set: $\{10,16\}$
\qquad
\qquad

2-6 Ratios and Proportions

What You'll Learn \quad Scan Lesson 2-6. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.
unit In the proportion $2: 5=6: 15$, the numbers 5 and 6 are known as the \qquad .
ratio $\quad \mathrm{A}(\mathrm{n})$ \qquad is an equation stating that two ratios are equal.
means - $\mathrm{A}(\mathrm{n})$ \qquad is a rate used when making a model of something that is too large or too small to be convenient at actual size.
rate The comparison of two numbers by division is known as a(n)
\qquad
model • A \qquad rate tells how many of one item is being compared to one of another item.
extremes In the proportion 1:15 = 3:45, the numbers 1 and 45 are known as the \qquad .
proportion The ratio of two measurements having different units of measure is called $a(n)$ \qquad .
scale \quad A scale \qquad is a three-dimensional reproduction of an item that has been reduced in size proportionally.
\qquad
\qquad

Lesson 2-6 (continued)

Main Idea

Details

Ratios and Proportions

pp. 111-112

Use cross products to determine whether the pair of ratios forms a proportion.
$\frac{3}{4}, \frac{4.2}{6}$

Solve Proportions
pp. 113-114

Use the graphic organizer below to help solve the rate of growth proportion that follows.

A women's exercise franchise opened 336 gyms during the past 3 years. If their growth rate remains constant, how many exercise gyms will they have opened after 5 years?

Let g represent the number of gyms.

$$
\frac{\text { number of gyms }}{\text { number of years }} \rightarrow \frac{\text { gyms }}{3 \text { years }}=\frac{\text { gyms }}{5 \text { years }}
$$

\qquad
\qquad
\qquad
Helping You Remember
What is one way you could check to see that your graph of an absolute value equation is correct?
\qquad
\qquad
\qquad

2-7 Percent of Change

What You'll Learn

Active Vocabulary

proportion
ratio
rate

Scan Lesson 2-7. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad
a ratio of two measurements having different units of measure an equation stating that two ratios are equal a comparison of two numbers by division

New Vocabulary Fill in each blank with the correct term or phrase.
Review Vocabulary Match each term with its definition.
(Lesson 2-6)
\qquad is the ratio of the change in an amount to the original amount expressed as a percent.

When the new number is less than the original number, the percent of change is a percent of \qquad -.

When the new number is greater than the original number, the percent of change is a percent of \qquad

Vocabulary Link Change is a word that is used in everyday English. Find the definition of change using a dictionary. Explain how the English definition can help you remember how change is used in mathematics.
\qquad
\qquad

Main Idea

Percent of Change
pp. 119-120

Solve Problems

pp. 120-121

Details

Use the graphic organizer to help you find the percent of change given an original amount of 30, and a final amount of 45.

The amount of change $=$ \qquad - \qquad $=$ \qquad $\frac{15}{45}=\frac{r}{100} \ldots$ solve for r and get $r=$ \qquad
Therefore, the percent of change is a \qquad \% \qquad (increase or decrease).

Tess purchased a dress that originally cost $\$ 110$. The day she made the purchase it was on sale for 20% off. What was the sale price of her dress?

Helping You Remember

If you remember only two things about the ratio used for finding the percent of change, what should they be?
\qquad
\qquad
\qquad
\qquad

2-8 Literal Equations and Dimensional Analysis

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 2-1, 2-4, and 2-7)
\qquad are equations that are true for all values of the variables.

The ratio of the change in an amount to the original amount expressed as a percent is known as the \qquad
A(n) \qquad is a rule for the relationship between certain quantities.
dimensional analysis literal equation unit analysis

New Vocabulary Match each term with its definition. a formula or equation that involves several variables the process of carrying units throughout a computation another term for dimensional analysis

Vocabulary Link Literal is a word that is used in everyday English. Find the definition of literal using a dictionary. Explain how the English definition can help you remember how literal is used in mathematics.
\qquad
\qquad
Lesson 2-8 (continued)

Solve for a Specific Variable pp. 126-127

Fill in the missing pieces of the graphic organizer below.

Solve for p.

| Isolate the terms with
 that variable onto one
 side of the equation. |
| :--- | :--- |

Simplify.

$$
\longrightarrow p=\frac{3 q+9}{4-r} r \neq \longrightarrow
$$

The formula for the area of a rectangle is $A=\ell w$, where ℓ is its length, and w is the width. Find the length of a rectangular garden that has an area of 5400 square feet and a width of 90 feet.
\qquad
\qquad

2-9 Weighted Averages

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

rate problem
uniform motion problem weighted average mixture problem

New Vocabulary Match each term with its definition.
Note: two terms have the same definition.
When referring to a set of data, it is the sum of the product of the number of units and the value per unit divided by the sum of the number of units.
problems in which two or more parts are combined into a whole
problems in which an object moves at a certain speed or rate
a statement that requires a solution, usually by means of a
mathematical operation

Vocabulary Link Problem is a word that is used in everyday English. Find the definition of problem using a dictionary. Explain how the English definition can help you remember how problem is used in mathematics.
\qquad
\qquad
Lesson 2-9 (continued)

Main Idea

Weighted Averages

p. 132

Details

In addition to the slugging average that was in the textbook, write another example of when it might be necessary to calculate a weighted average.

Uniform Motion

Problems
pp. 134-135

Use the table provided to aid in solving the following rate problem.

Two cyclists begin traveling from opposite ends of a 15 -kilometer bike path towards each other. One of the cyclists is traveling 20 kilometers per hour, and the other cyclist is traveling 25 kilometers per hour. How much time will it take for them to meet each other?

	\boldsymbol{r}	\boldsymbol{t}	$\boldsymbol{d}=\boldsymbol{r} \boldsymbol{t}$
first cyclist			
second cyclist			

Now write and solve an equation.
$\begin{aligned}+\ldots & =15 \\ +\quad t & =15\end{aligned}$
$t=\ldots$ or ___ hour or ___ minutes
Helping You Remember
Making a table can be helpful in solving mixture problems. In your own words, explain how you use a table to solve mixture problems.
\qquad DATE \qquad
\qquad

Linear Equations

Tie It Together

Provide the indicated details in each graphic organizer.

Using Properties of Equality to Solve Two-Step Equations

Step 1:

Step 2:

\qquad

cuprex
 2 Linear Equations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 2.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 2 Study Guide and Review in the textbook.
\square I took the Chapter 2 Practice Test in the textbook.
\square I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- Review information daily to keep it fresh and to reduce the amount of last-minute studying before test day. Look over the notes from class, readings, and corrected homework to review. If you have confusion about any concepts get them cleared up before test day.
\qquad
\qquad

CHAPTER
 3 Linear Functions

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Linear Functions
	- The graph of a linear equation is a straight line.
	- A family of graphs is different equations that represent the same line.
	- Slope and rate of change are the same thing.
	-Slope is the change of x over the change of y.
- The graph of a nonproportional	
relationship will not be a straight line.	

「OLDA呺 SS Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, write down the math problem and each step in the solution using math symbols.
Next to each step, write down, in your own words, exactly what you are doing.
- It is helpful to read through your notes before beginning your homework.

Look over any page referenced material.
\qquad
\qquad

anupter
 3 Linear Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving linear equations by graphing, one fact might be that the root of an equation is any value that makes the equation true or the solution. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
3-1 Graphing Linear Equations	
3-2 Solving Linear Equations by Graphing	
3-3 Rate of Change and Slope	
3-4 Direct Variation	
3-5 Arithmetic Sequences as Linear	
Functions	
3-6 Proportional and Nonproportional	
Chapter 3	

\qquad
\qquad

3-1 Graphing Linear Equations

What You'll Learn

2.

Scan Lesson 3-1. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

linear equation
standard form
x-intercept
constant
y-intercept

New Vocabulary Match the term with its definition by drawing a line to connect the two.
the x-coordinate of the point at which the graph of an equation crosses the x-axis
a number
an equation which forms a line when it is graphed
the y-coordinate of the point at which the graph of an equation crosses the y-axis
a linear equation written in the form $A x+B y=C$

Vocabulary Link Determine whether each of the following is a linear equation. Using a graphing calculator, sketch a graph of each equation.

$y=3 x-4$	$y=3 x^{2}-4$	$y=0 x-4$
Linear? Yes No	Linear? Yes No	Linear? Yes No

\qquad
\qquad
Lesson 3-1 (continued)

Main Idea

Details

Identify Linear
Equations and Intercepts
pp. 153-155

Graph Linear Equations pp. 155-156

Describe the similarities and differences in finding the x-intercept of a line and finding the y-intercept of a line.

\qquad

3-2 Solving Linear Equations by Graphing

What You'll Learn

Scan the text in Lesson 3-2. Write two facts you learned about solving linear equations by graphing as you scanned the text.

1. \qquad
\qquad
2.

Active Vocabulary

Review Vocabulary Solve each equation for x. Label each as being consistent, inconsistent, or an identity. (Lesson 2-3).

$3 x+6=4 x-8$	$3 x+9=3 x-8$	$3 x+7=4 x+7-x$

New Vocabulary Write the definition next to each term.
linear function
parent function
family of graphs
\qquad
\qquad
\qquad
root
zeros
\qquad
\qquad
Lesson 3-2 (continued)

Details

Solve by Graphing pp. 161-163

Complete the diagram to show the relationship between the words root, solution, zero, and x intercept.

Write a function for the situation described below. Describe how to find the zero of this function. Determine what the zero of this function represents. The salt reserve for a city's road crew was at 17 tons prior to the beginning of winter. Each time the roads are treated, the reserves are depleted by 3.25 tons of salt.

$$
f(x)=
$$

\qquad

Algebraically	Graphically	What does the zero represent?

\qquad
\qquad

3-3 Rate of Change and Slope

What You'll Learn Skim the lesson. Write two things you already know about rate of change and slope.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Write the definition of the word ratio and list the three ways that a ratio can be expressed. By scanning ahead, what is a ratio used to represent in this lesson?
\qquad
\qquad

New Vocabulary Write the definition next to each term.
rate of change \qquad
\qquad
\qquad
slope
\qquad
\qquad

Details

Rate of Change

pp. 170-172

Find Slope
pp. 172-173

Complete the table of values so that Table A has a constant rate of change of 20 gallons per hour and Table B has a constant rate of change of $\mathbf{- 1 5 . 5}$ inches per minute.

Table A	
Hour	Gallons
1:00 Р.м.	
4:00 Р.м.	
6:00 Р.м.	1250
10:00 р.м.	

Table B	
Minutes	Inches
6	259.25
	228.25
12	
	42.25

Use each of the indicated methods to calculate the slope of the line described.

Did you get the same slope all three times?

Hepping You Remember The word rise is associated with going up.

Sometimes going from one point to another on a graph does not involve a rise and a run but a fall and a run. Describe how you could select points so that it is always a rise from the first point to a second point.
\qquad
\qquad

3-4
 Direct Variation

What You'll Learn
 Skim the Examples for Lesson 3-4. Predict two things you think you will learn about direct variation.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write another possible point on each of the lines described. Use the slope formula to justify your answer. (Lesson 3-3)

1. passes through $(5,8)$ with negative slope
2. passes through $(5,8)$ with positive slope
3. passes through $(5,8)$ with no slope
4. passes through $(5,8)$ with slope of 2

New Vocabulary Label the equation with the correct terms.
3. passes through $(5,8)$ with zero slope
\qquad
\qquad

Direct Variation

 Equationspp. 180-181

Direct Variation Problems

p. 182

Complete the diagram by writing one characteristic of direct variation in each box.

Write a direct variation equation for the situation described below. Determine Amanda's pay for 12 hours.

Amanda's paycheck varies directly as the number of hours that she works. If Amanda works 4 hours, her paycheck is $\$ 35$.

| Find the |
| :--- | :--- |
| constant of |
| variation. |

Helping You Remember

Look up the word constant in a dictionary. How does this definition relate to the term constant of variation?
\qquad
\qquad
\qquad

3-5 Arithmetic Sequences as Linear Functions

What You'll Learn

Active Vocabulary

Describe the pattern you see in $g(x)$.

Describe the graph of the ordered pairs ($x, f(x)$).

Describe the graph of the ordered pairs $(x, g(x))$.

New Vocabulary Write the correct term beside each definition.
the numbers in a sequence
a sequence in which the difference in successive terms is constant
a set of numbers in a specific order
the difference between the terms in an arithmetic sequence
\qquad
\qquad

Lesson 3-5 (continued)

Main Idea

Details

Recognize Arithmetic Sequences

pp. 187-189

Complete each question below.

1. Determine whether the sequence $3,-7,-14,-24,-31,-41$ is an arithmetic sequence. Justify your answer.
\qquad
\qquad
2. Determine the next four terms of the arithmetic sequence $-17,-12,-7,-2,3, \ldots$
3. Write an equation for the $n^{\text {th }}$ term of the arithmetic sequence $14,10,6,2,-2, \ldots$

Follow the steps below to write a function to represent the arithmetic sequence described.
Anya is collecting cans to turn into the recycling center. The arithmetic sequence $\$ 0.02, \$ 0.04, \$ 0.06, \$ 0.08, \ldots$ represents the amount of money she earns for turning in the cans.

Use the function to determine her earnings for turning in 100 cans.

Substitute into the $n t h$ term formula. $a_{n}=a_{1}+(n-1) d$

Evaluate the function.

\qquad
\qquad

3-6 Proportional and Nonproportional Relationships

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

inductive reasoning

New Vocabulary Fill in the blanks with the correct terms or phrases.

It is the process of using a \qquad to make a general \qquad When a \qquad pattern is found, a linear equation can be written. The relationship is
\qquad if the linear equation is of the form $y=k x$.

Vocabulary Link Explain how the use of the word proportional in geometry can help you remember its use in this lesson.
\qquad
\qquad
Lesson 3-6 (continued)

Proportional Relationships pp. 195-196

Nonproportional Relationships
p. 197

Fill in the left boxes with details to describe how to determine whether a given relationship is proportional. Complete the example shown in the right boxes.

\boldsymbol{x}	4	5	6	7	8
\boldsymbol{y}	-12	-15	-18	-21	-24

Describe how proportional and nonproportional relationships are similar. Describe how they are different.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CHAPTER
 3
 Linear Functions

Tie It Together

Provide details in each graphic organizer.

\qquad

cmatien
 3 Linear Functions

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Linear Functions	After You Read
- The graph of a linear equation is a straight line.	
- A family of graphs is different equations that represent the same line.	
- Slope and rate of change are the same thing.	
- Slope is the change of x over the change of y.	
- The graph of a nonproportional relationship will not be a	
straight line.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes,

 personal tutors, and practice tests to help you study for concepts in Chapter 3.
Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 3 Study Guide and Review in the textbook.I took the Chapter 3 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- When studying for tests, create and use graphic organizers to show relationships between concepts.
\qquad
\qquad

CHAPTER
 4 Linear Functions and Relations

Before You Read

Before you read the chapter, think about what you know about linear functions and relations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	What I want to find out...

OLDA ALES Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- As soon as possible, go over your notes.

Clarify any ideas that were not complete.

- If you find it difficult to write and pay attention at the same time, write down key words only.
Then go back and complete your notes.
\qquad
\qquad

curvir
 4
 Linear Functions and Relations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on scatter plots and lines of fit, one fact might be that scatter plots can show whether there is a trend in a set of data. After completing the chapter, you can use this table to review for your chapter test.

\qquad
\qquad

4-1 Graphing Equations in Slope-Intercept Form

What You'll Learn

2.

Skim Lesson 4-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
. \qquad
\qquad

Review Vocabulary Identify the slope and y-intercept of lines A, B, C, and D. (Lessons 3-1 and 3-3)

Line	Slope	y - intercept
A		
B		
C		
D		

New Vocabulary Label the diagram using the terms at the left.
slope-intercept form
y-intercept
slope
independent variable
dependent variable
\qquad
\qquad

Lesson 4-1 (continued)

Main Idea

Details

Slope-Intercept Form

pp. 214-216

Modeling Real-World Data
pp. 216-217

Complete each step in the chart below. Add details to each step for clarification.

Write a linear equation to determine the price of gas after the year 2008, if the price of gas in 2008 is $\$ 3.16$ per gallon and the price increases by $\$ 0.55$ per year.

slope or rate of change	y-intercept or starting value	linear equation $y=m x+b$

\qquad
\qquad

4-2 Writing Equations in Slope-Intercept Form

What You'll Learn

Active Vocabulary

Review Vocabulary Rewrite each equation in slope-intercept form. Circle the slope and underline the y-intercept. (Lesson 4-1)

$2 y+5 x=-8$	$3 y+5 x=5 x+7$	$y+5 x=4$

New Vocabulary Fill in each blank with the correct terms.
linear extrapolation a process in which you use a \qquad equation to make \qquad about a value that is outside the range of a given set of \qquad

Vocabulary Link Look up the word extrapolate in the dictionary. Write the non-mathematical definition of the word, a synonym for the word, and then use the word extrapolate in a non-mathematical sentence.
\qquad
\qquad
Lesson 4-2 (continued)

Main Idea

Details

Write an Equation Given the Slope and a Point
p. 224

Fill in the diagram to write the equation of the line in slope-intercept form.

Write an equation of the line that passes through $(-2,4)$ and has a slope of 2 .

Write the equation of the line that passes through $(2,4)$ and $(-7,5)$.

Helping You Remember

In your own words, explain how you would answer a question that asks you to write the slope-intercept form of an equation.
\qquad
\qquad

Write an Equation Given Two Points
pp. 224-226
\qquad

4-3 Writing Equations in Point-Slope Form

What You'll Learn
 Scan the text in Lesson 4-3. Write two facts you learned about equations in point-slope form as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram using the terms at the left.

Vocabulary Link Write the point-slope formula and the slope formula below. Explain how the two formulas are related.

slope formula	point-slope form
How are they related?	

\qquad
\qquad

Main Idea

Details

Point-Slope Form
p. 231

Forms of Linear Equations
pp. 232-233

Write the equation of the line in slope-intercept form that passes through $(-4,5)$ and $(6,-5)$ using the two different methods. Which method do you prefer? Explain.

Place a check mark in each box in which the specified characteristic applies. Describe the graphing method that you would use for each form identified as being convenient.

Form	Slope is easily identifiable.	The -intercept is easily identifiable.	convenient form for graphing
point-slope form			
slope- intercept form			
standard form			

\qquad
\qquad

4-4 Parallel and Perpendicular Lines

What You'll Learn

2.

Skim the Examples for Lesson 4-4. Predict two things you think you will learn about parallel and perpendicular lines.

1. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the slope formula, and then write a verbal description of how to use the slope formula.
(Lesson 3-3)
\qquad
\qquad
\qquad

New Vocabulary Write the correct term beside each definition.
lines in the same plane that never intersect and have the same slope
lines that intersect at right angles and have slopes that are opposite reciprocals
\qquad
\qquad
\qquad

Main Idea

Parallel Lines

p. 237

Details

Write an equation for each line described in slopeintercept form.

1. x-intercept of $3 ; y$-intercept of -1
2. parallel to the line in Exercise 1
3. intersects the line in Exercise 1 at the y-intercept

Perpendicular Lines

pp. 238-240

Given two equations in standard form, determine whether the lines are parallel, perpendicular, or neither.

Helping You Remember

Explain to another person how you would use the y-intercept and slope to graph a linear equation.
\qquad
\qquad
\qquad

4-5 Scatter Plots and Lines of Fit

What You'll Learn

Skim Lesson 4-5. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

bivariate data
line of fit
scatter plot
linear interpolation

New Vocabulary Match the term with its definition by drawing a line to connect the two.
a set of bivariate data graphed as ordered pairs on a coordinate plane

line of fit	a set of data which contains two variables
scatter plot	the process of using a linear equation to predict values inside the range of a set of data
linear interpolation	a line which closely approximates the scatter plot for a set of data

Vocabulary Link Circle each word which would likely describe the given statistical relationship.

1. the amount of allowance and the number of CDs owned by fifteen students randomly selected from an algebra class
negative positive no weak strong correlation correlation correlation correlation correlation
2. the height in inches and the number of hours spent sleeping each week for ten adults selected at random negative positive no weak strong correlation correlation correlation correlation correlation
3. the number of hours worked and the number of hours spent watching TV each week by nine teenagers selected at random
negative positive no weak strong correlation correlation correlation correlation correlation
\qquad
\qquad
Lesson 4-5 (continued)

Investigate
Relationships Using
Scatter Plots
p. 245

Details

Describe a real-world situation and a set of corresponding data that would show a strong positive correlation. Describe the meaning of the correlation in terms of the real-world situation.

Situation:

Correlation Meaning:

Use Lines of Fit

pp. 246-247

Make a scatter plot and describe the correlation. Determine a line of fit for the data. Use the line of fit to predict the number of hours exercised per week by a 15-year-old.

The table shows the number of hours spent exercising per week and the age of a random sample of seven people.

age	18	26	32	38	52	59
hours	10	5	2	3	1.5	1

\qquad
\qquad

4-6 Regression and Median-Fit Lines

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1.
2.

Active Vocabulary New Vocabulary Write the definition next to each term.
best-fit line \qquad
linear regression
correlation coefficient
median-fit line

Vocabulary Link Consider the statement "There is a strong correlation between smoking cigarettes and developing lung cancer." Explain this statement mathematically and indicate a probable value for the correlation coefficient.
\qquad
\qquad

Lesson 4-6 (continued)

Main Idea

Equations of Best-Fit Lines

pp. 253-255

Lines

Equations of Median-Fit
p. 255

Details

Record the keystrokes required to perform linear regression on your calculator. Provide details as necessary.

entering the data	performing regression
graphing the scatter plot and regression line	

Use your graphing calculator to determine the median-fit line for the following set of data. Use this equation to perform both a linear interpolation and a linear extrapolation.

number of ads	2	5	8	8	10	12
sales (\$ thousands)	2	4	7	6	9	10

median-fit equation:	extrapolation
interpolation	

Helping You Remember

Explain how each of the following terms are related: scatter plot, line of fit, best-fit line, regression line, and median-fit line
\qquad
\qquad
\qquad
\qquad
\qquad

4-7 Special Functions

What You'll Learn

Scan Lesson 4-7. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Graph each on a number line. (Lesson 2-5)

all integers whose absolute value is greater than 2

New Vocabulary Match the term with its definition by drawing a line to connect the two.
piecewise-defined function
a function whose graph consists of disjointed line segments
a function when given x, returns the greatest integer less than or equal to x
a function written using two or more expressions
a function which contains an algebraic expression within absolute value symbols
greatest integer function
a function written using one expression which results in a graph that consists of multiple lines
\qquad
\qquad

Details

Step Functions

pp．261－262

Absolute Value Functions

pp．262－264

Evaluate each expression．

1．【8．7】
2．【－8．2】＋【16．2】
3．$\llbracket 12.1 \rrbracket+8$
4．$\llbracket 18.9+12.6 \rrbracket$

Provide either the graph or the function notation for each piecewise－defined function．Identify the domain and range for each．

Helping You Remember

Explain how you can use a number line to find the value of the greatest integer function for any real number．
\qquad
\qquad
\qquad
\qquad DATE \qquad PERIOD \qquad

Linear Functions and Relations

Tie It Together

Provide details for each titled graphic organizer. Supply a title and details for graphic organizers that are blank.

\qquad

cuprite
 4 Linear Functions and Relations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 4 Study Guide and Review in the textbook.I took the Chapter 4 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Make up an invented sentence (acrostic) to remember lists or sequences. Please Excuse My Dear Aunt Sally is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract).
\qquad
\qquad

CHAPTER
 5 Linear Inequalities

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Linear Inequalities
	- Inequalities are solved by isolating the variable.
	- If both sides of an inequality are multiplied by a negative number, the inequality sign is reversed.
	- A graph of an inequality has an open circle when the symbol is "greater than or equal to".
	- The order of operations does not apply when solving inequalities.
	- Inequalities with absolute values are
undefined.	

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this

 chapter.
\int Note Taking Tips

- Remember to study your notes daily.

Reviewing small amounts at a time will help you retain the information.

- When you take notes, it may be helpful to sit as close as possible to the front of the class.
There are fewer distractions and it is easier to hear.
\qquad
\qquad
\qquad

CHAPTER
 5
 Linear Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on solving inequalities by addition and subtraction, one fact might be that when solving inequalities, the goal is to isolate the variable on one side of the inequality. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
5-1 Solving Inequalities by Addition and Subtraction	
5-2 Solving Inequalities by Multiplication and Division	
5-3 Solving Multi-Step Inequalities	
5-4 Solving Compound Inequalities	
5-5 Inequalities Involving Absolute Value	

\qquad
\qquad

5-1 Solving Inequalities by Addition and Subtraction

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write a word description for each inequality symbol and write a true mathematical sentence using the symbol. (Lesson 1-1)

1. $>$ \qquad
\qquad
2. $<$ \qquad
3. \geq \qquad
4. \leq \qquad
\qquad

New Vocabulary Label the parts of the set builder notation below using the phrases given at the left. Show the set builder notation on the number line.

\qquad
\qquad
Lesson 5-1 (continued)

Details

Solve Inequalities by Addition

pp. 283-284

Solve Inequalities by Subtraction
pp. 284-285

Fill in the chart with the missing solution set representations.

Verbal Description	Set Builder Notation	Graphical Representation
all numbers greater than 3		
		$\underset{-4}{\underset{-4}{+}} \mathbf{-}$
	$\{x \mid x<-3\}$	$\underset{-4}{ } \xrightarrow{1}$

Write a linear inequality to represent the following problem. Solve the inequality. Provide a complete sentence to answer the problem.
Raul needs at least $\$ 150$ to purchase a digital audio player. Currently, Raul has $\$ 102$. How much more money does Raul need before he can purchase a digital audio player?

Inequality:	Answer the problem:
Solution:	

Helping You Remember

Teaching someone else can help you remember something. Explain how you would teach another student to solve the inequality $2 x+4 \leq 3 x$.
\qquad
\qquad

5-2 Solving Inequalities by Multiplication and Division

What You'll Learn

Scan Lesson 5-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Explain how the Multiplication Property of Equality and the Division Property of Equality can both be used to solve the equation $3 x=24$. (Lesson 2-2)

Multiplication Property of Equality	Division Property of Equality

Vocabulary Link Solve the inequality below by following the outlined steps.

\qquad
\qquad
Lesson 5-2 (continued)

Main Idea

Details

Solve Inequalities by Multiplication
pp. 290-291

Compare and contrast the process for solving the inequalities $-\frac{1}{3} x>-12$ and $\frac{1}{3} x>12$ and for showing the solutions sets on a number line.

Similarities: \qquad
\qquad
\qquad
\qquad
Differences: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solve Inequalities by Division
p. 292

Classify each inequality listed in the chart below. $3 x>-12,-4 x<15,-\frac{2}{3} x \leq-15, x-5>-15, \frac{1}{4} x \geq-8$, $-x>9, x+14<-6, \frac{3}{2} x>-7$

The inequality symbol is not reversed when solving.	The inequality symbol is reversed when solving.

\qquad
\qquad

5-3 Solving Multi-Step Inequalities

What You'll Learn
 Skim the Examples for Lesson 5-3. Predict two things you think you will learn about solving multi-step inequalities.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Use the Distributive Property to simplify each expression. (Lesson 1-3)

1. $3(2 x-7)$
2. $-4 x+2(3 x+1)$
3. $2(x+5)+3(2 x+1)$
4. $-4(2 x-6)-(x+7)$

Vocabulary Link Fill in a missing term in each equation to satisfy the given solution. Justify your answer by solving each equation.

1. $4 x-12=6 x+\square \quad$ Solution: $x=-2$
2. $2 x-10=2 x+\square \quad$ Solution: \varnothing
3. $3 x+11=\square+11 \quad$ Solution: \{all real numbers $\}$
\qquad
\qquad
Lesson 5-3 (continued)

Main Idea

Details

Solve Multi-Step Inequalities
pp. 296-297

Solve Inequalities
Involving the Distributive Property pp. 297-298

Solve each inequality using the indicated first step. Show the solution set using set builder notation and on a number line.

Explain how to identify an inequality that has either "all real numbers" or " \varnothing " as the solution.

All Real numbers: \qquad
\qquad
\varnothing : \qquad
\qquad
\qquad

Helping You Remember
Make a checklist of steps for solving inequalities.
\qquad
\qquad
\qquad
\qquad
\qquad

5-4 Solving Compound Inequalities

What You'll Learn

Skim the lesson. Write two things you already know about solving compound inequalities.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

$x \geq 12$
is no more than 12
$12<x \quad$ is less than 12
$x \leq 12 \quad$ is at least 12
$x<12$ is more than 12

New Vocabulary Write the correct term beside each definition.

Corresponds to the word "and". Solutions are common to both inequalities in a compound inequality.

The name given to two inequalities considered together.
Corresponds to the word "or". Solutions are from one, the other, or both inequalities in a compound inequality.

Vocabulary Link Shade the intersection of sets A and B in Diagram I. Shade the union of sets A and B in Diagram II.

\qquad
\qquad

Main Idea

Details

Inequalities Containing and
p. 304

Inequalities
Containing or
pp. 305-306
Complete the diagram to solve the inequality.

$$
-11 \leq 2 x-3<7
$$ and solve each inequality.

Split into two inequalities using "and"

To be on the Tiny Tigers Tennis Team, a child must be at least 6 years old, but less than 9 years old. Write two compound inequalities: one representing the ages of children who can be on the team, and the other representing the ages of children who cannot be on the team.

Children on the team: \qquad

Children not on the team: \qquad

Helping You Remember

One way to remember something is to connect it to something that is familiar to you. Write two true compound statements about yourself, one using the word and and other using the word or.
\qquad
\qquad

5-5 Inequalities Involving Absolute Value

What You'll Learn

Active Vocabulary

Review Vocabulary Solve each absolute value equation.
(Lesson 2-5)

1. $|x|=12$
2. $|x|-5=-20$
3. $4|x-6|=16$
4. $|3 x-1|+2=18$

Scan the text in Lesson 5-5. Write two facts you learned about inequalities involving absolute value as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad

Vocabulary Link Shade the areas on the coordinate planes which meet the conditions. Describe the shape of the shaded region.

\qquad
\qquad
Lesson 5-5 (continued)

Main Idea

Details

Inequalities Involving Absolute Value
pp. 310-311

Complete the chart below for solving absolute value inequalities.

Solve each inequality.

Helping You Remember

Recall that $|x|$ tells you how many units the number x is from zero on the number line. Explain the meaning of $|x|=n,|x|<n$ and $|x|>n$ by using the idea of the distance from x to zero.
\qquad

5-6 Graphing Inequalities in Two Variables

What You'll Learn
 Skim Lesson 5-6. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
boundary \qquad
half-plane \qquad
\qquad
closed half-plane
open half-plane \qquad
\qquad
\qquad
\qquad
Lesson 5-6 (continued)

Main Idea

Graph Linear Inequalities

pp. 315-316

Solve Linear Inequalities
pp. 316-317

Details

Sequence the steps for graphing a linear inequality by placing one step in each box. Add details in the box next to each step.

Shade the graph, Graph the boundary line, Determine if the boundary line is solid or shaded, Pick a point not on the line to test, Check a point not in the shaded region

Use an inequality in two variables to solve $-2 x-3 \leq-5$.

Write the related function.

Pick/Test a Point. Shade the graph.
\qquad
\qquad
\qquad

CHAPTER
 5 Linear Inequalities

Tie It Together

Provide the indicated details in the graphic organizer.

Using Properties of Inequality to Solve Two-Step Inequalities

Step 1:

Step 2:

\qquad
\qquad
\qquad

CHAPTER
 5 Linear Inequalities

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Linear Inequalities	After You Read
- Inequalities are solved by isolating the variable.	
- If both sides of an inequality are multiplied by a negative number, the inequality sign is reversed.	
- A graph of an inequality has an open circle when the symbol is "greater than or equal to".	
- The order of operations does not apply when solving inequalities.	
- Inequalities with absolute values are undefined.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 5.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 5 Study Guide and Review in the textbook.I took the Chapter 5 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- On handouts, homework, and workbooks that can be written in, underline and highlight significant information.
\qquad

CHAPTER
 6
 Systems of Linear Equations and Inequalities

Before You Read

Before you read the chapter, think about what you know about systems of linear equations and inequalities. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

FOLDA \int_{B}^{\prime} ES Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- If your instructor points out definitions or procedures from your text, write a reference page in your notes.
You can then write these referenced items in their proper place in your notes after class.
- When you take notes, listen or read for main ideas.

Then record concepts, define terms, write statements in if-then form, and write paragraph proofs.
\qquad

chapter
 6 Systems of Linear Equations and Inequalities

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on graphing systems of equations, one fact might be that if a consistent system has an infinite number of solutions, it is dependent. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
6-1 Graphing Systems of Equations	
6-2 Substitution	
6-3 Elimination Using Addition and	
Subtraction	
6-4 Elimination Using Multiplication	
6-5 Applying Systems of Linear Equations	
6-6 Organizing Data Using Matrices	
6-7 Systems of Inequalities	
Equations	

\qquad
\qquad

6-1 Graphing Systems of Equations

What You'll Learn

Active Vocabulary

Review Vocabulary Make a table of values which satisfy the equation $x+y=13$. (Lesson $3-1$)

x	-5	-4	-3	-2	-1	0	1	2	3
y	18	17	16	15	14	13	12	11	10

Is it possible to make a table that shows all ordered pairs that satisfy this equation? Justify your answer.
\qquad
\qquad
\qquad
Lesson 6-1 (continued)

Main Idea

Possible Number of Solutions
pp. 333-334

Solve by Graphing
pp. 334-335

Details

Add a line to each graph so that the given condition is satisfied.

Solve the system of equations by graphing.

Step 3 Find the solution. The lines intersect at point
\qquad -.

Helping You Remember

Describe how you can solve a system of equations by graphing.
\qquad
\qquad
\qquad
\qquad
\qquad

6-2 Substitution

What You'll Learn

Scan the text in Lesson 6-2. Write two facts you learned about solving systems by substitution as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Solve the equation after substituting the given value for each variable. (Lesson 2-3)
$\begin{array}{ll}\text { 1. } 3 x+7 y=8 \text {, given } x=-2 & \text { 2. }-2 y+2 x=12 \text {, given } y=0\end{array}$
3. $y-\frac{2}{3 x}=9$, given $x=-6 \quad$ 4. $0.5 y+6 x=-5$, given $y=4$

New Vocabulary Write the definition next to each term.

Vocabulary Link Describe when it would be more convenient to use substitution than graphing for solving a system of equations.
\qquad
\qquad

Solve by Substitution

pp. 342-344

Solve Real-World Problems

p. 344

Write a system of equations to represent the following problem. Identify the variables. Solve the system.
A total of 150 tickets were sold for the annual concert. Student tickets were $\$ 4$ and non-student tickets were $\$ 8$. If the total revenue was $\$ 840$, how many tickets of each type were sold?

Let $s=$	system	Solve and answer.
Let $n=$		

Helping You Remember

What is usually the first step in solving a system of equations by substitution?
\qquad

6-3 Elimination Using Addition and Subtraction

What You'll Learn
 Scan Lesson 6-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

[^0]\qquad

New Vocabulary Fill in the blanks with the correct term or phrase.

It is a method to \qquad a system in which the equations are written so that like \qquad with the same or opposite coefficients are \qquad The equations
are \qquad or subtracted to eliminate one
\qquad The value for one variable is found and is
\qquad into one of the equations to solve for the other variable.
\qquad
\qquad
\qquad

Lesson 6-3 (continued)

Main Idea

Elimination Using Addition

pp. 348-349

Elimination Using Subtraction
pp. 350-351

Details

Solve each system of equations using the addition method. Fill in both the verbal and mathematical missing steps.

Create a system of equations which has a solution of $(2,4)$ and can be solved using the subtraction method.
\square

Helping You Remember

Tell how you can decide whether to use addition or subtraction to eliminate a variable in a system of equations.
\qquad
\qquad
\qquad

6-4 Elimination Using Multiplication

Skim Lesson 6-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Write the property of equality which is represented by each example. (Lessons 1-3)
$4 x=9$ is equivalent to $4 x-18=-9$.
$3 x+2 y=12$ is equivalent to $6 x+4 y=24$.
$3 x=12$ is equivalent to $3 x+8=20$.

Vocabulary Link Add the two linear equations to create a third. Graph all three equations on the same plane. What happens?

$$
\begin{aligned}
& 2 x-3 y=-8 \\
& -x+2 y=6
\end{aligned}
$$

\qquad
\qquad

Lesson 6-4 (continued)

Main Idea

Elimination Using Multiplication

pp. 355-356

Solve Real-World Problems

p. 357

Write a system of equations to represent the following problem. Identify the variables. Solve the system using elimination.
On Monday, Arnold paid $\$ 3.40$ for three donuts and two coffees. On Tuesday, he paid $\$ 3.60$ for two donuts and three coffees. On Wednesday, he bought one donut and one coffee. What was his bill for one donut and one coffee?

Let $d=$	system	Solve and answer.
Let $c=$	$3 d+2 c=3.40$	
$2 d+3 c=3.60$		

Helping You Remember If you are going to solve a system by elimination,

 how do you decide whether you will need to multiply one or both equations by a number?\qquad
\qquad

6-5 Applying Systems of Linear Equations

What You'll Learn

Skim the Examples for Lesson 6-5. Predict two things you think you will learn about applying systems of equations.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Solve the system of equations using each of the four methods. (Lessons 6-1 through 6-4)

$$
x-2 y=4 ; x-y=3
$$

Graphing				Substitution

\qquad
\qquad
Lesson 6-5 (continued)

Details

Determine the Best
Method
pp. 362-363

Apply Systems of Linear Equations p. 364

Summarize when to use each of the following methods in your own words.

Write a word problem that could be represented by the following system of equations. Identify each variable.
$4 b+3 m=1.45 ; 2 b+5 m=1.25$

\qquad
\qquad

6-6 Organizing Data Using Matrices

What You'll Learn Skim the lesson. Write two things you already know about organizing data using matrices.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term beside each definition.
\qquad $m \times n$, where m is the number of rows and n is the number of columns
a constant that is multiplied by a matrix
the name given to each number in a matrix
a rectangular array of variables or constants in horizontal rows and columns
the operation of multiplying each element of a matrix by the scalar

Vocabulary Link Explain how scalar multiplication is similar to using the Distributive Property in an algebraic expression. Explain how matrix addition/subtraction is similar to combining like terms in an algebraic expression.

Scalar multiplication \& Distributive Property

Matrix addition/subtraction \& combining like terms
\qquad
\qquad
Lesson 6-6 (continued)

Main Idea

Organize Data Using Matrices

pp. 369-370

Details

Use matrix A to answer the following questions.

$$
A=\left[\begin{array}{rrrrr}
-2 & 7 & -10 & 1 & 12 \\
3 & 0.5 & 2 & -1 & -5 \\
5 & 6 & 0 & 4 & 0.75
\end{array}\right]
$$

What are the dimensions of Matrix A ? \qquad
What is the element in row 2, column 4? \qquad
What is the position of the circled element? \qquad
What is the sum of the elements in column 3 ? \qquad
What is the sum of the elements in row 1 ? \qquad

Matrix Operations

pp. 370-371

Perform each matrix operation.

$$
\begin{aligned}
& -3\left[\begin{array}{rr}
-2 & 4 \\
1 & 7
\end{array}\right]=[\\
& {\left[\begin{array}{rr}
3 & -2 \\
1 & 4
\end{array}\right]-\left[\begin{array}{rr}
5 & -1 \\
3 & 8
\end{array}\right]=[\square}
\end{aligned}
$$

\qquad
\qquad

6-7 Using Matrices to Solve Systems of Equations

What You'll Learn

Skim the Examples for Lesson 6-7. Predict two things you think you will learn about using matrices to solve systems of equations.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Eliminate the indicated variable for each system. Do not solve the system. (Lesson 6-4)

$\begin{gathered} 2 x-3 y=-13 \\ 5 x-12 y=-46 \end{gathered}$ Eliminate x. Multiply 1st equation by \qquad Multiply 2nd equation by \qquad	$\begin{aligned} & 4 x+3 y=48 \\ & 3 x+2 y=34 \end{aligned}$ Eliminate y. Multiply 1st equation by \qquad Multiply 2nd equation by \qquad

New Vocabulary Fill in each box with the correct term.

\qquad
\qquad

Main Idea

Details

Augmented Matrices Write a system of equations from the augmented p. 376

Solve Systems of Equations
pp. 376-378 matrices. Use x and y as the variables.

Use an augmented matrix to solve the system of equations $x-y=12$ and $2 x+y=3$. Fill in the missing steps.

Helping You Remember

A student in your class is having difficulty understanding why the goal of row reduction is to achieve an identity matrix. How can you explain this to the student?
\qquad
\qquad

6-8 Systems of Inequalities

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Fill in the blank with the correct term or phrase.
system of inequalities $-\quad$ It is a set of \qquad or more inequalities with the same
\qquad The solution of the system is the set of
\qquad that satisfy all of the inequalities in the system. These ordered pairs are the \qquad of the graphs of each individual inequality.

Vocabulary Link Intersecting regions can be represented using a Venn diagram. Place the terms "solutions of $y>2 x-4$ ", "solutions of $y \leq-0.5 x+3$ ", and "solutions of $y>2 x-4$ and $y \leq-0.5 x+3$ " in the Venn diagram below.

How could you use the Venn diagram to represent "solutions of $y>2 x-4$ or $y \leq-0.5 x+3 "$?
\qquad
\qquad
Lesson 6-8 (continued)

Systems of Inequalities

pp. 382-383

Details

Sequence the steps for solving a system of inequalities. Solve the two systems of inequalities.
Graph the first inequality and shade appropriately, Write both lines in slope-intercept form, Determine the intersections of the shaded regions, Graph the second inequality and shade appropriately.

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Example 1 } & \begin{array}{|l|l|l|l|}\hline & & & \\ \hline\end{array} & y^{y} & & & \\ \hline & & & & & & \\ \hline & \\ \hline y>x-1 \\ y<x+3\end{array}\right)$

Helping You Remember

Describe how you would explain the process of using a graph to solve a system of inequalities to a friend.
\qquad
\qquad

CHAPTER
 6 Systems of Linear Equations and Inequalities

Tie It Together

Fill in each graphic organizer. Add details if space permits.

\qquad

cmerter
 Systems of Linear Equations and Inequalities

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 6.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 6 Study Guide and Review in the textbook.I took the Chapter 6 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Use the SQ3R method of reading: Survey, Question, Read, Recite, and Review. Survey the text by previewing the headings, boldface words, and examples. Ask questions about what you survey, read with purpose, recite out loud the main points and concepts without looking at the text, and review your text notes or use the chapter review at the end of the chapter.
\qquad
\qquad

Polynomials

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Polynomials
- To multiply exponents with the same base, find the product of the base and the exponents.	
	- A simplified expression is without fractions, duplicate bases, and powers of powers.
	- A base with a negative exponent is written with a positive exponent when it is a denominator.
	- To subtract polynomials, subtract like terms.
	- To multiply polynomials, use the Commutative Property.

Construct the Foldable as directed at the beginning of this chapter.

5 Note Taking Tips

- When taking notes, writing a paragraph that describes the concepts, the computational skills, and the graphics will help you to understand the math in the lesson.
- Before each lesson, skim through the lesson and write any questions that come to mind in your notes.
As you work through the lesson, record the answer to your question.
\qquad
\qquad

CHAPTER
 Polynomials

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on dividing monomials, one fact might be that the order of magnitude of a quantity is the number rounded to the nearest power of 10. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
7-1 Multiplying Monomials	
$7-2$ Dividing Monomials	
7-3 Scientific Notation	
$7-4$ Polynomials	
$7-5$ Adding and Subtracting Polynomials	
7-6 Multiplying a Polynomial by a	
Monomial	
7-8 Special Products	

\qquad
\qquad

7-1 Multiplying Monomials

What You'll Learn Skim the Examples for Lesson 7-1. Predict two things you think you will learn about multiplying monomials.

1. \qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
 New Vocabulary Fill in each blank with the correct term or phrase.

constant A constant is a monomial that is a \qquad .
monomial A monomial is a number, a \qquad or the
product of a number and one or more variables with
nonnegative integer \qquad .

Vocabulary Link The word constant has a place in a number of real-world applications. Think of a real-world example where you would describe something as constant. Then look up the word and explain how its everyday meaning relates to its mathematical meaning.
\qquad
\qquad

Lesson 7-1 (continued)

Details

Monomials

pp. 401-403

Complete the table by circling the property of powers that can be used to simplify each expression. Then simplify the expression.

Expression	Property	Simplified Expression
$\left(w^{3}\right)^{5}$	Product of Powers Power of a Power Power of a Product	
$c^{2} \cdot c^{4}$	Product of Powers Power of a Power Power of a Product	
$(2 m n)^{3}$	Product of Powers Power of a Power Power of a Product	

Simplify each expression.

1. $\left(2 m n^{2}\right)^{2}\left(3 m^{2} n^{4}\right)^{3}$
2. $\left(4 c^{2} d^{3}\right)^{2}\left[\left(-3 c^{2} d^{4}\right)^{3}\right]^{2}$

Simplify Expressions p. 404

Helping You Remember

Write an example of each of the three properties of powers discussed in this lesson. Then, using the examples, explain how the property is used to simplify them.
\qquad
\qquad
\qquad
\qquad
\qquad

7-2 Dividing Monomials

What You'll Learn Skim the lesson. Write two things you already know about dividing monomials.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
New Vocabulary Write the correct term next to each definition or expression.
$\left(\frac{c}{5}\right)^{0}=1$
for a given quantity, the number rounded to the nearest power of 10
$a^{-2}=\frac{1}{a^{2}}$

Vocabulary Link Look up the definition of magnitude. Tell how the meaning compares to the order of magnitude of a quantity.
\qquad
\qquad
Lesson 7-2 (continued)

Details

Quotients of Monomials pp. 408-410

Complete the table by circling the property of powers that can be used to simplify each expression. Then simplify the expression.

Expression	Property	Simplified Expression
$\frac{a^{2} b^{4}}{a b^{2}}$	Quotient of Powers Power of a Quotient	
$\left(\frac{4 z^{3}}{5}\right)^{2}$	Quotient of Powers Power of a Quotient	

Simplify each expression. Assume that no denominator is equal to zero.

1. $\left(\frac{7 c^{2} d^{5}}{21 c^{3} d^{2}}\right)^{0}$
2. $\frac{\left(m^{-1} n^{3}\right)^{-4}}{m^{3} n^{3}}$

Simplify Expressions

pp. 411-412

Helping You Remember

Describe how you would help a friend who needs to simplify the expression $\frac{4 x^{2}}{2 x^{5}}$.
\qquad
\qquad
\qquad
\qquad
\qquad

7-3 Scientific Notation

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2.

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lesson 7-1)

constant

\qquad

monomial

scientific notation

New Vocabulary Write the definition of the term.
\qquad
\qquad
\qquad

Lesson 7-3 (continued)

Main Idea

Scientific Notation
pp. 416-417

Products and Quotients in Scientific Notation

pp. 417-418

Details

Follow the steps below to write $5.18 \times \mathbf{1 0}^{\mathbf{7}}$ in standard form.

Evaluate each expression. Express the results in both scientific notation and standard form.

1. $\left(1.3 \times 10^{-6}\right)\left(5.2 \times 10^{8}\right)$
2. $\frac{2.04 \times 10^{9}}{1.2 \times 10^{13}}$

Helping You Remember

A good way to remember a mathematical concept is to explain it to someone else. How would you tell a friend to write the decimal 0.00000012 using scientific notation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7-4 Polynomials

What You'll Learn

Skim Lesson 7-4. Predict two things that you expect to learn based on the headings and figures in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the correct term next to each

 definition.
—a monomial or the sum or difference of monomials, each

 called a term\longrightarrow the coefficient of the first term of a polynomial when written in standard form
\longrightarrow the sum of the exponents of all the variables of a monomial
\qquad the sum or difference of three monomials
\qquad the form of a polynomial that is written with the terms in order from greatest degree to least degree
\qquad the sum or difference of two monomials
\qquad the greatest degree of any term in a polynomial
\qquad
\qquad

Details

Degree of a Polynomial pp. 424-425

Polynomials in Standard Form

pp. 425-426

Complete the table below for each monomial, binomial, or trinomial.

Expression	Number of Terms	Monomial, Binomial, or Trinomial?
$32 x^{2} y$		
$4 x+2 y-6$		
$9 x^{2}-81 y^{2}$		
-7		
$8 y+3$		

Write each polynomial in standard form. Identify the leading coefficient.

1. $y^{2}+32-y+4 y^{3}$
2. $32-x^{4}+10 x^{2}$
3. $5 z+7 z^{2}+6$
4. $12 a^{2}-15-8 a+9 a^{6}$

Helping You Remember

Use a dictionary to find the meaning of the terms ascending and descending. Write their meanings and then describe a situation in your everyday life that relates to them.
\qquad
\qquad
\qquad

7-5 Adding and Subtracting Polynomials

What You'll Learn
 Scan the text in Lesson 7-5. Write two facts you learned about adding and subtracting polynomials as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

[^1]polynomial A polynomial is a monomial or the sum or difference of monomials, each called a \qquad of the polynomial.
constant A constant is a \qquad that is a real number.
binomial A binomial is the sum or \qquad of two monomials.
leading coefficient - The leading coefficient of a polynomial is the coefficient of the
first term when written in \qquad .
monomial A monomial is a \qquad , a variable, or the
\qquad of a number and one or more variables with nonnegative integer exponents.
\qquad
\qquad

Lesson 7-5 (continued)

Main Idea

Details

Add Polynomials
p. 433

Find each sum.

1. $\left(3 x^{2}+8\right)+\left(4 x^{2}-6 x\right)$
2. $\left(-x^{3}+5 x\right)+\left(2 x^{3}+10 x\right)$
3. $\left(4 x^{2}-x+2\right)+\left(x^{2}-3 x-8\right)$ \qquad
4. $\left(3 x^{4}+2 x^{2}+1\right)+\left(x^{3}-5 x-4\right)$ \qquad

Compare and contrast the processes of adding and subtracting polynomials by listing any similarities and differences.

Adding and Subtracting Polynomials

Helping You Remember

A good way to gain a greater understanding of a mathematical process is to relate it to previously learned processes. Describe how adding and subtracting polynomials vertically is like adding and subtracting decimals vertically.
\qquad
\qquad

7-6 Multiplying a Polynomial by a Monomial

What You'll Learn

Active Vocabulary

Scan Lesson 7-6. List two headings you would use to make an outline of the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Label the diagram with the correct terms. (Lesson 7-4)
leading coefficient
degree
order of magnitude
trinomial
for a given quantity, the number rounded to the nearest power of 10
degree of a monomial
binomial
Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 7-2 and 7-4)
the sum or difference of two monomials
the sum of the exponents of all the variables of a monomial the sum or difference of three monomials
\qquad
\qquad
Lesson 7-6 (continued)

Main Idea

Details

Polynomial Multiplied by Monomial
pp. 439-440

Follow the steps below to find $-2 x^{2}\left(5 x^{2}-3 x+1\right)$.

Solve Equations with Polynomial Expressions p. 441

Solve the equation below for m. Show your work.

$$
m(m-4)-m(m+2)=-4 m-10
$$

\qquad

Helping You Remember
 Use the equation $2 x(x-5)+3 x(x+3)=$

 $5 x(x+7)-9$ to show how you would explain the process of solving equations with polynomial expressions to another algebra student.\qquad
\qquad

7-7 Multiplying Polynomials

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the definition next to each term. (Lessons 7-1 and 7-2)

order of magnitude

\qquad
constant \qquad

New Vocabulary Fill in each blank with the correct term or phrase.

FOIL method To multiply two binomials using the FOIL method, find the sum of the products of \boldsymbol{F} the \qquad , \boldsymbol{O} the outer terms, \boldsymbol{I} the inner terms, and \boldsymbol{L} the \qquad .
quadratic expression \quad A quadratic expression is an expression in one \qquad with a degree of 2 .
\qquad
\qquad

Lesson 7-7 (continued)

Main Idea

Multiply Binomials

pp. 447-449

\qquad
\qquad

7-8 Special Products

Scan the text in Lesson 7-8. Write two facts you learned about special products as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 7-1, 7-3, 7-4, and 7-7)
an expression in one variable with a degree of 2
monomial quadratic expression polynomial scientific notation位

号
a number, a variable, or the product of a number and one or more variables with nonnegative integer exponents

Review Vocabulary Label the diagram with the correct terms.
first
outer
inner
last
a form of a number that is written as $a \times 10^{n}$, where $1 \leq a<10$ and n is an integer
(Lesson 7-7)

\qquad
\qquad

Main Idea

Squares of Sums and Differences pp. 453-454

Product of a Sum and a Difference p. 455

Details

Complete the tables to illustrate two special products.

Square of a Sum	
Words	The square of $a+b$ is
Symbols	$(a+b)^{2}=a^{2}+2 a b+b^{2}$
Example	$(n+5)^{2}=n^{2}+10 n+25$

Square of a Difference

Words | The square of $a-b$ is |
| :--- |

Symbols $\quad(a-b)^{2}=a^{2}-2 a b+b^{2}$

Example $(h-7)^{2}=h^{2}-14 n+49$

Find the product $(p-2)(p+2)$. Show your work.
\square

Helping You Remember

Explain how the FOIL method can help you remember how many terms are in the special products studied in this lesson.
\qquad
\qquad
\qquad
\qquad
\qquad

CHAPTER
 7 Polynomials

The It Together

Fill in the graphic organizer with details from the chapter.

Laws of Exponents/Powers

Law	Notation	Verbal Description	Example
Product of Powers			
Power of Powers			
Power of a Product			
Quotient of Powers			
Power of a Quotient Negative Zero Exponent Property			

\qquad
\qquad

CHAPTER
 7
 Polynomials

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

\section*{| Systems of Linear Equations and Inequalities | After You Read |
| :--- | :--- | :--- |}

- To multiply exponents with the same base, find the product of the base and the exponents.
- A simplified expression is without fractions, duplicate bases, and powers of powers.
- A base with a negative exponent is written with a positive exponent when it is a denominator.
- To subtract polynomials, subtract like terms.
- To multiply polynomials, use the Commutative Property.

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 7 Study Guide and Review in the textbook.
\square I took the Chapter 7 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Use flash cards to study for tests by writing the concept on one side of the card and its definition on the other.
\qquad
\qquad

Factoring and Quadratic Equations

Before You Read

Before you read the chapter, think about what you know about factoring and quadratic equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDA ${ }^{\prime}$ BLE Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, always write clear and concise notes so they can be easily read when studying for a quiz or exam.
- A visual study guide like the Foldable shown above helps you organize what you know and remember what you have learned.
You can use them to review main ideas or keywords.
\qquad
\qquad

chertir
 Factoring and Quadratic Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on monomials and factoring, one fact might be that the product of the common prime factors is called their greatest common factor. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Monomials and Factoring	
8-2 Using the Distributive Property	
8-3 Quadratic Equations: $x^{2}+b x+c=0$	
8-4 Quadratic Equations: $a x^{2}+b x+c=0$	
8-5 Quadratic Equations: Differences of	
Squares	

\qquad
\qquad

8-1 Monomials and Factoring

What You'll Learn \quad Skim the lesson. Write two things you already know about monomials and factoring.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

factored form
greatest common factor (GCF)

New Vocabulary Fill in each blank with the correct term or phrase.

A monomial is in factored form when it is expressed as the
\qquad of prime numbers and \qquad —, and no variable has an exponent greater than 1.

Two or more whole numbers may have some \qquad prime factors. The greatest common factor (GCF) is the greatest \qquad that is a factor of both original numbers.

Vocabulary Link You have likely learned how to find the greatest common factor of two whole numbers before. Describe how finding the greatest common factor of two monomials is similar.
\qquad
\qquad

Lesson 8-1 (continued)

Main Idea

Details

Factor Monomials

p. 471

Factor each monomial completely.

1. $-8 x^{3} y$
2. $15 c^{2} d^{2}$
3. $36 k p^{4}$ \qquad
4. $-9 x^{2} y z^{2}$ \qquad
\qquad
\qquad
5. $20 r^{3} s^{2}$

Write each monomial as a product of its prime factors. Circle any common factors to find the GCF.
$14 m^{3} n^{2} q=$
$21 m^{2} n q^{3}=$

GCF: \qquad

Helping You Remember

How can the two words that make up the term prime factorization help you remember what the term means?
\qquad
\qquad
\qquad
\qquad
\qquad

8-2 Using the Distributive Property

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
 factoring
 \qquad

\qquad
factoring by grouping

Zero Product Property
\qquad
\qquad

Main Idea

Use the Distributive Property to Factor pp. 476-477

Details

Complete the following table illustrating when a polynomial can be factored by grouping.

Factoring by Grouping

Words A polynomial can be factored by grouping only if all of the following conditions exist.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Symbols

Solve Equations by Factoring

pp. 478-479
Solve the following equation by factoring.
$4 x^{2}+20 x=0$
$(\quad)(\quad)=0$
\qquad $=0$ or \qquad $=0$
$x=$ \qquad or $x=$ \qquad

Helping You Remember

A good way to remember a mathematical concept is to explain it to somebody else. How would you help a classmate understand when it is possible to use the Zero Product Property to solve an equation? Give an example of an equation that can be solved using the Zero Product Property.
\qquad
\qquad
\qquad
\qquad

8-3 Quadratic Equations: $x^{2}+b x+c=0$

What You'll Learn

Skim Lesson 8-3. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary
 Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 8-1 and 8-2)
 factored form a process that involves finding the completely factored form of a polynomial

factoring the largest number that is a factor of two numbers
greatest common factor (GCF)
a monomial that is expressed as the product of prime numbers and variables, where no variable has an exponent greater than 1

New Vocabulary Write the correct term next to the definition. a type of equation that can be written in the standard form $a x^{2}+b x+c=0$, where $a \neq 0$
\qquad
\qquad

Lesson 8-3 (continued)

Main Idea

Factor $\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$
pp. 485-487

Details

Factor $x^{2}+10 x+16$ by making an organized list of the factors of 16.

Factors of 16	Sum of factors
$x^{2}+10 x+16=(\square)(\square)$	

Solve the quadratic equation $x^{2}-6 x-40=0$ by factoring.
$(\quad)(\quad)=0$
\qquad
$x=$ \qquad or $x=$ \qquad x

Factoring
p. 488

Helping You Remember

If you are using the pattern $(x+m)(x+n)$ to factor a trinomial of the form $x^{2}+b x+c$, how can you use your knowledge of multiplying integers to help you remember whether m and n are positive or negative?
\qquad
\qquad
\qquad

8-4 Quadratic Equations: $a x^{2}+b x+c=0$

What You'll Learn Scan the text in Lesson 8-4. Write two facts you learned about quadratic equations of the form $a x^{2}+b x+c=0$ as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to the term.
\qquad
\qquad
\qquad

Vocabulary Link Recall the definition of a prime number. Describe how this definition relates to the definition of a prime polynomial.
\qquad
\qquad

Lesson 8-4 (continued)

Main Idea

Factor

$\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$
pp. 493-495

Solve Equations by Factoring
pp. 495-496

Details

Follow the steps below to factor the polynomial $2 x^{2}+9 x+10$.

Step 1 Apply the pattern of factoring by grouping to write the desired form.

$$
2 x^{2}+9 x+10=2 x^{2}+\ldots+\ldots+10
$$

Step 2 Find two numbers that have a product of 2×10 or 20 and a sum of 9 .

Factors of twenty Sum of factors

Step 3 Use grouping to find the factors.
Check your answer.

$$
2 x^{2}+9 x+10=(\square)+(\square)
$$

Solve each equation. Check your solutions.

1. $2 x^{2}+5 x-3=0$
2. $3 x^{2}-10 x-8=0$

$$
x=
$$

$$
x=
$$

\qquad

Helping You Remember A good way to remember a mathematical

 procedure is to recite the steps of the procedure. What are the steps you would use to find the factors of a trinomial written in the form $a x^{2}+b x+c=0$?\qquad
\qquad
\qquad
\qquad

8-5 Quadratic Equations: Differences of Squares

What You'll LearnSkim the Examples for Lesson 8-5. Predict two things youthink you will learn about polynomials and quadraticequations that are differences of squares.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

New Vocabulary Circle each polynomial below that represents a difference of squares.

$$
\begin{array}{ll}
x^{2}-15 & 4 b^{2}-49 \\
3 x^{2}-81 & 100 n^{2}-1 \\
16 p^{2}-25 & 8 r^{2}-12 \\
256 t^{2}-16 & 25 h^{2}-4
\end{array}
$$

Vocabulary Link Describe how you can use the term difference of squares to recognize when a polynomial is of this form.
\qquad
\qquad
Lesson 8-5 (continued)

Main Idea

Details

Factor Differences of Squares

pp. 499-500

Solve Equations by Factoring p. 501 table.

Solve $4 n^{2}-\mathbf{2 5}=\mathbf{0}$ for \boldsymbol{n}. Show your work.

Model the process of factoring a polynomial that is a difference of squares by completing the following

Difference of Squares	
Symbols	$a^{2}-b^{2}=(\square)(\square)$
Examples	$x^{2}-16=(\square)(\square)(\square)$
	$4 y^{2}-1=(\square)$
	$25-9 g^{2}=(\square)$

Helping You Remember

A good way to remember a new mathematical concept is to explain it to a friend. Suppose a classmate is having difficulty remembering how to factor a difference of squares. How would you explain this concept to her?
\qquad

8-6 Quadratic Equations: Perfect Squares

What You'll Learn \quad Scan Lesson 8-6. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary \int Review Vocabulary Write the correct term next to each definition. (Lessons 8-1, 8-2, 8-3, and 8-4)
\qquad numbers and variables, and no variable has an exponent greater than 1
\longrightarrow a process that involves writing a polynomial as the product of its factors
a type of equation that can be written in the standard form $a x^{2}+b x+c=0$, where $a \neq 0$
a polynomial that cannot be written as a product of two polynomials with integral coefficients

New Vocabulary Fill in the blank with the correct term or phrase.
perfect square trinomials

Perfect square trinomials are trinomials that are the squares of \qquad
\qquad
\qquad

Factor Perfect Square Trinomials
pp. 505-507

Model the process of factoring a polynomial that is a perfect square trinomial by completing the table.

Factoring Perfect Square Trinomials	
Symbols	$a^{2}+2 a b+b^{2}=(\square)^{2}$
	$a^{2}-2 a b+b^{2}=(\square)^{2}$
Examples	$x^{2}+8 x+16=(\square)^{2}$
	$b^{2}-10 b+25=(\square$

Use the Square Root Property to solve the equation $(x+3)^{2}=100$. Check your solutions.

Solve Equations with Perfect Squares
pp. 507-509
\square

Helping You Remember

Sometimes it is easier to remember a set of instructions if you can state them in a short sentence or phrase. Summarize the conditions that must be met in order for a trinomial to be factored as a perfect square trinomial.
\qquad
\qquad
\qquad
\qquad

Factoring and Quadratic Equations

Tre It Together

Fill in the graphic organizer. Use examples from the chapter to add details if space permits.

\qquad

curver
 8 Factoring and Quadratic Equations

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 8 Study Guide and Review in the textbook.
\square I took the Chapter 8 Practice Test in the textbook.
\square I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- To answer a multiple-choice question, read all of the answer choices first. Cross out any choices that you know are not correct, and look for hints in other parts of the test for clues to the answer. Don't change the answer you decide upon unless you know it is not correct.
\qquad
\qquad
\qquad

CHAPTER
 \square
 Quadratic and Exponential Functions

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Quadratic and Exponential Functions
	- The graph of a quadratic function is a parabola.
- When $a<0$ in a quadratic function, the parabola opens up and has a minimum value.	
	- The graph of $f(-x)$ flips the graph $f(x)=x^{2}$ across the x-axis.
	- Factoring, using square roots, graphing, and the quadratic formula are methods to solve quadratic functions.
	- In an exponential function, the base is a variable and the exponent is a constant.

TOLDABLES Study Organizer
 Construct the Foldable as directed at the beginning of this

 chapter.
\int Note Taking Tips

- When you take notes, draw a visual (graph, diagram, picture, chart) that presents the information introduced in the lesson in a concise, easy-to-study format.
- In addition to writing important definitions in your notes, be sure to include your own examples of the concepts presented.
\qquad
\qquad
\qquad

curviter
 9 Quadratic and Exponential Functions

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on transformations of quadratic functions, one fact might be that a transformation changes the position or size of a figure. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
9-1 Graphing Quadratic Functions	
9-2 Solving Quadratic Equations by Graphing	
9-3 Transformations of Quadratic Functions	
9-4 Solving Quadratic Equations by Completing the Square	
9-5 Solving Quadratic Equations by Using the Quadratic Formula	
9-6 Exponential Functions	
9-7 Growth and Decay	
9-8 Geometric Sequences as Exponential Functions	
9-9 Analyzing Functions with Successive Differences and Ratios	

\qquad
\qquad

9-1 Graphing Quadratic Functions

What You'll Learn

2.

Skim Lesson 9-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

New Vocabulary Write the correct term next to each definition.
\qquad
a function with a graph that is not a straight line
\qquad - a nonlinear function that can be written in the form $f(x)=a x^{2}+b x+c$, where $a \neq 0$
\qquad - the form of a quadratic function when it is written as $f(x)=a x^{2}+b x+c$
\qquad
\qquad - the central line about which a parabola is symmetric
\qquad - the point of intersection between a parabola and its axis of symmetry
the lowest point on a parabola
\qquad - the highest point on a parabola
\qquad
\qquad
Lesson 9-1 (continued)

Characteristics of Quadratic Functions
pp. 525-528

Graph Quadratic Functions

pp. 528-530

Details

Fill in the boxes with the correct terms.

Graph the quadratic function $f(x)=x^{2}+3 x+2$ on the coordinate grid below.

Helping You Remember
 Look up the word vertex in a dictionary. You will

 find that it comes from the Latin word vertere, which means to turn. How can you use the idea of "to turn" to remember the vertex of a parabola?\qquad

9-2 Solving Quadratic Equations by Graphing

What You'll Learn
 Scan Lesson 9-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Match each term with its definition by drawing a line to connect the two. (Lesson 9-1)
minimum
parabola axis of symmetry vertex
nonlinear function
double root
the shape of the graph of a quadratic function
the central line about which a parabola is symmetric
a function with a graph that is not a straight line
the point of intersection between a parabola and its axis of symmetry
the lowest point on a parabola

New Vocabulary Write the definition next to the term.
\qquad
\qquad
Lesson 9-2 (continued)

Main Idea

Solve by Graphing

 pp. 537-538
Estimate Solutions

p. 539

Details

Complete the following table illustrating the number and nature of the solutions of a quadratic equation.

Solutions of Quadratic Equations	
Number of real solutions	Relationship with the \boldsymbol{x}-axis
0	
1	
2	

Solve the quadratic equation below by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.
$x^{2}+3 x-2=0$

$x=$ \qquad
\qquad
\qquad

9-3 Transformations of Quadratic Functions

What You'll Learin Skim the lesson. Write two things you already know about transformations of quadratic functions.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.

dilation A dilation makes the graph narrower or wider than the \qquad .
reflection A reflection flips a figure over a \qquad .
transformation A transformation changes the \qquad or
\qquad of a figure.
translation A translation moves a figure _ , down, or
\qquad
\qquad
Lesson 9-3 (continued)

Main Idea

Translations

p. 544

Details

Describe how the graph of each function is related to the graph of $f(x)=x^{2}$.

1. $f(x)=x^{2}-6$
2. $f(x)=x^{2}+\frac{1}{2}$
\qquad
\qquad
\qquad
\qquad
Complete the table below by naming and describing each transformation of $f(x)$.

Dilations a	Reflections
Transformation:	Transformation:

Helping You Remember

A good way to remember mathematical terms is to relate them to a term you already know. Translations are often called slides, and reflections are often called flips. Explain how these terms accurately describe the corresponding transformations of parabolas.
\qquad
\qquad

9-4 Solving Quadratic Equations by Completing the Square

What You'll Learn

Scan the text in Lesson 9-4. Write two facts you learned about solving quadratic equations by completing the square as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

dilation
translation

Review Vocabulary Label each diagram with the correct term to describe the transformation. (Lesson 9-3)

New Vocabulary Fill in the blank with the correct term or phrase.

Any quadratic expression in the form $x^{2}+b x$ can be made into a \qquad trinomial by using a method called completing the square.
\qquad
\qquad
Lesson 9-4 (continued)

Main Idea

Complete the Square pp. 552-553

Solve Equations by Completing the Square pp. 553-554

Details

Complete the following table to show the steps that you must follow to complete the square.

Completing the Square	
Words	To complete the square for any quadratic expression of the form $x^{2}+b x$, follow the steps below. Step 1 Step 2 Step 3 Symbols $x^{2}+b x+$

Solve $x^{2}+6 x=27$ by completing the square. Show your work.
\square

Helping You Remember How is completing the square related to the

 method you use to determine whether a trinomial is a perfect square trinomial?\qquad
\qquad
\qquad

9-5 Solving Quadratic Equations by Using the Quadratic Formula

What You'll Learn
 Skim the Examples for Lesson 9-5. Predict two things you think you will learn about solving quadratic equations by using the quadratic formula.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lesson 9-1)
\qquad -
the shape of the graph of a quadratic function
\qquad - the central line about which a parabola is symmetric
\qquad -
the highest point on a parabola

New Vocabulary Write the correct term next to each definition.
\qquad - the formula that gives the solutions to the general quadratic equation, $a x^{2}+b x+c=0$, as $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
\qquad the expression under the radical sign in the quadratic formula, $b^{2}-4 a c$
\qquad
\qquad
Lesson 9-5 (continued)

Main Idea

Quadratic Formula pp. 558-561

Details

Solve the equation $x^{2}+5 x+3=0$ by using the Quadratic Formula. Determine the exact solutions. Show your work.

Complete the following table to show the relationship between the discriminant of a quadratic equation and its solutions and graph.

The Discriminant		
Value	Number of real solutions	Relationship between graph and the \boldsymbol{x}-axis
$b^{2}-4 a c>0$		
$b^{2}-4 a c=0$		
$b^{2}-4 a c<0$		

Helping You Remember

To help remember the methods for solving a quadratic equation, explain how you would choose the best method for solving a form of the quadratic equation $a x^{2}+b x+c=0$.
\qquad
\qquad

9-6 Exponential Functions

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

reflection
the point of intersection between a parabola and its axis of symmetry
double root a transformation that moves a figure up, down, or diagonally translation
two zeroes of a quadratic equation that are the same number
vertex a transformation that flips a figure over a line

New Vocabulary Write the definition next to the term.
\qquad
\qquad
Lesson 9-6 (continued)

Main Idea

Graph Exponential

 Functionspp. 567-569

Identify Exponential Behavior
p. 569

Details

Complete the following table of function values and use it to help you graph the exponential function $y=2^{x}$.

\boldsymbol{x}	$\mathbf{2}^{\boldsymbol{x}}$	\boldsymbol{y}

Determine whether the set of data shown below displays exponential behavior. Write yes or no. Explain why or why not.

\boldsymbol{x}	0	2	4	6	8	10
\boldsymbol{y}	128	64	32	16	8	4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9-7 Growth and Decay

What You'll Learn Skim the Examples for Lesson 9-7. Predict two things you think you will learn about growth and decay.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.

compound interest \downarrow Compound interest is interest \qquad or
\qquad on both the initial investment and previously \qquad interest.
exponential decay In exponential decay, the original \qquad
decreases by the same \qquad over a period of time.
exponential growth In exponential growth, the original amount \qquad
by the same percent over a period of time.

Vocabulary Link Think of some real-world examples that involve exponential growth and decay.
\qquad
\qquad

Lesson 9-7 (continued)

Main Idea

Exponential Growth

 pp. 573-574
Exponential Decay

p. 574

Details

Label each of the parts of the general equation for exponential growth shown below. Use the terms initial amount, final amount, time, and growth rate.

Suppose a particular species of bird on an island is decreasing at an annual rate of 5.4%. The species originally had a population of 12,600 .
a. Write an equation to represent the decrease in population.
b. Estimate the number of birds on the island after 4 years.

Helping You Remember

A good way to help you remember a new concept is to explain it in your own words. The general equations for exponential growth and exponential decay are very similar. Explain how you can determine if an equation represents exponential growth or exponential decay.
\qquad
\qquad
\qquad

9-8 Geometric Sequences as Exponential Functions

What You'll Learn
 Skim the lesson. Write two things you already know about geometric sequences as exponential functions.

1. \qquad
\qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary \quad New Vocabulary Write the definition next to each term. common ratio $>$ \qquad
geometric sequence
\qquad
\qquad
Lesson 9-8 (continued)

Details

Recognize Geometric

 Sequencespp. 580-581

Geometric Sequences and Functions
pp. 581-582

Determine whether each sequence is arithmetic, geometric, or neither. Explain.

1. $12,9,6,3,0, \ldots$
\qquad
\qquad
2. $3,-6,12,-24,48, \ldots$
\qquad
\qquad

What is the 12 th term of the geometric sequence 6,12 , 24, 48,...?

\qquad
\qquad

9-9 Analyzing Functions with Successive Differences and Ratios

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Write the correct term next to each definition. (Lessons 9-1, 9-3, 9-4, 9-5, 9-6, and 9-8)
\qquad - a function with a graph that is not a straight line
\qquad

- the form of a quadratic function when it is written as $f(x)=a x^{2}+b x+c$
\qquad - a transformation that makes a function wider or narrower than the parent function
the expression under the radical sign in the quadratic formula, $b^{2}-4 a c$
a function of the form $y=a b^{x}$, where $a \neq 0, b>0$, and $b \neq 1$
\qquad - the ratio of two consecutive terms in a geometric sequence
\qquad
\qquad
Lesson 9-9 (continued)

Main Idea

Identify Functions

pp. 586-587

Details

Complete the table below by writing the general form of each function and sketching a sample graph.

Linear, Quadratic, and Exponential Functions											
	Linear Function			Quadratic Function				Exponential Function			
$y=m x+b$				$y=a x^{2}+b x+c$				$y=a b^{x}$			
	$\left.\right\|^{14}$	${ }^{4}$	\square		$\square^{y 4}$	${ }^{14}$			$\square y^{14}$	${ }^{14}$	
-											
-	o		\vec{x}			0	\vec{x}		0	0	\vec{x}
		\downarrow	\square			\downarrow	\square			\downarrow	\square

Write Equations
pp. 587-588

Determine which model best describes the data in the table. Then write an equation for the function that models the data.

\boldsymbol{x}	-5	-4	-3	-2	-1
\boldsymbol{y}	160	80	40	20	10

\qquad DATE \qquad PERIOD \qquad

CHAPTER
 9
 Quadratic and Exponential Functions

Tie It Together

Fill in each graphic organizer paying attention to the depicted relationships between the organizers. Add details for each organizer.

Quadratic Equations - Solution Methods					
Method	Graphing	Factoring	Square Root Property	Completing the Square	Quadratic Formula
Description					
\downarrow					
Graphing a Quadratic			Possible Discriminant Values and Solution Details		
$\xrightarrow{\square}$					
Vertex	Axis of Symmetry	Shape			
Using Equations to Model Data . . . Given a Table of Values					
\downarrow 吅					
Linear Data		Quadratic Data		Exponential Data	
Form:		Form:		Form:	
Detecting:		Detecting:		Detecting:	

\qquad
\qquad
\qquad

cmpor

 Quadratic and Exponential Functions

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Quadratic and Exponential Functions

After You Read

- The graph of a quadratic function is a parabola.
- When $a<0$ in a quadratic function, the parabola opens up and has a minimum value.
- The graph of $f(-x)$ flips the graph $f(x)=x^{2}$ across the x-axis.
- Factoring, using square roots, graphing, and the quadratic formula are methods to solve quadratic functions.
- In an exponential function, the base is a variable and the exponent is a constant.

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 9 Study Guide and Review in the textbook.
\square I took the Chapter 9 Practice Test in the textbook.
\square I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.
\qquad
\qquad

Radical Functions and Geometry

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Radical Functions and Geometry			
	- The graph of a square root function includes both positive and negative values.			
	- tan $A=\frac{\text { opposite }}{\text { adjacent }}$	$	$	- The product of two conjugates is a
:---				
rational number.				

FOLDABLES Study Organizer
 Construct the Foldable as directed at the beginning of this

 chapter.Note Taking Tips

- Take notes in such a manner that someone who did not understand the topic will understand after reading what you have written.
- When you take notes, write a summary of the lesson, or write in your own words what the lesson was about.
\qquad
\qquad
\qquad

CHAPTER
 Radical Functions and Geometry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on the Pythagorean Theorem, one fact might be that in a right triangle, the side opposite the right angle is the hypotenuse. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
10-1 Square Root Functions	
10-2 Simplifying Radical Expressions	
10-3 Operations with Radical Expressions	
$10-4$ Radical Equations	
$10-5$ The Pythagorean Theorem	
$10-6$ The Distance and Midpoint Formulas	
10 Similar Triangles	

\qquad
\qquad

10-1 Square Root Functions

What You'll Learn

Skim the lesson. Write two things you already know about square root functions.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

radicand
radical function
square root function
radicand
radical function
square root function
radicand
radical function
square root function

New Vocabulary Match the term with its definition by drawing a line to connect the two. a function that contains a variable under a radical sign a function that contains the square root of a variable the expression under the radical sign

Vocabulary Link Recall that the square root of a negative number is not defined to be a real number. Explain what effect this has on the domain of a square root function.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Dilations of Radical Functions
p. 605

Graph $f(x)=\frac{1}{2} \sqrt{x}$. State the domain and range.

\boldsymbol{x}	0	1	4	9	16
$\boldsymbol{f}(\boldsymbol{x})$					

The velocity of an object dropped from a height of \boldsymbol{h} meters is given by the function $v=\sqrt{2 g h}$, where g is the constant, 9.8 meters per second squared. What is the velocity of an object when it hits the ground if it is dropped from a height of 100 meters? Show your work and round your answer to the nearest tenth.
$v \approx$ \qquad m / s

Helping You Remember

Suppose a classmate is having difficulty remembering how to graph a square root function. What advice would you give him about how to select suitable domain values?
\qquad
\qquad
pp. 606-607

Reflections and Translations of Radical Functions

\qquad
\qquad

10-2 Simplifying Radical Expressions

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to the term. (Lesson 10-1) radicand \qquad
\qquad

New Vocabulary Fill in each blank with the correct term or phrase.
conjugate Binomials of the form $a \sqrt{b}+c \sqrt{d}$ and \qquad are called conjugates.
$\begin{aligned} & \text { radical expression } \downarrow \text { A radical expression contains a } \\ & \text { as a square root. }\end{aligned}$
rationalizing the denominator

Rationalizing the denominator of a fraction with a radical eliminates all \qquad from the \qquad
\qquad
\qquad

Product Property of Square Roots
pp. 612-613

Complete the following table to illustrate the Product Property of Square Roots.

Product Property of Square Roots	
Words	For any nonnegative real numbers a and b, the square roots of $a b$ is equal
Symbols	$\sqrt{a b}=$
Symbols	$\sqrt{16 \cdot 25}=$

Simplify the expression $\frac{2}{4+\sqrt{5}}$. Show your work.
\square

Quotient Property of Square Roots
pp. 613-614
\qquad
\qquad

10-3 Operations with Radical Expressions

What You'll Learn
 Skim the Examples for Lesson 10-3. Predict two things you think you will learn about operations with radical expressions.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary \quad Review Vocabulary Write the correct term next to each definition. (Lessons 10-1 and 10-2)
\qquad a function that contains the square root of a variable
\qquad an expression that contains a radical, such as a square root
\qquad the expression under the radical sign
\qquad - binomials of the form $a \sqrt{b}+c \sqrt{d}$ and $a \sqrt{b}-c \sqrt{d}$
\qquad - a function that contains a variable under a radical sign
\qquad - a process that eliminates all radicals from the denominator of a fraction
\qquad
\qquad

Lesson 10-3 (continued)

Main Idea

Details

Add or Subtract Radical Expressions
pp. 619-620

Simplify each expression in the table illustrating how adding and subtracting radical expressions is similar to adding and subtracting monomials.

Monomials	Radical Expressions
$6 b+3 b=$	$6 \sqrt{2}+3 \sqrt{2}=$
$12 m-5 m=$	$12 \sqrt{3}-5 \sqrt{3}$

Simplify each expression. Show your work.

Multiply Radical Expressions
pp. 620-621

1. $6 \sqrt{5}(2 \sqrt{5})$
2. $2 \sqrt{3}(6 \sqrt{7}-\sqrt{7})$

Helping You Remember

How can you use what you know about adding and subtracting monomials to help you remember how to add and subtract radical expressions?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10-4 Radical Equations

What You'll Learn Scan Lesson 10-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Fill in each blank with the correct term or phrase.

radical equations \quad Equations that contain variables in the \qquad like $h=1.34 \sqrt{\ell}$, are called radical equations.

Squaring each side of an equation sometimes produces a
\qquad that is not a solution of the original \ldots. These are called extraneous solutions.

Vocabulary Link Look up the definition of extraneous in a dictionary. Describe how this definition applies to the concept of extraneous solutions.
\qquad
\qquad
\qquad
\qquad

Lesson 10-4 (continued)

Radical Equations

pp. 624-625

Extraneous Solutions
 p. 625

Details

Solve the equation $\sqrt{n+4}+2=5$. Show your work.
\square
Follow the steps below to solve the equation $x=\sqrt{x+3}-1$. Check your solutions.

Step 1: Isolate the radical on one side.

Step 2: Square each side to eliminiate the radical.

Step 3: Solve. Check for extraneous solutions.
solution(s): \qquad extraneous solution(s): \qquad

Helping You Remember

Acronyms can be a useful tool for remembering the steps in a mathematical process. For example, the acronym FOIL reminds you to multiply the First, Outer, Inner, and Last terms when multiplying two binomials. How can you use the letters ISC to remember the three steps in solving a radical equation?
\qquad
\qquad

10-5 The Pythagorean Theorem

What You'll Learn
 Skim Lesson 10-5. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

radical function

radical equation
hypotenuse

Review Vocabulary Write the definition next to each term. (Lessons 10-1 and 10-4)
\qquad
\qquad
\qquad
\qquad

New Vocabulary Match the term with its definition by drawing a line to connect the two.
converse the two shorter sides of a right triangle
the result when the hypothesis and conclusion of an if-then statement are exchanged
legs a group of three whole numbers that satisfy the equation $c^{2}=a^{2}+b^{2}$, where c is the greatest number

Pythagorean Triple the side opposite the right angle in a right triangle
\qquad
\qquad

Details

The Pythagorean Theorem
pp. 630-631

Right Triangles p. 631

Label the sides of the right triangle shown using the terms leg and hypotenuse. Then write an equation to demonstrate the Pythagorean Theorem.

Circle the sets of numbers below that represent Pythagorean triples.

1. $5,12,13$
2. $18,24,30$
3. $16,32,34$
4. $30,40,50$
5. $9,40,41$
6. $8,12,20$

Helping You Remember

Think of a word or phrase that you can associate with the Pythagorean Theorem to help you remember the equation $c^{2}=a^{2}+b^{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad

10-6 The Distance and Midpoint Formulas

What You'll Learn Scan the text in Lesson 10-6. Write two facts you learned about the distance and midpoint formulas as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.

Distance Formula \qquad
\qquad
midpoint \qquad

Vocabulary Link Think of how the word distance is used in everyday life. How does this compare to the concept of distance on the coordinate plane?
\qquad
\qquad

Lesson 10-6 (continued)

Distance Formula

pp. 636-637

Details

Complete the following steps to find the distance between points $A(2,9)$ and $B(-4,6)$.

$d=$	Distance Formula
$d=$	Substitute $A(2,9), B(-4,6)$.
$d=$	Simplify.
$d=$	Evaluate squares.
$d=\square$	Simplify.

Find the coordinates of the midpoint of segment CD.
p. 638

Heplig You Remember Sometimes it is easier to remember a formula if

 you can state it in words. How can you state the Distance Formula in easy-to-remember words?\qquad
\qquad
\qquad
\qquad
\qquad

10-7 Similar Triangles

What You'll Learn
 Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lessons 10-2, 10-5, and 10-6)
a formula that is used to find the distance between two points on the coordinate plane
\qquad an expression that contains a radical sign, such as a square root
the side opposite the right angle in a right triangle
the point is equidistant from both endpoints of a line segment

New Vocabulary Fill in each blank with the correct term or phrase.
similar triangles
Similar triangles have the same \qquad but not necessarily the same \qquad
\qquad
\qquad

Lesson 10-7 (continued)

Main Idea

Similar Triangles

pp. 642-643

Details

The triangles below are similar. Write a similarity statement and a proportion showing the relationships between the sides.

Solve for \boldsymbol{x} in the figure below.
pp. 643-644

Helping You Remember

A good way to remember a mathematical procedure is to relate it to another concept. How can you use the idea that the corresponding sides of similar triangles are proportional to help you remember how to find the unknown lengths of the sides of similar triangles?
\qquad
\qquad
\qquad
\qquad

10-8 Trigonometric Ratios

What You'll Learn
 Scan Lesson 10-8. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.

-	a function that has a rule given by a trigonometric ratio
	the measure of $\angle A$ if $\sin A$ is known
\checkmark	the study of triangle measurement
\checkmark	the measure of $\angle A$ if $\tan A$ is known
-	finding all unknown sides and angles of a right triangle
-	the ratio of the adjacent leg to the hypotenuse of a right triangle
-	the measure of $\angle A$ if $\cos A$ is known
\qquad	a ratio of the lengths of two sides of a right triangle
	the ratio of the opposite leg to the adjacent leg of a right triangle

the ratio of the adjacent leg to the hypotenuse of a right triangle
the measure of $\angle A$ if $\cos A$ is known triangle
\qquad
\qquad

Lesson 10-8 (continued)

Main Idea

Details

Trigonometric Ratios
pp. 649-650

Use Trigonometric Ratios
pp. 650-651

Complete the chart to show the trigonometric ratios for angles R and S.
$\sin R=$ \qquad
$\sin S=$ \qquad
$\cos R=$ \qquad
$\cos S=$ \qquad
$\tan R=$ \qquad
$\tan S=$ \qquad

Use a calculator to find the measure of $\angle M$ to the nearest tenth.

\qquad
\qquad
\qquad

Radical Functions and Geometry

Tie It Together

Fill in details in each the organizer.

\qquad

cunver
 10
 Radical Functions and Geometry

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Radical Functions and Geometry

After You Read

- The graph of a square root function includes both positive and negative values.
- $\tan A=\frac{\text { opposite }}{\text { adjacent }}$
- The product of two conjugates is a rational number.
- In a Pythagorean triplet, two or three numbers can be equal.
- The midpoint formula is derived from the Pythagorean Theorem.

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes,

 personal tutors, and practice tests to help you study for concepts in Chapter 10.
Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 10 Study Guide and Review in the textbook.I took the Chapter 10 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- To prepare to take lecture notes, make a column to the left about 2 inches wide. Use this column to write additional information from your text, place question marks, and to summarize information.
\qquad
\qquad

CHAPTER
 11
 Rational Functions and Equations

Before You Read

Before you read the chapter, think about what you know about rational functions and equations. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K K	
What I know...	W

FOLDA $]_{B}$ S Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

5 Note Taking Tips

- When taking notes, place a question mark next to anything you do not understand.
Then be sure to ask questions before any quizzes or tests.
- When you take notes in geometry, be sure to make comparisons among the different formulas and concepts.
For example, how are pyramids and cones similar? Different? This will help you learn the material.
\qquad
\qquad

cownit
 Rational Functions and Equations

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on rational functions, one fact might be that a line that the graph of a function approaches is called an asymptote. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Inverse Variation	
11-2 Rational Functions	
11-3 Simplifying Rational Expressions	
11-4 Multiplying and Dividing Rational Expressions	
11-5 Dividing Polynomials	
11-6 Adding and Subtracting Rational Expressions	
11-7 Mixed Expressions and Complex Fractions	
11-8 Rational Equations and Functions	

\qquad
\qquad

11-1 Inverse Variation

What You'll Learn
 Skim the Examples for Lesson 11-1. Predict two things you think you will learn about inverse variation.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
inverse variation
product rule - The equation \qquad is called the product rule for inverse variations.

Vocabulary Link Look up the word inverse in a dictionary. Explain how the definition applies to an inverse variation equation.
\qquad
\qquad

Lesson 11-1 (continued)

Main Idea

Details

Identify and Use Inverse Variations
pp. 670-672

Determine whether the data in the table represent an inverse or a direct variation. Explain.

\boldsymbol{x}	4	8	12	16
\boldsymbol{y}	36	18	12	9

\qquad

Graph Inverse

Variations
pp. 672-673

Sketch a sample direct and inverse variation on the coordinate grids below, and complete the table.

Helping You Remember

A good way to help you remember mathematical concepts is to state them in your own words. To remember how to set up a proportion to solve a problem involving inverse variation, write a sentence describing the form the proportion should have.
\qquad
\qquad

11-2 Rational Functions

What You'll Learn Skim the lesson. Write two things you already know about rational functions.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
```
Active Vocabulary
New Vocabulary Write the definition next to each term. asymptote
``` \(\qquad\)
\(\qquad\)

Vocabulary Link Explain why the term rational is used to describe a rational function.
\(\qquad\)
\(\qquad\)

\section*{Lesson 11-2 (continued)}

\section*{Main Idea}

\section*{Identify Excluded Values}
pp. 678-679

\section*{Details}

State the excluded value for each function.
1. \(y=\frac{7}{x+6}\)
2. \(y=\frac{-5}{4 x-20}\)
3. \(y=\frac{4}{3 x+21}\)
4. \(y=\frac{-1}{-2 x-8}\)

Identify and Use Asymptotes
pp. 679-680

The rational function \(y=\frac{1}{x-3}+2\) is graphed below. Identify the asymptotes.

\section*{Helping You Remember A good way to remember a mathematical concept} is to explain it to someone else. Suppose a classmate is having difficulty finding the excluded values of a rational function. How would you explain the process?
\(\qquad\)
\(\qquad\)

\section*{11-3 Simplifying Rational Expressions}

\section*{What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.}
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Active Vocabulary}

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 11-1 and 11-2)

\section*{rational function \\ a line that the graph of a rational function approaches, but} never crosses or touches
a relationship between \(x\) and \(y\) that can be represented by the equation \(y=\frac{k}{x}\) or \(x y=k\)
inverse variation a value that results in zero in the denominator of a rational function
excluded value a function that can be described by the equation \(y=\frac{p}{q}\), where \(p\) and \(q\) are polynomials and \(q \neq 0\)

New Vocabulary Write the correct term next to the definition.
an algebraic fraction whose numerator and denominator are polynomials, such as \(\frac{2 x-1}{x^{2}+5 x+9}\)
\(\qquad\)
\(\qquad\)

\section*{Lesson 11-3 (continued)}

Main Idea

\section*{Details}

\section*{Identify Excluded} Values
pp. 684-685

Simplify Expressions pp. 685-687

Follow the steps below to find the excluded values for the rational expression \(\frac{-12}{b^{2}-49}\).

Simplify the expression \(\frac{x^{2}+3 x-18}{x-3}\). State the excluded value(s).
\(\qquad\)
\(\qquad\)

\section*{11-4 Multiplying and Dividing Rational Expressions}

\section*{What You'll Learn}

Scan the text in Lesson 11-4. Write two facts you learned about multiplying and dividing rational expressions as you scanned the text.
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)

Active Vocabulary
Review Vocabulary Label the diagram with the correct terms.
asymptotes
rational function
(Lesson 11-2)

Review Vocabulary Write the definition next to the term.
(Lesson 11-1) variations)
\(\qquad\)
\(\qquad\)

\section*{Details}

Multiply Rational Expressions
pp. 692-693

\section*{Divide Rational} Expressions

Follow the steps below to simplify \(\frac{1}{n^{2}-25} \cdot \frac{n^{2}+7 n+10}{n+2}\).

Find the quotient \(\frac{6 x-12}{x^{2}} \div(x-2)\).
\(\qquad\)

\section*{11-5 Dividing Polynomials}

> What You'll Learn
> Skim Lesson 11-5. Predict two things that you expect to learn based on the headings and figures in the lesson.
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)

\section*{Active Vocabulary \\ Review Vocabulary Write the definition next to each term.} (Lessons 11-1, 11-2, and 11-3)
\(\qquad\)
\(\qquad\)
rational expression \(\qquad\)
\(\qquad\)
inverse variation \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Lesson 11-5 (continued)}

\section*{Main Idea}

\section*{Details}

Divide Polynomials by Monomials
p. 700

Find each quotient. Show your work.
1. \(\left(5 x^{2}-10 x\right) \div 5 x\)
2. \(\left(2 n^{2}-9 n+4\right) \div 2 n\)
3. \(\left(12 m^{2}+9 m\right) \div-3 m\)
4. \(\left(4 y^{2}+18 y-6\right) \div 6 y\)

Divide Polynomials by Binomials
pp. 701-702

Find \(\left(h^{2}+6 h-40\right) \div(h-4)\) by using long division. Show your work.
\(\square\)

\section*{Helping You Remember}

There are several methods you can use to divide polynomials by binomials. If you want to remember one method that you can always use to divide a polynomial by a binomial, which method should you select? Explain.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{11-6 Adding and Subtracting Rational Expressions}

\section*{What You'll Learn}

Scan Lesson 11-6. List two headings you would use to make an outline of this lesson.
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)

\section*{Active Vocabulary Review Vocabulary Write the correct term next to each} definition. (Lessons 1-1, 11-2, and 11-3)
an algebraic fraction whose numerator and denominator are polynomials
 rational
\(\qquad\) multiplication
the result of a multiplication expression

New Vocabulary Fill in each blank with the correct term or phrase.
least common \(\quad\) To add or subtract fractions with unlike \(\qquad\) , denominator (LCD) you need to rename \(\qquad\) using the least common multiple of the denominators, called the least common denominator (LCD).
least common multiple (LCM)

The least common multiple (LCM) is the least \(\qquad\) that is a \(\qquad\) of two or more numbers or polynomials.
\(\qquad\)
\(\qquad\)

\section*{Lesson 11-6 (continued)}

\section*{Main Idea}

Add and Subtract Rational Expressions with Like Denominators pp. 706-707

Add and Subtract Rational Expressions with Unlike Denominators
pp. 707-710

Find each sum.
1. \(\frac{3 k}{k-2}+\frac{4}{k-2}\)
2. \(\frac{4 n}{2 n+5}+\frac{3 n}{2 n+5}\)

Complete the table below to illustrate the steps involved in subtracting rational expressions with unlike denominators.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{r}
Add or Subtract Rational Expressions \\
with Unlike Denominators
\end{tabular}} \\
\hline Step 1 & \\
\hline Step 2 & \\
\hline Step 3 & \\
\hline Step 4 & \\
\hline
\end{tabular}

\section*{Helping You Remember}

How can you use what you know about addition and subtraction of rational numbers that have like denominators to remember how to add and subtract rational expressions that have like denominators?
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{11-7 Mixed Expressions and Complex Fractions}

\section*{What You'll Learn \\ Scan the text in Lesson 11-7. Write two facts you learned about mixed expressions and complex fractions as you scanned the text.}
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)

Active Vocabulary New Vocabulary Label the expressions with the correct terms. Write mixed expression or complex fraction in each blank.
complex fraction mixed expression
\[
5-\frac{2}{x-1}
\]
\[
2+\frac{3}{x}-\frac{2}{x^{2}}
\]
\[
\frac{x-1}{2-\frac{5}{x+2}}
\]
\[
\frac{\frac{2 x^{2} y}{5 x y^{3}}}{\frac{3 x^{5} y^{3}}{4 x y}}
\]
\(\qquad\)
\(\qquad\)

\section*{Details}

\section*{Simplify Mixed Expressions}
```

p. 714

```

Write \(4+\frac{5}{x+3}\) as a rational expression. Show your work.

Simplify Complex Fractions
pp. 714-716
Follow the steps below to simplify \(\frac{\frac{c^{2} d^{3}}{b^{4}}}{\frac{c^{4} d^{2}}{b^{3}}}\).

\section*{Helping You Remember}

Describe an easy way to recognize a mixed expression.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{11-8 Rational Equations}

\section*{What You'll Learn Skim the Examples for Lesson 11-8. Predict two things you think you will learn about rational equations.}
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Active Vocabulary \\ New Vocabulary Fill in each blank with the correct term or phrase.}
extraneous solution - When a solution of a rational equation results in
\(\qquad\) in the \(\qquad\) , that solution must be excluded. Such solutions are called extraneous solutions.
rational equation A rational equation contains one or more rational
\(\qquad\) .
rate problem \(\quad\) Rational equations can be used to solve rate problems, such as problems involving \(\qquad\) .
work problem \(\quad\) You can use \(\qquad\) to solve work problems, or problems involving work rates.
\(\qquad\)
\(\qquad\)

\section*{Lesson 11-8 (continued)}

\section*{Main Idea}

\section*{Solve Rational} Equations
pp. 720-722

\section*{Details}

Solve the rational equation \(\frac{4}{x-3}=\frac{6}{x-2}\). Check the solution.

Raymond can mow a lawn in 45 minutes using a push mower. Alex can mow the same lawn in 20 minutes using a riding mower. How long would it take them to mow the lawn working together?

\section*{Helping You Remember}

A good way to remember an approach to a mathematical concept is to associate a word with it. Think of a word that can help you remember that multiplying by the LCD is one method you can use to solve a rational equation.
\(\qquad\) DATE \(\qquad\)
\(\qquad\)
11 Rational Functions and Equations

\section*{Tie It Together}

Fill in the graphic organizer. Add details if space permits.

\(\qquad\)

\section*{anvir \\ Rational Functions and Equations}

\section*{Before the Test}

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.
\begin{tabular}{|c|c|c|}
\hline K & W & L \\
What I know... & What I want to find out... & What I learned... \\
\hline & & \\
& & \\
\hline
\end{tabular}

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

\section*{Are You Ready for the Chapter Test?}

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 11 Study Guide and Review in the textbook.I took the Chapter 11 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.
- Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.
\(\qquad\)
\(\qquad\)

\section*{Statistics and Probability}

\section*{Before You Read}

Before you read the chapter, respond to these statements.
1. Write an \(\mathbf{A}\) if you agree with the statement.
2. Write a \(\mathbf{D}\) if you disagree with the statement.
\begin{tabular}{|c|c|}
\hline Before You Read & \multicolumn{1}{c|}{ Statistics and Probability } \\
\hline & - Unbiased surveys are random.
\end{tabular}\(\left|\begin{array}{l}\text { - The sum of the probabilities for all } \\
\text { values of } x \text { is } 1 .\end{array}\right|\)\begin{tabular}{l}
- A graph that shows a cluster of data \\
about the mean is an average \\
distribution.
\end{tabular}

\section*{FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this} chapter.

\section*{\(\int\) Note Taking Tips}
- When you take notes, it is often a good idea to use symbols to emphasize important concepts.
- When taking notes, make annotations.

Annotations are usually notes taken in the margins of books you own to organize the text for review or study.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{anupte 12 Statistics and Probability}

\section*{Key Points}

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on statistics and parameters, one fact might be that a parameter is a measure that describes a characteristic of a population. After completing the chapter, you can use this table to review for your chapter test.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Lesson } & Fact \\
\hline 12-1 Designing a Survey & \\
\hline 12-2 Analyzing Survey Results & \\
\hline \(12-3\) Statistics and Parameters & \\
\hline \(12-4\) Permutations and Combinations & \\
\hline \(12-5\) Probability of Compound Events & \\
\hline \(12-7\) Probability Simulations & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)

\section*{12-1 Designing a Survey}

\section*{What You'll Learn}
2.

Scan Lesson 12-1. List two headings you would use to make an outline of this lesson.
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Active Vocabulary}
\(\qquad\) a sample that favors one group over another
a method of data collection in which a process is implemented and responses are studied
a method of data collection in which a sample is observed for certain patterns or behaviors
the entire group about which conclusions are to be drawn
\(\qquad\)
\(\qquad\) a portion of a larger group
a sample that is equally likely to be chosen as any other sample from the population
a method of data collection in which responses are gathered from a sample of the population

Vocabulary Link Bias is a word that is used in everyday English. Find the definition of bias using a dictionary. Write how the definition of bias can help you remember the mathematical definition of biased sample.
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-1 (continued)}

\section*{Main Idea}

\section*{Details}

\section*{Design a Survey}
pp. 740-741

A supermarket manager is interested in finding out whether or not shoppers would like an exotic foods section. He distributes 500 questionnaires to people shopping in the store.
a. Identify the sample, and determine the population from which it was selected.
\(\qquad\)
\(\qquad\)
b. Classify the type of data collection used by the store manager.
\(\qquad\)

\section*{Sampling Techniques}
p. 742

Describe each random sampling technique shown in the table using your own words.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Random Samples } \\
\hline Type & Definition \\
\hline \begin{tabular}{l}
simple random \\
sample
\end{tabular} & \\
\hline \begin{tabular}{l}
stratified \\
random sample
\end{tabular} & \\
\hline \begin{tabular}{l}
systematic \\
random sample
\end{tabular} & \\
\hline
\end{tabular}

\section*{Helping You Remember}

To remember what a stratified random sample is, look up the word stratified in a dictionary. What everyday meaning do you find that seems closest to the mathematical meaning presented in this lesson?
\(\qquad\)
\(\qquad\)

\section*{12-2 Analyzing Survey Results}

\section*{What You'll Learn \\ Scan the text in Lesson 12-2. Write two facts you learned about analyzing survey results as you scanned the text.}
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Active Vocabulary}
measure of central tendency

New Vocabulary Fill in each blank with the correct term or phrase.

Data from a survey can be summarized according to three measures of central tendency: the \(\qquad\) the
\(\qquad\)
\(\qquad\)

Vocabulary Link Explain the meaning of central tendency in your own words. Describe how the mean, median, and mode can each be used to describe the central tendency of a data set.
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-2 (continued)}

Main Idea

Summarize Survey Results
p. 746

\section*{Details}

Find each measure of central tendency for the data set below. Show your work.
\(\{8,12,9,17,13,11,12,10,7\}\)
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ Measures of Central Tendency } \\
\hline mean & \\
\hline median & \\
\hline mode & \\
\hline
\end{tabular}

Evaluate Survey Results
pp. 747-749

A recreation commission wants to determine the most popular weekend activities. One Saturday, every 10th person at a local park is surveyed about their favorite weekend activities, and a conclusion is drawn. Evaluate the validity of the survey and conclusion.
Question: What is your favorite weekend activity?
Conclusion: Spending time at the park is the most popular weekend activity.
\(\qquad\)
\(\qquad\)

\section*{Helping You Remember}

A good way to remember new mathematical concepts is to be able to describe them and their applications in your own words.
Describe when the mean, median, or mode might be the best choice for a measure of central tendency.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{12-3 Statistics and Parameters}

\section*{What You'll Learn \\ Scan the text under the Now heading. List two things you will learn about in the lesson.}
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)

\section*{Active Vocabulary}

New Vocabulary Write the correct term next to each definition.
\(\longrightarrow\) the average of the absolute values of the differences between the mean and each value in the data set
\(\qquad\)
\(\longrightarrow\) a measure that describes a characteristic of the population
\(\qquad\) - data that can be given as a numerical value
data that cannot be given as a numerical value
a measure that describes a characteristic of the sample
\(\qquad\) - using the statistics of a sample to draw conclusions about the entire population
\(\longrightarrow\) a value that shows how the data deviates from the mean of the set of data
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-3 (continued)}

Statistics and Parameters
p. 756

A random sample of 500 pet owners in the United States is surveyed about the number of times they visit the veterinarian each year. The mean number of visits is calculated. Identify the sample and the population. Then describe the sample statistic and the population parameter.

Sample:
Population: \(\qquad\)

Statistic: \(\qquad\)

Parameter:

\section*{Statistical Analysis}
pp. 757-758

Follow the steps below to find the standard deviation of the data set \(\{5,7,8,10,5\}\).

\section*{Helping You Remember}

A good way to remember a mathematical concept is to explain it to somebody else. Suppose a classmate is having difficulty distinguishing between quantitative and qualitative data. Explain the difference to him and give an example of each.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{12-4 Permutations and Combinations}

\title{
What You'll Learn \\ Scan Lesson 12-4. Predict two things that you expect to learn based on the headings and the Key Concept box.
}
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)

\section*{Active Vocabulary} combination

New Vocabulary Write the definition next to each term.

\section*{factorial}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
sample space

Vocabulary Link Permutation is a word that is used in everyday English. Find the definition of permutation using a dictionary. Write how the definition of permutation can help you remember the mathematical definition of a permutation.
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-4 (continued)}

Main Idea

\section*{Details}

\section*{Permutations}
pp. 764-765

\section*{Combinations}
pp. 765-767

Tina has 4 chores to do today. Complete the following table to determine the number of different ways Tina can do her chores if she does one at a time.
\begin{tabular}{|c|l|l|l|l|}
\hline \begin{tabular}{l}
Number of \\
Permutations
\end{tabular} & \begin{tabular}{l}
Choices \\
for 1st \\
chore
\end{tabular} & \begin{tabular}{l}
Choices \\
for 2nd \\
chore
\end{tabular} & \begin{tabular}{l}
Choices \\
for 3rd \\
chore
\end{tabular} & \begin{tabular}{l}
Choices \\
for 4th \\
chore
\end{tabular} \\
\hline \(\boldsymbol{P}\) & & & & \\
\hline \multicolumn{4}{|c|}{ Fundamental Counting Principle } \\
\hline \multicolumn{6}{|c|}{} \\
\hline
\end{tabular}

There are \(\qquad\) different ways Tina can do her chores if she does one at a time.

There are 10 players on a basketball team. How many different 5 -player starting lineups are possible? Show your work.

\section*{Helping You Remember}

To help you remember how the terms permutation and combination are different, think of everyday words that start with the letters P and C that illustrate the meaning of each term. Explain how the words illustrate the two terms.
\(\qquad\)
\(\qquad\)

\section*{12-5 Probability of Compound Events}

\section*{What You'll Learn}

\section*{Active Vocabulary}
compound event
conditional probability
dependent events
independent events
mutually exclusive events

Skim the lesson. Write two things you already know about probability of compound events.
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)

New Vocabulary Match the term with its definition by drawing a line to connect the two.
events in which the outcome of one event does not affect the outcome of the other event
an event that is made up of two or more simple events
events that cannot occur at the same time
events in which the outcome of one event affects the outcome of the other event
the probability that an event will occur, given that another event has already occurred

Vocabulary Link Think of the meaning of the word dependent. Explain how this makes sense in the context of dependent events.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-5 (continued)}

\section*{Details}

Independent and Dependent Events pp. 771-772

Mutually Exclusive Events
pp. 773-774

Model the probability of two independent events by sketching a Venn diagram in the box below.

A number cube labeled 1 through 6 is rolled. Find each probability.
1. \(P(1\) or 4\()\)
2. \(P\) (even number)

Look up the following terms in a dictionary. Write the definitions that best relate to the way these terms are used in probability.

Independent \(\qquad\)
Dependent
Exclusive \(\qquad\)
Inclusive
\(\qquad\)
\(\qquad\)

\section*{12-6 Probability Distributions}

\section*{What You'll Learn \\ Skim the Examples for Lesson 12-6. Predict two things you think you will learn about probability distributions.}
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)

\section*{Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.}
discrete random variable \(\quad\) A discrete random variable is a random variable with a
\(\qquad\) number of possibilities.
expected value \(\quad\) Expected value is the sum of all possible values for a random variable, each value multiplied by its \(\qquad\)
probability distribution \(\quad\) A probability distribution is the probability of every possible value of the \(\qquad\) .
probability histogram \(\downarrow\) A probability histogram is a histogram that displays a probability \(\qquad\) .
random variable A random variable is a variable with a value that is the \(\ldots\) of a random event.
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-6 (continued)}

Main Idea

Random Variables and Probability
p. 779

\section*{Details}

The table shows the grade distribution on a final exam. Find the probability that a randomly chosen student earned a B.
\begin{tabular}{|c|c|}
\hline Grade & \begin{tabular}{c}
Number of \\
students
\end{tabular} \\
\hline A & 6 \\
\hline B & 12 \\
\hline C & 9 \\
\hline D & 1 \\
\hline
\end{tabular}

Complete the following table to show the probability distribution for the number of heads when three coins are tossed.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Probability Distribution } \\
\hline \begin{tabular}{c}
Number of \\
Heads
\end{tabular} & Probability \\
\hline 0 & \\
\hline 1 & \\
\hline 2 & \\
\hline 3 & \\
\hline
\end{tabular}

Probability Distributions
p. 780

\section*{Helping You Remember}

Sometimes remembering a simple example is a good way for you to remember a more complicated mathematical concept. Show how you can use the outcomes of tossing a coin to describe how the probabilities of the possible outcomes add up to 1 .
\(\qquad\)

\section*{12-7 Probability Simulations}

\section*{What You'll Learn Scan the text in Lesson 12-7. Write two facts you learned about probability simulations as you scanned the text.}
1. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Active Vocabulary New Vocabulary Write the definition next to each term.}
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Lesson 12-7 (continued)}

Main Idea

\section*{Details}

Theoretical and Experimental Probability
p. 787

Performing Simulations
pp. 788-789

Claire correctly answered 17 questions out of 20 on a multiple choice test. What is the experimental probability that she answers a question correctly? Express your answer as a percent.
\(\qquad\)

A field goal kicker on a football team typically makes 2 out of 3 field goal attempts. Describe how to simulate a field goal attempt. Perform the simulation and predict the number of field goals the kicker will make in his next 20 attempts.
\begin{tabular}{|c|c|}
\hline Roll & Number \\
\hline & \\
\hline & \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
Helping You Remember
Mathematical concepts are easier to remember if you can explain them in your own words. How would you describe the difference between theoretical probability and experimental probability?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{CHAPTER \\ 12 Probability and Statistics}

The It Together
Fill in each graphic organizer with a term from the chapter.

\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{anuprex}

\section*{Before the Test}

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.
1. Write an \(\mathbf{A}\) if you agree with the statement.
2. Write a \(\mathbf{D}\) if you disagree with the statement.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Statistics and Probability } & After You Read \\
\hline - Unbiased surveys are random. & \\
\hline - The sum of the probabilities for all values of \(x\) is 1. & \\
\hline \begin{tabular}{l}
- A graph that shows a cluster of data about the mean is \\
an average distribution.
\end{tabular} & \\
\hline - Theoretical probability is the frequency of an outcome to \\
the total number of events or trials.
\end{tabular} (In a permutations, order matters; but in a combination, \begin{tabular}{l}
order does not matter.
\end{tabular}

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 12.

\section*{Are You Ready for the Chapter Test?}

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 12 Study Guide and Review in the textbook.I took the Chapter 12 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\(\square\) I reviewed all vocabulary from the chapter and their definitions.

\section*{Study Tips}
- Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.```

[^0]: Active Vocabulary
 Review Vocabulary Match each linear equation with the appropriate form. (Lessons 4-2 and 4-3)
 slope-intercept form
 $y=-\frac{3}{4} x+3$
 point-slope form
 $3 x+4 y=12$
 standard form
 $y+3=(x-8)$
 Do these equations represent the same line? Justify your answer.

[^1]: Active Vocabulary
 Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 7-1 and 7-4)

