Studly Notebook

GeOLDETH

The McGraw-Hill companies

Mc

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240

ISBN: 978-0-07-890857-6
MHID: 0-07-890857-4

Printed in the United States of America

Contents

Chapter 1
Before You Read 1
Key Points 2
1-1 Points, Lines, and Planes 3
1-2 Linear Measure and Precision 5
1-3 Distance and Midpoints 7
1-4 Angle Measure 9
1-5 Angle Relationships 11
1-6 Two-Dimensional Figures 13
1-7 Three-Dimensional Figures 15
Tie It Together. 17
Before the Test 18
Chapter 2
Before You Read 19
Key Points 20
2-1 Inductive Reasoning and Conjecture 21
2-2 Logic 23
2-3 Conditional Statements 25
2-4 Deductive Reasoning 27
2-5 Postulates and Paragraph Proofs 29
2-6 Algebraic Proof. 31
2-7 Proving Segment Relationships 33
2-8 Proving Angle Relationships 35
Tie It Together. 37
Before the Test 38
Chapter 3
Before You Read 39
Key Points 40
3-1 Parallel Lines and Transversals 41
3-2 Angles and Parallel Lines 43
3-3 Slopes of Lines 45
3-4 Equations of Lines 47
3-5 Proving Lines Parallel. 49
3-6 Perpendiculars and Distance 51
Tie It Together. 53
Before the Test 54
Chapter 4
Before You Read 55
Key Points 56
4-1 Classifying Triangles 57
4-2 Angles of Triangles 59
4-3 Congruent Triangles 61
4-4 Proving Congruence: SSS, SAS 63
4-5 Proving Congruence: ASA, AAS 65
4-6 Isosceles and Equilateral Triangles 67
4-7 Congruence Transformations 69
4-8 Triangles and Coordinate Proof 71
Tie It Together. 73
Before the Test 74
Chapter 5
Before You Read 75
Key Points 76
5-1 Bisectors of Triangles 77
5-2 Medians and Altitudes of Triangles 79
5-3 Inequalities in One Triangle 81
5-4 Indirect Proof 83
5-5 The Triangle Inequality 85
5-6 Inequalities in Two Triangles 87
Tie It Together 89
Before the Test 90
Chapter 6
Before You Read 91
Key Points 92
6-1 Angles of Polygons. 93
6-2 Parallelograms. 95
6-3 Tests for Parallelograms 97
6-4 Rectangles 99
6-5 Rhombi and Squares 101
6-6 Kites and Trapezoids 103
Tie It Together. 105
Before the Test 106
Chapter 7
Before You Read 107
Key Points 108
7-1 Ratios and Proportions 109
7-2 Similar Polygons 111
7-3 Similar Triangles 113
7-4 Parallel Lines and Proportional Parts 115
7-5 Parts of Similar Triangles 117
7-6 Similarity Transformations 119
7-7 Scale Drawings and Models 121
Tie It Together. 123
Before the Test 124
Chapter 8
Before You Read 125
Key Points 126
8-1 Geometric Mean 127
8-2 The Pythagorean Theorem and Its Converse 129
8-3 Special Right Triangles 131
8-4 Trigonometry 133
8-5 Angles of Elevation and Depression 135
8-6 The Law of Sines and Cosines 137
8-7 Vectors 139
Tie It Together 141
Before the Test 142
Chapter 9
Before You Read 143
Key Points 144
9-1 Reflections 145
9-2 Translations 147
9-3 Rotations 149
9-4 Compositions of Transformations. 151
9-5 Symmetry 153
9-6 Dilations. 155
Tie It Together. 157
Before the Test 158
Chapter 10
Before You Read 159
Key Points 160
10-1 Circles and Circumference 161
10-2 Measuring Angles and Arcs 163
10-3 Arcs and Chords 165
10-4 Inscribed Angles 167
10-5 Tangents 169
10-6 Secants, Tangents, and Angle Measures 171
10-7 Special Segments in a Circle 173
10-8 Equations of Circles 175
Tie It Together. 177
Before the Test 178
Chapter 11
Before You Read 179
Key Points 180
11-1 Areas of Parallelograms and Triangles 181
11-2 Areas of Trapezoids, Rhombi and Kites 183
11-3 Areas of Circles and Sectors 185
11-4 Areas of Regular Polygons and Composite Figures 187
11-5 Areas of Similar Figures. 189
Tie It Together. 191
Before the Test 192
Chapter 12Before You Read193
Key Points 194
12-1 Representations of Three-Dimensional Figures 195
12-2 Surface Areas of Prisms and Cylinders 197
12-3 Surface Areas of Pyramids and Cones 199
12-4 Volumes of Prisms and Cylinders 201
12-5 Volumes of Pyramids and Cones 203
12-6 Surface Areas and Volumes of Spheres 205
12-7 Spherical Geometry. 207
12-8 Congruent and Similar Solids 209
Tie It Together. 211
Before the Test 212
Chapter 13
Before You Read 213
Key Points 214
13-1 Representing Sample Spaces 215
13-2 Permutations and Combinations 217
13-3 Geometric Probability 219
13-4 Simulations 221
13-5 Probabilities of Independent and Dependent Events 223
13-6 Probabilities of Mutually Exclusive Events 225
Tie It Together. 227
Before the Test 228

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.
\qquad
\qquad
\qquad

CHAPTER
 1 The Tools of Geometry

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	The Tools of Geometry
- Collinear points are lines that run through the same point.	
	- Line segments that are congruent have the same measure.
	- Distance on a coordinate plane is calculated using a form of the Pythagorean Theorem.
	- The Midpoint Formula can be used to find the coordinates of the endpoint of a segment.
	- The formula to find the area of a circle is $A=\pi r^{2}$.

FOLDA: St Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When taking notes, summarize the main ideas presented in the lesson.

Summaries are useful for condensing data and realizing what is important.

- When you take notes, write descriptive paragraphs about your learning experiences.
\qquad
\qquad
\qquad

CHAPTER
 1 The Tools of Geometry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on linear measure, one fact might be that unlike a line, a line segment can be measured because it has two endpoints. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
1-1 Points, Lines, and Planes	
1-2 Linear Measure	
1-3 Distance and Midpoints	
1-4 Angle Measure	
1-5 Angle Relationship	
1-6 Two-Dimensional Figures	

\qquad

1-1 Points, Lines, and Planes

What You'll Learn Scan the text in Lesson 1-1. Write two facts you learned about points, lines, and planes as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
New Vocabulary Write the definition next to each term.

```
undefined term
point
line
plane
```

\qquad
\qquad
space
\qquad
\qquad
Lesson 1-1 (continued)

Points, Lines, and Planes
pp. 5-6

Model a point, line, and plane with a representative drawing. Label your drawing.
\square

Compare undefined and defined terms by completing the table. Provide definitions and examples.

Term	Definition	Examples
defined term		
undefined term		

Helping You Remember

Recall or look in a dictionary for the meaning of the prefix co-. What does the prefix mean? How can it help you remember the meaning of collinear?
\qquad
\qquad
\qquad

1-2 Linear Measure

What You'll Learn Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 New Vocabulary Fill in each blank with the correct term or phrase.

betweenness of points
Between any two \qquad on a line there is another
\qquad .
line segment \quad a portion of a \qquad with two \qquad
between point A is between two other points, B and $C ; A, B$, and C are on the same line, and \qquad $+$ \qquad
\qquad construction method of creating \qquad without
congruent segment $\boldsymbol{t w o}$ \qquad with the same \qquad

Vocabulary Link Congruent segments can be illustrated by real-world examples. Consider opposite sides of this book. The lines are the same size. Write some real-world examples of other congruent segments.
\qquad
\qquad
Lesson 1-2 (continued)

Measure Line Segments Use the model to fill in each blanks.

pp. 14-15

1. Each inch is divided into \qquad .
2. Point B is closer to the \qquad inch mark.
3. $\overline{A B}$ is about \qquad inches long.

Calculate Measures pp. 15-17

Model the three types of methods to calculate measures of a line segment with an example.

Find measurements by adding.

Find measurements by subtracting.

Find measurements by writing and solving equations.

Helping You Remember

Construction is a word used in everyday English as well as in mathematics. Look up construction in the dictionary. Explain how the everyday definition can help you remember how construction is used in mathematics.
\qquad

1-3 Distance and Midpoints

What You'll Learn \quad Skim Lesson 1-3. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the definition next to each term.

distance

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Vocabulary Link Midpoint can have non-mathematical meanings as well. Look up midpoint in the dictionary. Explain how the English definition can help you remember how midpoint is used in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 1-3 (continued)

Main Idea

Details

Distance Between Two Points
pp. 25-26

Fill in the organizer for the distance formula on a number line and a coordinate plane with line segment $A B$, with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

Midpoint of a Segment pp. 27-30

Model the solution to find the distance between the points on the coordinate plane. Use the lines to show your calculations. Round to the nearest tenth if necessary.
$\left(x_{1}, y_{1}\right)=(\square) ;\left(x_{2}, y_{2}\right)=(\square)$
$K L=$
\qquad
\qquad

\qquad
\qquad

1-4 Angle Measure

What You'll Learn
 Skim the Examples for Lesson 1-4. Predict two things you think you will learn about angle measures.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.
\qquad angle with measure of 90°
where two rays meet to form an angle
\qquad - angle with measure greater than 90°
\qquad - a ray that divides an angle into two congruent angles

	- angle with measure greater than 90°
	- a ray that divides an angle into two congruent angles
	the region of a plane inside of an angle
	angle with measure less than 90°
	a ray that forms part of an angle
	part of a line with one endpoint and one end that extends forever
	formed by two noncollinear rays with a common endpoint
	units used to measure angles
	extend in two directions from a point on a line
	the region of a plane outside of an angle

\qquad
\qquad
Lesson 1-4 (continued)

Main Idea

Measure and Classify Angles
pp. 36-38

Congruent Angles
pp. 39-40

Details

Summarize information about angles in the graphic organizer below.

1. Draw and label an obtuse, acute, and right angle.
2. Draw and label one angle that has these 3 names: $\angle B, \angle A B C$, and $\angle 3$.

Model a pair of congruent angles. Use a compass and straightedge.

Helping You Remember

Compare and contrast congruent segments and congruent angles.
\qquad
\qquad
\qquad
\qquad
\qquad

1-5 Angle Relationships

What You'll Learn

Scan Lesson 1-5. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the correct terms. Use each term once.
adjacent
linear pair
vertical

Vocabulary Link Perpendicular has a nonmathematical meaning. Look up perpendicular in the dictionary. List at least five examples of things that are perpendicular in everyday life.
\qquad
\qquad
Lesson 1-5 (continued)

Main Idea

Details

Pairs of Angles

pp. 46-48

Summarize angle relationships by completing the graphic organizer with the terms adjacent angles, complementary angles, vertical angles, and supplementary angles.

Perpendicular Lines
pp. 48-50

If $m \angle A B C=2 x+12$, find x so that $\overrightarrow{B C} \perp \overrightarrow{B A}$.

Helping You Remember

Look up the nonmathematical meaning of supplementary in a dictionary. How can this definition help you to remember the meaning of supplementary angles?
\qquad DATE \qquad
\qquad

1-6 Two-Dimensional Figures

What You'll Learn Skim the lesson. Write two things you already know about two-dimensional figures.

1. \qquad
\qquad
2. \qquad
\qquad

New Vocabulary Write each term next to its definition.
where two sides of a polygon intersect
polygon with no side that passes through the figure's interior
a convex polygon that is equilateral and equiangular
a polygon where all angles are congruent
perimeter of a circle
a polygon with n number of sides
closed figure formed by coplanar segments where two segments intersect at a common noncollinear endpoint
polygon with some side that passes through the figure's interior
a polygon where all sides are congruent
sum of the lengths of a polygon's sides
number of square units needed to cover a surface
\qquad
Lesson 1-6 (continued)

Main Idea

Identify Polygons pp. 56-57

Perimeter, Circumference, and Area
pp. 58-60

Details

Fill in the organizer about polygons.

What is a polygon?	What is not a polygon?
Examples	

Summarize the formulas for perimeter, circumference, and area of the figures by completing the chart.

	P	\square	\square	\square
Area				
Perimeter				
Circumference				

\qquad

1-7 Three-Dimensional Figures

What You'll Learn Scan the text in Lesson 1-7. Write two facts you learned about three-dimensional figures.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

prism

New Vocabulary Write the definition next to each term.
\qquad
\qquad pyramid \qquad
\qquad
cylinder \qquad
\qquad
base \qquad
\qquad
cone \qquad
\qquad
sphere
\qquad
\qquad

Main Idea

Identify
Three-Dimensional Figures
pp. 67-68

Complete the concept circle by drawing in a fourth example. Then state the relationship of the 4 figures on the line below the concept circle.

The relationship is:

Organize information about volume and surface area in the chart.

Figure					
Surface Area					
Volume					

Helping You Remember

A good way to remember the characteristics of geometric solids is to think of how different solids are alike. Name a way which pyramids and cones are alike.
\qquad
\qquad

CHAPTER
 1 The Tools of Geometry

The It Together

Complete the graphic organizer with a term or formula from the chapter.

\qquad
\qquad
\qquad

In
 1 The Tools of Geometry

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

The Tools of Geometry	After You Read		
- Collinear points are lines that run through the same point.			
- Line segments that are congruent have the same			
measure.			- Distance on a coordinate plane is calculated using a
:---			
form of the Pythagorean Theorem.	\quad	- The Midpoint Formula can be used to find the	
:---			
coordinates of the endpoint of a segment.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 1 Study Guide and Review in the textbook.I took the Chapter 1 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Make a calendar that includes all of your daily classes. Besides writing down all assignments and due dates, include in your daily schedule time to study, work on projects, and reviewing notes you took during class that day.
\qquad
\qquad
\qquad

Reasoning and Proof

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Reasoning and Proof
	- Listing a counterexample is a method to prove a conjecture is true.
	- A Venn diagram can illustrate a conjunction.
	- A form of inductive reasoning is the Law of Detachment.
	- The statement a line contains two points, is an example of a postulate.

FOLDABLS Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, you may wish to use a highlighting marker to emphasize important concepts.
- When you take notes, think about the order in which the concepts are being presented.
Write why you think the concepts were presented in this sequence.
\qquad
\qquad
\qquad

CHAPTER
 2
 The Reasoning and Proof

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on inductive reasoning and conjecture, one fact might be a concluding statement reached using inductive reasoning is called a conjecture. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
2-1 Inductive Reasoning and Conjecture	
2-2 Logic	
2-3 Conditional Statements	
2-4 Deductive Reasoning	
2-5 Postulates and Paragraph Proofs	
2-6 Algebraic Proof	
2-8 Proving Segment Relationships	

\qquad

2-1 Inductive Reasoning and Conjecture

What You'll Learn Scan Lesson 2-1. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Fill in each blank with the correct term or phrase.

inductive reasoning

\qquad that uses a number of specific \qquad to arrive at a \qquad
conjecture the \qquad that is reached within inductive reasoning
an example that \qquad a \qquad

Vocabulary Link Conjecture is a word that is used in everyday English. Find the definition of conjecture using a dictionary. Write how the definition of conjecture can help you remember the mathematical definition of conjecture.
\qquad
\qquad
\qquad
\qquad
Lesson 2-1 (continued)

Main Idea

Make Conjectures

pp. 89-91

Details

Sequence the steps of making a conjecture with algebraic terms or geometric terms.

Write a statement in which you can make a true conjecture. Then write another statement in which you can make a false conjecture. Provide a counterexample of the false conjecture.

True Conjecture: \qquad
\qquad
\qquad
False Conjecture: \qquad
\qquad
\qquad

Helping You Remember

Write a short sentence that can help you remember why it only takes one counterexample to prove that a conjecture is false.
\qquad
\qquad
\qquad

2-2 Logic

What You'll Learn Skim the Examples for Lesson 2-2. Predict two things you think you will learn about logic.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

truth table
disjunction
statement
truth value
conjunction
negation
compound statement

New Vocabulary Match the term with the correct definition by drawing a line between the two.
a sentence that is either true or false
two or more statements joined by and or or a compound statement that uses the word or the value of a statement as either true or false statement with the opposite meaning and opposite truth a compound statement that uses the word and
convenient method to determine the truth value of statement

Vocabulary Link Negation is a word used in everyday English as well as in mathematics. Look up negation in the dictionary. Explain how the English definition can help you remember how negation is used in mathematics.
\qquad
\qquad
Lesson 2-2 (continued)

Main Idea

Details

Determine Truth Values

 pp. 97-99Fill in the blanks to summarize negations, conjunctions, and disjunctions. Write a description of each term.

Helping You Remember

Prefixes can often help you remember the meaning of words or distinguish between similar words. Use your dictionary to find the meanings of the prefixes con and dis and explain how these meanings can help you remember the difference between a conjunction and disjunction.

Venn Diagrams

pp. 99-100

Model the situation using a Venn diagram.
At Terrace Middle school, 68 students play basketball, 77 play volleyball, 19 play soccer and basketball, and 27 play all three sports. If 13 students play both volleyball and basketball, how many students play just basketball?

\qquad

2-3 Conditional Statements

What You'll Learn Skim Lesson 2-3. Predict two things you will learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad
Active Vocabulary New Vocabulary Write the definition next to each term. conditional statement if-then statement
converse

hypothesis
inverse
contrapositive
logically equivalent
related conditionals

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
conclusion
\qquad
\qquad

Lesson 2-3 (continued)

Main Idea

If-Then Statements

pp. 105-107

Related Conditionals

pp. 107-108

Helping You Remember

When working with a conditional statement and its three related conditional, what is an easy way to remember which statements are logically equivalent?

Identify the hypothesis and conclusion of each conditional statement. Circle the hypothesis and underline the conclusion.

1. \qquad if the sum of its digits is divisible by 9 .
2. If the measure of an angle is less than 90 degrees, it is an acute angle.

Fill in the organizer for related conditionals.

\qquad
\qquad

2-4 Deductive Reasoning

What You'll Learn Scan the text in Lesson 2-4. Write two facts you learned about deductive reasoning as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

\qquad -

New Vocabulary Write the correct term next to each definition.
allows you to draw conclusions from two true conditional statements when the conclusion of one statement is the hypothesis of the other
\qquad - uses facts, rules, definitions, or properties to reach logical conclusions from given statements
form of deductive reasoning that states that if all the facts are true, then the conclusion reached is also true

Vocabulary Link Syllogism is a word used in everyday English as well as in mathematics. Look up syllogism in the dictionary. Explain how the English definition can help you remember how syllogism is used in mathematics.
\qquad
\qquad

Lesson 2-4 (continued)

Main Idea

Law of Detachment

pp. 115-117

Law of Syllogism

pp. 117-118

Details

Identity the steps to validate the two conclusions by completing the graphic organizer.

If the light bulb is broken, the lamp will not work. Jackson's lamp will not work. Jackson's light bulb is broken.	Identify the hypothesis.	Identify the conclusion.
		y
	Analyze t	conclusion.

Match the portions of each statement with the correct term by drawing a line to connect the two. Then write the true conditional statement and the valid conclusion using the Law of Syllogism.
$p \quad$ you buy bread
q
you walk to the store
you can make toast

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose that a classmate is having trouble remembering the Law of Detachment. In your own words, explain what the Law of Detachment means?
\qquad
\qquad
\qquad

2-5 Postulates and Paragraph Proofs

What You'll Learn Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

New Vocabulary Fill in each blank with the correct term or phrase.
postulate a_ that is accepted as __ without
proof a logical \qquad in which each statement you make is _ by a statement that is \qquad as
proof a logical__ in which each statement you make isby a statement that is
\qquad
deductive argument \downarrow a logical \qquad of \qquad that link the
\qquad to what you are trying to prove
theorem $\quad \mathrm{a}$ \qquad or conjecture that has been \qquad $\begin{aligned} \text { paragraph proof } \downarrow & \begin{array}{l}\text { writing a } \\ \text { given situation is ___ to explain why a }\end{array} \quad \text { for a } \\ \text { informal proof } & \text { same as } \\ \text { axiom } & \text { same as }\end{aligned}$
\qquad
Lesson 2-5 (continued)

Main Idea
Points, Lines, and Planes
pp. 125-126

Paragraph Proofs
pp. 126-127

Details

Write a postulate of points, lines, and planes. Then model the postulate.
\qquad
\qquad

Sequence the steps in the proof process by completing the organizer.

Steps in the Proof Process

\qquad
\qquad

2-6 Algebraic Proof

What You'll Learn

Active Vocabulary

Review Vocabulary Write the definition next to the term.
(Lesson 2-4)

deductive reasoning

New Vocabulary Match the term with its definition by drawing a line to connect the term.
algebraic proof two-column proof formal proof

Skim the lesson. Write two things you already know about algebraic proof.

1. \qquad
\qquad
2. \qquad
\qquad
\qquad
same as formal proof
contains statements and reasons in two columns
uses a group of algebraic steps to solve problems and justify each step.

Vocabulary Link Proof is a word that is used in everyday English. Find the definition of proof using a dictionary. Explain how the English definition can help you remember how proof is used in mathematics.
\qquad
\qquad
Lesson 2-6 (continued)

Main Idea
Algebraic Proof pp. 134-135

Details

Write a 2-column proof by completing each step.
Given: $\frac{8}{3}+x=6-\frac{1}{3} x \quad$ Prove: $x=2 \frac{1}{2}$

Statements	Reasons
$\frac{8}{3}+x=6-\frac{1}{3} x$	
$3\left(\frac{8}{3}+x\right)=3\left(6-\frac{1}{3} x\right)$	
$8+3 x=18-x$	Addition Prop of Equality
$8+4 x=18$	Simplify.
$8+4 x-8=18-8$	Substitution Prop of Equality
$\frac{4}{4} x=\frac{10}{4}$	
$x=\frac{10}{4}$ or $2 \frac{1}{2}$	

Geometric Proof p. 136

Match the property with its example by drawing a line to connect the example.

Symmetric Property	If $S T=W X$, and $W X=Y Z$, then $S T=Y Z$.
Reflective Property	If $\angle C=\angle D$, then $\angle D=\angle C$.
Transitive Property	$\angle A=\angle A$

If $S T=W X$, and $W X=Y Z$, then $S T=Y Z$.

If $\angle C=\angle D$, then $\angle D=\angle C$.
$\angle A=\angle A$
\qquad

2-7 Proving Segment Relationships

What You'll Learn Scan the text in Lesson 2-7. Write two facts you learned about proving segment relationships.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lessons 2-1 and 2-3)
inductive reasoning \qquad
\qquad
conjecture \qquad
inverse
\qquad
\qquad

Lesson 2-7 (continued)

Main Idea

Ruler Postulate

pp. 142-143

Details

Use the Model and Fill in each blank to summarize the Segment Addition Postulate.

If P, Q, and R are \qquad , then point \qquad is between \qquad and $\quad __{\text {if }}$ and only if $\ldots \ldots+\ldots=P R$.

Complete the graphic organizer to prove the statement below.

Given: $\overline{Q R} \cong \overline{S T} ; \overline{S T} \cong \overline{U V}$ Prove: $\overline{Q R} \cong \overline{U V}$

Helping You Remember

A good way to keep the names straight in your mind is to associate something in the name of the postulate with the content of the postulate. How can you use this idea to distinguish between the Rule Postulate and the Segment Addition Postulate?
\qquad
\qquad

2-8 Proving Angle Relationships

What You'll Learn Scan Lesson 2-8. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 1-4 and 1-5)

complementary angles

 two \qquad angles with measures that have a sum of\qquad
adjacent angles \downarrow angles with a common \qquad
two \qquad angles with measures that have a sum of
\qquad
interior the region of a plane \qquad an angle
exterior the region of a plane \qquad an angle
acute angle \quad an angle with a measure of \qquad an angle with a measure of \qquad
\qquad
\qquad
Lesson 2-8 (continued)

Main Idea

Supplementary and Complementary Angles pp. 149-150

Congruent Angles

pp. 151-153

Details

Compare and contrast the Angle Addition Postulate and the Segment Addition Postulate by completing the Venn diagram.

Write a two-column proof to prove the statement by completing the chart.
Given: $m \angle 2=90$

$$
\angle 1 \cong \angle 3
$$

Prove: $m \angle 1=45$

Statements	Reasons
1. $m \angle 2=90$ $\angle 1 \cong \angle 3$	
2. $m \angle 3=m \angle 1$	
3. $m \angle 1+m \angle 3+m \angle 2=$ 180	
4. $m \angle 1+m \angle 1+90=180$	
5. $m \angle 1+m \angle 3+90-90$ $=180-90$	
6. $m \angle 1+m \angle 1=90$	
7. $\frac{m \angle 1+m \angle 1}{2}=90 \div 2$	
8. $m \angle 1=45$	

\qquad
\qquad
\qquad

Reasoning and Proof

Tie It Together

Complete the graphic organizer with a term from the chapter.

\qquad
\qquad

chaptir
 2 Reasoning and Proof

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Reasoning and Proof	After You Read		
- Listing a counterexample is a method to prove a			
conjecture is true.		(A Venn diagram can illustrate a conjunction. \quad (A form of inductive reasoning is the Law of Detachment. \quad	- The statement a line contains two points, is an example
:---			
of a postulate.			

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 2.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 2 Study Guide and Review in the textbook.
\square I took the Chapter 2 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Make up acronyms to remember lists or sequences. PEMDAS is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract). (Please Excuse My Dear Aunt Sally).
\qquad
\qquad
\qquad

CHAPTER
 \square
 Parallel and Perpendicular Lines

Before You Read

Before you read the chapter, think about what you know about the topic. List three things you already know about parallel and perpendicular lines in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, preview the lesson and make generalizations about what you think you will learn.
Then compare that with what you actually learned after each lesson.
- Before each lesson, skim through the lesson and write any questions that come to mind in your notes.
As you work through the lesson, record the answer to your question.
\qquad
\qquad

CHAPTER
 3 Parallel and Perpendicular Lines

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on parallel lines and transversals, one fact might be parallel planes are planes that do not intersect. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
3-1 Parallel Lines and Transversals	
3-2 Angles and Parallel Lines	
3-3 Adding and Subtracting Polynomials	
3-4 Equations of Lines	
3-5 Proving Lines Parallel	
3-6 Perpendiculars and Distance	

\qquad
\qquad

3-1 Parallel Lines and Transversals

What You'll Learn
 Skim the Examples for Lesson 3-1. Predict two things you think you will learn about parallel lines and transversals.

1. \qquad
\qquad
2. \qquad

Active Vocabulary New Vocabulary Use the figure to complete each statement.

 consecutive interior angles $\quad a$ and b are \qquad
alternative interior angles
$\angle 4$ and $\angle 6$ are \qquad
alternate exterior angles $\quad \angle 2$ and $\angle 7$ are \qquad corresponding angles $\quad \angle 5$ and $\angle 6$ are \longrightarrow.

Vocabulary Link Skew is a word used in everyday English as well as in mathematics. Look up skew in the dictionary. Explain how the English definition can help you remember how skew is used in mathematics.
\qquad
\qquad
Lesson 3-1 (continued)

Main Idea

Relationships Between Lines and Planes

pp. 171-172

Transversal Angle Pair Relationships

pp. 172-173

Details

Summarize information about parallel lines and skew lines in the graphic organizer below.

Model a transversal \boldsymbol{t} which intersects two or more parallel lines. Identify consecutive interior angles, alternative interior and exterior angles, and corresponding angles.

Helping You Remember

Look up meaning of the prefix trans- in the dictionary. Write down 4 words that have trans- as a prefix. How can the meaning of the prefix help you remember the meaning of transversal?
\qquad
\qquad

3-2 Angles and Parallel Lines

What You'll Learn

2.

Scan Lesson 3-2. List two headings you would use to make an outline of this heading.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

parallel lines
Review Vocabulary Match the term with the correct definition by drawing a line between the two. (Lesson 3-1)
lie in the regions not between parallel lines that are cut by a transversal
interior angles lie on the same side of both the parallel lines and the transversal
exterior angles
skew a line that intersects 2 or more coplanar lines at 2 different points
rans
coplanar lines that never intersect
consecutive interior angles
lie between parallel lines that are cut by a transversal
interior lines that lie on the same side of a transversal
\qquad
\qquad

Parallel Lines and Angle Pairs
pp. 178-179

Fill in the organizer about the Corresponding Angles Postulate.

Corresponding Angles Postulate	

Fill in each blank to summarize the Perpendicular Transversal Theorem. Measures

The Perpendicular Transversal Theorem states that in a
\qquad if a line is \qquad to one of two
\qquad then it is \qquad to the other.

Helping You Remember

How can you use an everyday meaning of the adjective alternate to help you remember the types of angle pairs for two lines and a transversal?
\qquad
\qquad

3-3 Slopes of Lines

What You'll Learn Scan the text in Lesson 3-3. Write two facts you learnedabout slopes of lines as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad
Active Vocabulary \int Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 1-1)
line made up of \qquad with no thickness or width
point $\quad \mathrm{a}$ \qquad without shape or size defined term \quad can be explained using \qquad terms undefined term can only be explained using ___ and \qquad
New Vocabulary Write the definition next to each term.
slope \qquad

\qquad
\qquad
\qquad
rate of change
\qquad
\qquad

Slope of a Line
pp. 186-188

Parallel and Perpendicular Lines pp. 189-190

Complete the organizer to summarize the steps of finding the slope of a line. Then fill in each blank of the example.

Fill in each blank for the Parallel and Perpendicular Lines Postulates.

Slopes of Parallel Lines: Two non-vertical \qquad will have the same \qquad if they are \qquad Vertical lines are \qquad parallel.

Slopes of Perpendicular Lines: Two \qquad
lines are \qquad if the \qquad of their
\qquad is \qquad Vertical and horizontal lines are \qquad
perpendicular.

Helping You Remember

Suppose 2 non-vertical lines have slopes which are reciprocals of each other. Are they perpendicular? Explain.
\qquad
\qquad

3-4 Equations of Lines

What You'll Learn

2.

Skim Lesson 3-4. Predict two things that you expect to learn based on the headings and the Key Concept Box.

1. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lesson 2-5)
postulate a logical chain of statements that link the given to what you are trying to prove
proof a statement or conjecture that has been proven
deductive argument a logical argument in which each statement you make is supported by a statement that is accepted as true
theorem a statement that is accepted as true without proof

New Vocabulary Write the correct equation next to each term.
\qquad

Vocabulary Link Slope is a word used in everyday English as well as in mathematics. Look up slope in the dictionary. Explain how the English definition can help you remember how slope is used in mathematics.
\qquad
\qquad
Lesson 3-4 (continued)

Main Idea

Details

Write Equations of Lines pp. 196-198

Write Equations to Solve Problems
p. 199

Complete the chart on how to write an equation of a line.

Writing an Equation of a Line		
Forms	Procedures	
Given: slope and y-intercept		
Given: slope and point on the line		
Given: two points		
Given: for a horizontal line, when $m=0$		
Given: equation of one line and one set of points for \perp and $\\|$ lines		

Fill in each blank to write the equations.
Alicia wants to paint for about 5 hours. One art studio charges an $\$ 8$ fee plus $\$ 2$ per hour. The second studio does not charge a fee and charges $\$ 4$ an hour. Write two equations to represent the cost of each studio. Which studio should she choose?
Fee + Hourly fee $\times \boldsymbol{x}$ for Number of Hours $=$ Total Cost
\qquad
\qquad $x=y$
\qquad

$$
+
$$

\qquad $x=y$
The \qquad studio charges a better deal for up to 4 hours.
\qquad
\qquad

3-5 Proving Lines Parallel

What You'll Learn

Skim the lesson. Write two things you already know about proving lines parallel.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Write the correct term next to each

 definition. (Lesson 3-1)nonadjacent interior angles that lie on opposite sides of a
transversal
nonadjacent exterior angles that lie on opposite sides of a
transversal
\qquad
\qquad

Lesson 3-5 (continued)

Main Idea

Identify Parallel Lines

pp. 205-207

Details

Use the model to cross out the congruence statement in the concept circle that does not belong.

Fill in each blank to summarize the lesson about

Prove Lines Parallel

p. 208
proving lines are parallel.

When two \qquad lines are cut by a \qquad
the angle pairs formed are either \qquad or
\qquad When a pair of lines form angles that do not meet this condition, the lines \qquad be parallel.

Helping You Remember

A good way to remember something new is to draw a picture. How can a sketch help you to remember the Parallel Postulate?
\qquad
\qquad
\qquad
\qquad
\qquad

3-6 Perpendiculars and Distance

What You'll Learn Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the definition next to each term.

(Lesson 2-4)
parallel lines \qquad
skew

New Vocabulary Fill in each blank with the correct term or phrase.
equidistance \quad The \qquad between two \qquad lines when measured along a \qquad line to the lines is always \qquad .

Vocabulary Link Equidistance is a word that is used in everyday English. Find the definition of equidistance using a dictionary. Explain how the English definition can help you remember how equidistance is used in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 3-6 (continued)

Main Idea

Details

Distance from a Point to a Line

pp. 213-216 point p and a line ℓ on a coordinate plane.

Summarize the steps to find the distance between a

Find the Distance between a Point and a Line.
Step 1: Write an ___ for the line ℓ.
Step 2: Write an \qquad for the perpendicular line that goes through point p

Step 3: Use \qquad to find the
coordinates where line ℓ \qquad the perpendicular line.

Step 4: Use the \qquad to find the distance between point P and the point of intersection of the two lines.

Distance Between Parallel Lines
pp. 216-217

Fill in each blank to find the distance between the parallel lines.

$$
\begin{aligned}
\text { 1. } y & =3 x-7 & & \text { The lines are __ units apart. } \\
y & =3 x+4 & & \\
\text { 2. } y & =-2 x-8 & & \text { The lines are ___ units apart. } \\
y & =-2 x+2 & &
\end{aligned}
$$

Helping You Remember

Use your dictionary to find the meaning of the Latin root aequus. List three words that are derived from this root and give meaning to each.
\qquad
\qquad
\qquad
\qquad

CHAPTER 3
 Parallel and Perpendicular Lines

The It Together

Complete the graphic organizer with a term or formula from the chapter.

\qquad

CHAPTER
 3 Parallel and Perpendicular Lines

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 3.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
I used my Foldable to complete the review of all or most lessons.I completed the Chapter 3 Study Guide and Review in the textbook.
\square I took the Chapter 3 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- Designate a place to study at home that is free of clutter and distraction. Try to study at about the same time each afternoon or evening so that it is part of your routine.
\qquad
\qquad
\qquad

cump
 4 Congruent Triangles

Before You Read

Before you read the chapter, think about what you know about congruent triangles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDA A_{B} Les Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Remember to always take notes on your own.

Don't use someone else's notes as they may not make sense.

- When you take notes, listen or read for main ideas.

Then record those ideas in a simplified form for future reference.
\qquad
\qquad
\qquad

ante
 4 Congruent Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on congruent triangle, one fact might be that in two congruent triangles all of the side and angles of one triangle are congruent to the corresponding parts of the other triangle. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
4 -1 Classifying Triangles	
$4-2$ Angles of Triangles	
4-3 Congruent Triangles	
4-4 Proving Triangles Congruent-SSS,	
SAS	
4-5 Proving Triangles Congruent-ASA,	
AAS	
4 Isosceles and Equilateral Triangles	
4 Triangles and Coordinate Proof	

\qquad
\qquad
\qquad

4-1 Classifying Triangles

What You'll Learn

Scan Lesson 4-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

> acute triangle equiangular triangle equilateral triangle
> isosceles triangle
> obtuse triangle
> right triangle
> scalene triangle

New Vocabulary Label the diagram with the correct terms.

\qquad
\qquad

Details

Classify Triangles by Angles

pp. 235-236

Classify Triangles by Sides

pp. 236-237

Classify the triangle below as acute, equiangular, obtuse, or right.

Equiangular: Does the triangle
 have 3 congruent acute angles?
\downarrow
Obtuse: Does the triangle have an angle greater than 90° ?

Right: Does the triangle have 1 right angle? \qquad
Classify each triangle below as equilateral, isosceles, or scalene.

\qquad
\qquad

A good way to remember a new mathematical term is to relate it to a nonmathematical definition of the same word. How is the use of the word acute, when used to describe acute pain, related to the use of the word acute when used to describe an acute angle or an acute triangle?
\qquad
\qquad
\qquad
\qquad

4-2 Angles of Triangles

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.
\qquad geometric relationships
\qquad one of two angles inside a triangle that is not adjacent to an angle outside the triangle
an angle formed by one side of a triangle and the extension of an adjacent side
a method of showing statements to be true using boxes and arrows to show the logical progression of an argument

Vocabulary Link Auxiliary is a word that is used in everyday English. Find the definition of auxiliary using a dictionary. Explain how the English definition can help you remember how auxiliary line is used in mathematics.
\qquad
\qquad
Lesson 4-2 (continued)

Main Idea

Triangle Angle-Sum Theorem
pp. 244-245

Details

Fill in each box to complete the flow proof.
Given: $\angle A \cong \angle D$ $\angle B \cong \angle E$

Prove: $\angle C \cong \angle F$
Proof:

Exterior Angle Theorem pp. 246-247

$$
\begin{aligned}
& m \angle 1= \\
& m \angle 2=
\end{aligned}
$$

\qquad
\qquad
\qquad

4-3 Congruent Triangles

What You'll Learn
 Scan the lesson. Write two things you already know about congruent triangles.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
Active Vocabulary Review Vocabulary Write the definition next to each term.(Lesson 4-1)
equiangular triangleL
\qquad
\qquad
New Vocabulary Fill in each blank with the correct term or phrase.
If two geometric figures have exactly the same shape and size, they are \qquad .
In two \qquad all of the parts of one polygon are congruent to the or matching parts of the other polygon.
\qquad
\qquad

Lesson 4-3 (continued)

Congruent and

 Corresponding Partspp. 253-254

Prove Triangles Congruent
pp. 255-256

Name each property of triangle congruence.
If $\triangle A B C \cong \triangle D E F$, then $\triangle D E F \cong \triangle A B C$.
$\triangle R S T \cong \triangle R S T$

If $\triangle A B C \cong \triangle D E F$ and $\triangle D E F \cong \triangle L M N$, then $\triangle A B C \cong \triangle L M N$.

Helping You Remember

Suppose a classmate is having trouble writing congruence statements for triangles because he thinks he has to match up three pairs of sides and three pairs of angles. How can you help him understand how to write correct congruence statements more easily?
\qquad
\qquad
\qquad

4-4 Proving Triangles Congruent - SSS, SAS

What You'll Learn Scan Lesson 4-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Use the diagram to write an example for each of the following. (Lesson 4-2)

auxiliary line two remote interior angles to angle XYZ
 exterior angle -

\qquad

New Vocabulary Write the definition next to the term.

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 4-4 (continued)

SSS Postulate

pp. 262-264

SAS Postulate
pp. 264-266

Use the coordinate grid below to graph two triangles that are congruent. Explain how you could show they are congruent using the SSS postulate. Then show they are equivalent.

$\triangle A B C$	$\triangle D E F$
$A(\ldots, \ldots)$	D
$B(\ldots, \ldots)$	
$C(\ldots, \ldots)$	$F($

\qquad
\qquad
\qquad

Use the SAS Postulate to write a triangle congruence statement for the figure below.
\qquad
\qquad

4-5 Proving Triangles Congruent - ASA, AAS

What You'll Learn

Skim the Examples for Lesson 4-5. Predict two things you think you will learn about proving triangles congruent.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Write the name of the postulate that could be used to prove $\triangle E F G \cong \triangle E H G$. (Lesson 4-4)

New Vocabulary Write the correct term next to the definition.
the side located between two consecutive angles of a polygon
\qquad
\qquad

Details

ASA Postulate
pp. 273-274

AAS Theorem

pp. 274-276

Fill in each blank with the appropriate terms in the following statements.

In order to apply the ASA Postulate to prove two triangles are congruent, two pairs of \qquad and the \qquad of one triangle must be
\qquad to the corresponding parts of a second triangle.

In the figure above, because \angle \qquad $\cong \angle$ \qquad $\angle \ldots \cong$ _ , and \cong _ , you know that \triangle \qquad $\cong \triangle$ \qquad

Use the AAS Theorem to write a triangle congruence statement for the figure below.

Helping You Remember

Summarize what is needed to prove triangle congruence using the four methods learned so far.

SSS	SAS	ASA	AAS

\qquad
\qquad

4-6 Isosceles and Equilateral Triangles

What You'll Learn
 Scan the text in Lesson 4-6. Write two facts you learned about isosceles and equilateral triangles as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lesson 4-1)
\qquad - a triangle with at least two congruent sides
\qquad - a triangle with three congruent sides
\qquad a triangle with one angle greater than 90°

New Vocabulary Label the diagram with the correct terms.
base angle vertex angle

\qquad
\qquad

Lesson 4-6 (continued)

Properties of Isosceles Triangles

pp. 283-284

Describe the Isosceles Triangle Theorem and its converse in the boxes below. Then write a conditional statement using the figures to illustrate each theorem.

| Isosceles Triangle Theorem | |
| :--- | :--- | :--- |
| Example: | |
| Converse of Isosceles
 Triangle Theorem | |

Properties of Equilateral Triangles

pp. 284-286

Solve for x in equilateral triangle $Q R S$.

Helping You Remember

If a theorem and its converse are both true, you can often remember them most easily by combining them into an "if-and-only-if" statement. Write such a statement for the Isosceles Triangle Theorem and its converse.
\qquad
\qquad

4-7 Classifying Triangles

What You'll Learn

Active Vocabulary

congruence transformation

Skim Lesson 4-7. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
isometry preimage
reflection
rotation
transformation
image a type of transformation that is a flip over a line
the end result of a geometric transformation
an operation that maps an original geometric figure onto a new figure a type of transformation that is a slide of a figure
New Vocabulary Match the term with its definition by drawing a line to connect the two.
a transformation in which the position of the image may differ from that of the preimage, but the two figures remain congruent
also known as a rigid transformation , figur
a type of transformation that is a turn around a fixed point
\qquad
\qquad

Main Idea

Identify Congruence Transformation
pp. 294-295

Verify Congruence

p. 296

Details

Write the type of transformation of triangle $A B C$ (the preimage) in each box.

Complete each statement to verify the congruence.

$R S=$ \qquad
$S T=$ \qquad
$R T=$ \qquad
$R^{\prime} S^{\prime}=$ \qquad
$S^{\prime \prime} T^{\prime}=$ \qquad
$R^{\prime} T^{\prime}=$ \qquad

Helping You Remember

Geometric reflections, translations, and rotations are also known as flips, slides, and turns. Describe how these terms appropriately illustrate the corresponding transformations.
\qquad
\qquad
\qquad

4-8 Triangles and Coordinate Proof

What You'll Learn

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

\qquad
Review Vocabulary Write the correct term next to each definition. (Lesson 4-7)
an operation that maps an original geometric figure onto a new figure
a type of transformation that is a slide of a figure also known as a rigid transformation
a type of transformation that is a flip over a line
the end result of a geometric transformation
a type of transformation that is a turn around a fixed point
the original figure in a geometric transformation

New Vocabulary Write the definition next to the term.
coordinate proof
\qquad
\qquad
Lesson 4-8 (continued)

Main Idea

Position and Label

 Trianglespp. 301-302

Details

Complete the boxes below to illustrate the four key steps in placing a triangle on a coordinate grid to aid in coordinate proof.

Step 2

Complete each statement showing the side lengths of triangle RST. Round to the nearest hundredth if necessary. Classify the triangle.

Write Coordinate Proofs pp. 302-303
\qquad
$R T \cong$ \qquad
$T S \cong$ \qquad
Triangle $R S T$ is \qquad —.
$R S \cong$

Helping You Remember Many students find it easier to remember

 mathematical formulas if they can put them into words in a compact way. Describe how you can use coordinate proof to help you remember the midpoint formula.\qquad
\qquad
\qquad

CHAPTER
 4
 Congruent Triangles

The It Together

Complete the graphic organizer with a term or formula from the chapter.

\qquad

cump
 4 Congruent Triangles

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online
Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
I used my Foldable to complete the review of all or most lessons.I completed the Chapter 4 Study Guide and Review in the textbook.I took the Chapter 4 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.
\qquad DATE \qquad
\qquad

CHAPTER
 5
 Relationships in Triangles

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Relationships in Triangles
- Concurrent lines do not intersect and stay the same distance apart.	
	- To find the incenter of a triangle, draw a circle within the triangle.
	- Every triangle has 3 medians that are concurrent.
	The largest angle in a triangle is opposite the longest side.
	The Hinge Theorem is a way of proving triangle relationships.

FOLDABLES Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, include personal experiences that relate to the lesson and ways in which what you have learned will be used in your daily life.
- When you take notes, write questions you have about the lessons in the margin of your notes.
Then include the answers to these questions as you work through the lesson.
\qquad
\qquad
\qquad

CHAPTER
 5 Relationships in Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on medians and altitudes of triangles, one fact might be lines containing the altitudes of a triangle are concurrent, intersecting at a point called the orthocenter. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
5-1 Bisectors of Triangles	
$5-2$ Medians and Altitudes of Triangles	
$5-3$ Inequalities of One Triangle	
$5-4$ Indirect Proof	
$5-5$ The Triangle Inequality	
5 5-6 Inequalities in Two Triangles	
5 Triangles and Coordinate Proof	

\qquad
\qquad

5-1 Bisectors of Triangles

What You'll Learn

Skim Lesson 5-1. Predict two things that you expect to learn based on the headings and figures in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Write the correct term next to each

 definition.\qquad
a segment, line, or plane that intersects a segment at its midpoint and is perpendicular to the segment
\qquad

-

the point of intersection of the perpendicular bisectors of the three sides of a triangle
three or more lines that intersect at a common point
the point of intersection of the angle bisectors of the three angles of a triangle

Vocabulary Link Look up the definition of bisect. Use it to write the meaning of an angle bisector.
\qquad
\qquad
\qquad
\qquad

Lesson 5-1 (continued)

Details

Perpendicular Bisectors

pp. 322-324

Helping You Remember
 A good way to remember theorems and

 postulates in geometry is to explain them to other classmates in your own words. How would you describe the Angle Bisector Theorem to a classmate who is having difficulty understanding the theorem\qquad

Angle Bisectors

pp. 324-326

Describe the Perpendicular Bisector Theorem in the box below. Then write a conditional statement using the figures to illustrate the theorem.

Perpendicular Bisector Theorem

Example:

Solve for \boldsymbol{x} in the figure below.

$$
x=
$$

\qquad

| Perpendicular Bisector Theorem |
| :--- | :--- | :--- |
| Example: |

\qquad
\qquad

5-2 Medians and Altitudes of Triangles

What You'll Learn
 Skim the Examples for Lesson 5-2. Predict two things you think you will learn about medians and altitudes of triangles.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Label the diagram with the correct term. (Lesson 5-1)

New Vocabulary Write the definition next to each term.
median \qquad
\qquad
centroid \qquad
\qquad
altitude \qquad
\qquad
\qquad
orthocenter \qquad
\qquad
\qquad
\qquad

Lesson 5-2 (continued)

Main Idea

Medians

pp. 333-335

Altitudes

pp. 335-337

Details

Point O is the centroid of triangle VTR. Use the Centroid Theorem to complete each statement.

$$
T O=\ldots T W
$$

$V S=$ \qquad VO

Name the orthocenter of $\triangle R S T$.

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose that a classmate is having trouble remembering whether the center of gravity of a triangle is the orthocenter, the centroid, the incenter, or the circumcenter of the triangle. Suggest a way to remember which point it is.
\qquad
\qquad
\qquad
\qquad
\qquad

5-3 Inequalities in One Triangle

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Active Vocabulary

perpendicular bisector
orthocenter
altitude
incenter
point of concurrency
median
circumcenter concurrent lines
centroid

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 5-1 and 5-2)
the place where three or more intersecting lines meet the point of concurrency of the medians of a triangle a segment of a triangle from a vertex that is perpendicular to the line containing the opposite of the triangle
the point of concurrency of the lines containing the altitudes of a triangle
a segment with endpoints being a vertex of a triangle and the midpoint of the opposite side
a segment, line, or plane that intersect a segment at its midpoint and is perpendicular to the segment
three or more lines that intersect at a common point
the point of intersection of the perpendicular bisectors of the three sides of a triangle
the point of intersection of the angle bisectors of the three angles of a triangle
\qquad
\qquad
Lesson 5-3 (continued)

Main Idea

Details

Angle Inequalities

pp. 342-343

Describe the Exterior Angle Inequality Theorem in your own words. Then use the figure below to write two inequalities.

\qquad
\qquad
\qquad

Angle-Side Inequalities

pp. 343-345

List the angles of $\triangle L M N$ in order from least to greatest.

Helping You Remember

Explain how the Exterior Angle Inequality
Theorem is related to the Exterior Angle Theorem, and why the Exterior Angle Inequality Theorem must be true if the Exterior Angle Theorem is true.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

5-4 Indirect Proof

What You'll Learn Scan Lesson 5-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

indirect reasoning

New Vocabulary Fill in each blank with the correct term or phrase.

Indirect reasoning is a method of thinking that assumes that a conclusion is \qquad and then showing that this assumption leads to a contradiction.

> indirect proof

In an indirect proof, you temporarily assume that what you are trying to prove is false. By showing this assumption to be logically impossible, you prove your assumption false and the \qquad true.
proof by contradiction \quad To construct a proof by contradiction, the first step is to _ that the conclusion you want to prove is false.

Vocabulary Link Think of other times you have encountered the word indirect in mathematics. Describe any similarities to an indirect proof.
\qquad
\qquad
Lesson 5-4 (continued)

Indirect Algebraic Proof

pp. 351-353

Indirect Proof with Geometry
pp. 353-354

Complete the table below showing the steps involved in constructing an indirect proof.

	How to Write an Indirect Proof
Step 1	$=$
	-
Step 2	
	$=$
	$=$
Step 3	
	$=$

Suppose you want to prove that the sum of interior angles of a triangle is equal to 180°. What assumption would you make to form an indirect proof of this statement?
\qquad
\qquad

5-5 The Triangle Inequality

What You'll Learn
 Scan the text in Lesson 5-5. Write two facts you learned about the triangle inequality.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Label each figure with the correct term. (Lessons 5-1 and 5-2)

\qquad
\qquad
Lesson 5-5 (continued)

The Triangle Inequality

pp. 360-361

If the measures of two sides of a triangle are 4 centimeters and 9 centimeters, what is the least possible whole number measure for the third side?
Step 1: Use the triangle inequality to write three inequalities for a triangle with sides 4,9 , and x centimeters.

Step 2: Solve each the inequalities.

Step 3: Use the inequalities to solve the problem.

Proofs Using the Triangle Inequality p. 362

Complete the two-column proof.
Given: $\overline{F I} \cong \overline{F J}$
Prove: $F I+F H>H J$

2. \qquad
3. \qquad 3.
4. \qquad

Helping You Remember

A good way to remember a new theorem is to state it informally in different words. How could you restate the Triangle Inequality Theorem?
\qquad
\qquad
\qquad

5-6 Inequalities in Two Triangles

What You'll Learn

2.

Skim the lesson. Write two things you already know about inequalities in two triangles.

1. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Write the correct term next to each definition. (Lessons 5-1 and 5-2)
a segment of a triangle from a vertex that is perpendicular to the line containing the opposite of the triangle
\qquad
\longrightarrow a segment, line, or plane that intersect a segment at its midpoint and is perpendicular to the segment
the point of intersection of the perpendicular bisectors of the three sides of a triangle
the point of concurrency of the medians of a triangle

Vocabulary Link Describe how the hinge of a door can be used to illustrate the Hinge Theorem.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 5-6 (continued)

Main Idea

Details

Hinge Theorem

pp. 367-370

Prove Relationships in

 Two Trianglespp. 370-371

Find the range of possible values for \boldsymbol{x} in the figure below.

Describe how you could use the Hinge Theorem to complete the proof below.
Given: $A C=C D$
Prove: $B D>A B$

Helping You Remember

A good way to remember something is to think of it in concrete terms. How can you illustrate the Hinge Theorem with everyday objects?
\qquad
\qquad DATE \qquad
\qquad

CHAPTER
 5
 Relationships in Triangles

The It Together

Complete each graphic organizer with a term, description, diagram, or theorem from the chapter.

Segment	Definition	Point of Concurrency	Property of Point	Diagram
	a segment that bisects the side of a triangle at a right angle			
		incenter		
			center of gravity of the triangle	
altitude				

Triangle Inequalities

Exterior Angles	
Angle-Side	
Triangle Inequality	
Hinge	

\qquad
\qquad
\qquad

chavien
 5 Relationships in Triangles

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Relationships in Triangles	After You Read
- Concurrent lines do not intersect and stay the same distance apart.	
- To find the incenter of a triangle, draw a circle within the triangle.	
- Every triangle has 3 medians that are concurrent.	
- The largest angle in a triangle is opposite the shortest	
side.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes,

 personal tutors, and practice tests to help you study for concepts in Chapter 5.
Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 5 Study Guide and Review in the textbook.
\square I took the Chapter 5 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- Get a good nights rest before a test. Students that take the time to sleep usually do better than students who stay up late cramming.
\qquad
\qquad
\qquad

CHAPTER

 Quadrilaterals

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Quadrilaterals
	- The sum of the interior angles of a convex polygon is $(n-1) \times 180$.
	- A diagonal cuts a parallelogram into 2 congruent triangles.
	- A rhombus is a quadrilateral.
	- If a parallelogram has 1 right angle, then it has 4 right angles.
	- A trapezoid can have 0 or 1 set of parallel sides.

[OLDA ${ }^{\prime}$ BS Study Organizer Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- When you take notes, look for written real-world examples in your everyday life.
Comment on how writers use statistics to prove or disprove points of view and discuss the ethical responsibilities writers have when using statistics.
- When you take notes, include visuals.

Clearly label the visuals and write captions when needed.
\qquad
\qquad
\qquad

CHAPTER
 6 Quadrilaterals

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on rectangles, one fact might be a parallelogram with four right angles is a rectangle. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
6-1 Angles of Polygons	
6-2 Parallelograms	
6-3 Tests for Parallelograms	
6-4 Rectangles	
6-5 Rhombi and Squares	

\qquad
\qquad
\qquad

6-1 Angles of Polygons

Skim Lesson 6-1. Predict two things that you expect to learn based on the headings and figures in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

diagonal

New Vocabulary Write the definition next to the term.
\qquad

Name all of the diagonals in polygon $A B C D E$.

Vocabulary Link Look up how television screens are measured. What does it mean for a television to have a 32 -inch screen?
\qquad
\qquad

Details

Polygon Interior Angles Sum
pp. 389-392

Polygon Exterior Angles Sum
pp. 392-393

Complete the following table for convex polygons. For middle column, find the number of triangles you can divide the polygon into by drawing all the possible diagonals from one vertex.

polygon	number of sides	number of triangles	sum of interior angle measures
triangle			
hexagon			
octagon			
nonagon			
n-gon			

Find the value of \boldsymbol{x} in the figure below.

Helping You Remember

A good way to remember a new mathematical idea or formula is to relate it to something you already know. How can you use your knowledge of the Angle Sum Theorem (for a triangle) to help you remember the Interior Angle Sum Theorem?
\qquad
\qquad

6-2 Parallelograms

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary \quad New Vocabulary Write the definition of the term.

Fill in each blank using parallelogram $A B C D$.
$\overline{A B}$ \qquad
$\overline{A D} \cong$
$\overline{B C} \|$
$\overline{A E} \cong$ \qquad

\qquad
\qquad

Sides and Angles of Parallelograms

pp. 399-400

Diagonals of Parallelograms
pp. 401-402

Complete the table using Theorems 6.3, 6.4, 6.5, and 6.6 in the Student Edition.

Properties of Parallelograms	
Theorem	Property
$\mathbf{6 . 3}$	If a quadrilateral is a parallelogram, then its opposite sides are $\mathbf{6 . 4}$
If a quadrilateral is a parallelogram, then its opposite angles are $\mathbf{6 . 5}$	If a quadrilateral is a parallelogram, then its opposite sides are $\mathbf{6 . 6}$
If a parallelogram has one right angle, then it has four	

Find the value of \boldsymbol{z} in the parallelogram below.

Helping You Remember
 A good way to remember new theorems in

 geometry is to relate them to theorems you learned earlier. Name a theorem about parallel lines that can be used to remember the theorem that says, "If a parallelogram has one right angle, it has four right angles."\qquad
\qquad

6-3 Tests for Parallelograms

What You'll Learn
 Skim the Examples for Lesson 6-3. Predict two things you think you will learn about tests for parallelograms.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 6-1 and 6-2)
diagonal A diagonal is a segment in a polygon that connects any two
\qquad

``` vertices. . parallelogram \(\downarrow\) A parallelogram is a quadrilateral with both pairs of parallel.
```

Fill in each blank to review the properties of parallelograms.
The \qquad sides of a parallelogram are congruent.

The opposite angles of a parallelogram are \qquad _.

Consecutive angles in a parallelogram are \qquad -.

If a parallelogram has one \qquad angle, then it has four \qquad angles.
\qquad
\qquad

Conditions for

 Parallelogramspp. 409-411

Parallelograms on the

 Coordinate Planepp. 412-413

Complete the table using Theorems 6.9, 6.10, 6.11, and 6.12 in the student book for any quadrilateral $A B C D$.

Properties of Parallelograms	
Theorem	Property
$\mathbf{6 . 9}$	If both pairs of opposite sides of $A B C D$ are 6.10
\mathbf{l} If both pairs of opposite angles of $A B C D$ are	
$\mathbf{6 . 1 1}$	If the diagonals of $A B C D$ each other, then $A B C D$
$\mathbf{6 . 1 2}$	If one pair of opposite sides of $A B C D$ is both parallelogram.

Find the slope of each line segment to verify that $W X Y Z$ is a parallelogram.

slope of $\overline{W X}=$ \qquad
slope of $\overline{X Y}=$ \qquad
slope of $\overline{Y Z}=$ \qquad
slope of $\overline{W Z}=$ \qquad

Helping You Remember

A good way to remember a large number of mathematical ideas is to think of them in groups. How can you state the conditions as one group about the sides of a quadrilateral that guarantee it is a parallelogram?
\qquad
\qquad

6-4 Rectangles

What You'|l Learn \int Scan Lesson 6-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Write the definition of the term.
rectangle \qquad
\qquad

Fill in each blank using rectangle $A B C D$.

$$
\begin{aligned}
& \overline{A B} \| \\
& \overline{A C} \cong \\
& m \angle A D C= \\
& m \angle B C D= \\
& \overline{A D} \cong
\end{aligned}
$$

\qquad
\qquad
\qquad
Lesson 6-4 (continued)

Properties of Rectangles

pp. 419-420

Cross out the incorrect quadrilateral to complete the Venn diagram and illustrate the relationship between rectangles and parallelograms. Then write the definition of the correct quadrilateral in the space provided.

Use the Distance Formula to determine whether or not parallelogram $R S T U$ is a rectangle.

\qquad
$S U \approx$ \qquad

Helplag You Remember It is easier to remember a large number of

 geometric relationships and theorems if you are able to combine some of them. How can you combine the two theorems about diagonals that you studied in this lesson?\qquad
\qquad

6-5 Rhombi and Squares

What You'll Learn

Scan the text in Lesson 6-5. Write two facts you learned about rhombi and squares.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
rhombus square

New Vocabulary Label the diagrams with the correct terms.

Vocabulary Link A square is a shape that you learn at a very early age. Name some everyday items that are shaped like a square. Can you name any items that are shaped like a rhombus?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 6-5 (continued)

Main Idea

Properties of Rhombi and Squares
pp. 426-428

Prove That Quadrilaterals Are Rhombi or Squares pp. 428-430

Details

Use the properties of rhombi to solve for \boldsymbol{x} in rhombus $A B C D$.
$A D=8 x-11$
$D C=5 x+13$

Describe how you could prove that $R S^{2}=R V^{2}+S V^{2}$ in rhombus RSTU.

\qquad
\qquad

6-6 Trapezoids and Kites

What You'll Learn

Skim the lesson. Write two things you already know about trapezoids and kites.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

base angles

isosceles trapezoid
kite
legs of a trapezoid
the angles formed by the base and one of the legs of a trapezoid
midsegment of a trapezoid
a quadrilateral with exactly one pair of parallel sides
trapezoid a trapezoid with congruent legs
\qquad
\qquad
Lesson 6-6 (continued)

Main Idea

Properties of Trapezoids

pp. 435-438

Details

Complete the flow proof below. Given: $A B C D$ is an isosceles trapezoid with bases $\overline{A B}$ and $\overline{C D}$.

Prove: $\angle B D C \cong A C D$

SSS
CPCTC
Solve for \boldsymbol{x} if $\overline{M N}$ is a midsegment of trapezoid RSTU.
Properties of Kites
pp. 438-439

Helping You Remember

A good way to remember a new geometric theorem is to relate it to one you already know. Name and state in words a theorem about triangles that is similar to the theorem in this lesson about the median of a trapezoid.

$$
x=
$$

\qquad
\qquad
\qquad

CHAPTER
 6 Quadrilaterals

The It Together

Complete the graphic organizer with properties of the figure from the chapter.

\qquad
\qquad
\qquad

CHAPTER

6 Quadrilaterals

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Quadrilaterals	After You Read
- The sum of the interior angles of a convex polygon is $(n-1) \times 180$.	
- A diagonal cuts a parallelogram into 2 congruent triangles.	
- A rhombus is a quadrilateral.	
- If a parallelogram has 1 right angle, then it has 4 right angles.	
- A trapezoid can have 0 or 1 set of parallel sides.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 6.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 6 Study Guide and Review in the textbook.I took the Chapter 6 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

W Study Tips

- When you are preparing to read new material, scan the text first, briefly looking over headings, highlighted text, pictures, and call out boxes. Think of questions that you can search the text for as you read.
\qquad
\qquad
\qquad

Proportions and Similarity

Before You Read

Before you read the chapter, think about what you know about proportions and similarity. List three things you already know about proportions and similarity in the first column. Then list three things you would like to learn about them in the second column.

K Kat I know...	

OLDA $\int^{\prime} \dot{B}^{2}$ LS Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Fote Taking Tips

- When you take notes, write instructions on how to do something presented in each lesson.
Then follow your own instructions to check them for accuracy.
- When you take notes, be sure to describe steps in detail.

Include examples of questions you might ask yourself during problem solving.
\qquad
\qquad
\qquad

CHAPTER

7 Proportions and Similarity

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on similar polygons, one fact might be similar polygons have the same shape but not the same size. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
7-1 Ratios and Proportions	
7-2 Similar Polygons	
7-3 Similar Triangles	
7-4 Parallel Lines and Proportional Parts	
7-5 Parts of Similar Triangles	
7-7 Scale Drawings and Models	

\qquad
\qquad

7-1 Ratios and Proportions

What You'll Learn

Skim the Examples for Lesson 7-1. Predict two things you think you will learn about ratios and proportions.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

cross product extended ratio
extremes
the product of the extremes, $a d$, and the product of the means, $b c$ in the proportion $\frac{a}{b}=\frac{c}{d}$
proportion ratio

New Vocabulary Match the term with its definition by drawing a line to connect the two.
the numbers a and d in the proportion $\frac{a}{b}=\frac{c}{d}$
an equation stating that two ratios are equal

means a ratio that compares three or more numbers

a comparison of two quantities using division
the numbers b and c in the proportion $\frac{a}{b}=\frac{c}{d}$

Vocabulary Link Look up the meaning of the word proportional. How does this relate to a proportion in mathematics?
\qquad
\qquad

Lesson 7-1 (continued)

Main Idea

Write and Use Ratios

pp. 457-458

Use Properties of

 Proportionspp. 458-459

Details

The ratio of the measures of the angles in $D E F$ is 4:5:9. Find the measures of the angles.

Step 1: Multiply the ratio by x to represent the unknown angle measures.

Step 2: Write an equation using the extended ratio and the Triangle Sum Theorem.

Step 3: Solve for x.
Step 4: Find the angle measures.

A quality control engineer randomly samples 120 car stereos coming off an assembly line. He finds that 3 of them have cosmetic blemishes. How many car stereos would you expect to have cosmetic blemishes in a production run of $\mathbf{8 0 0 0}$ car stereos?

Write a proportion.

Solve the proportion. \qquad

Helping You Remember Sometimes it is easier to remember a

 mathematical idea if you put it into words without using any mathematical symbols. How can you use this approach to remember the concept of equality of cross products?\qquad
\qquad
\qquad
\qquad

7-2 Similar Polygons

What You'll Learn

Skim Lesson 7-2. Predict two things that you expect to learn based on the headings and figures in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term.
(Lesson 7-1)
proportion \qquad
extended ratio \qquad
extremes \qquad
ratio \qquad

New Vocabulary Write the correct term next to each definition.
the scale factor between two similar polygons
polygons that have the same shape but not necessarily the same size
the ratio of the lengths of the corresponding sides of two similar polygons
\qquad
\qquad
Lesson 7-2 (continued)

Details

Identify Similar
 Polygons

pp. 465-466

Model two similar triangles by writing the side lengths of $\triangle X Y Z$. Then tell the scale factor from $\triangle H I J$ to $\triangle X Y Z$.
scale factor: \qquad

Use Similar Figures

pp. 467-468

Solve for y in the similar trapezoids below.

$y=$ \qquad

Helping You Remember

A good way to remember a new mathematical vocabulary term is to relate it to words used in everyday life. The word scale has many meanings in English. Give three phrases that include the word scale in a way that is related to proportions.
\qquad
\qquad

7-3 Similar Triangles

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 7-1, 7-2)
extremes \quad The extremes are the numbers \qquad and \qquad in the proportion $\frac{a}{b}=\frac{c}{d}$.
means \quad The means are the numbers \qquad and \qquad in the proportion $\frac{a}{b}=\frac{c}{d}$.
proportion A proportion is an equation stating that \qquad are equal.
scale factor \quad The scale factor is the ratio of the lengths of the
\qquad sides of two similar polygons.
ratio \quad A ratio is a comparison of two quantities using \qquad .
similar polygons - Similar polygons have the same \qquad but not necessarily the same \qquad .
\qquad
\qquad

Lesson 7-3 (continued)

Identify Similar Triangles
pp. 474-477

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.

Complete the table to show the properties of
similarity in Theorem 7.5.

Theorem 7.5	
Properties of Similarity	
Reflexive Property	
Symmetric Property	
Transitive Property	

Use Similar Triangles

pp. 477-478

Helping You Remember A good way to remember something is to explain

 it to somone else. Suppose one of your classmates is having trouble understanding the difference between SAS for congruent triangles and SAS for similar triangles. How can you explain the difference to him or her?\qquad
\qquad

7-4 Parallel Lines and Proportional Parts

What You'll Learn
 Scan Lesson 7-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Label the diagrams with the correct terms. (Lesson 7-1)
2.
e

\qquad
\qquad
\qquad

Main Idea

Details

Proportional Parts Within Triangles
pp. 484-486

Use the Triangle Proportionality Theorem to find $\boldsymbol{R T}$.

Step 1: Use the Triangle Proportionality Theorem to write a proportion.

Step 2: Substitute the known values into the proportion.

Step 3: Solve the proportion for $R T$.

Proportional Parts with Parallel Lines

pp. 486-488

Model Corollary 7.1 by drawing two transversals on the parallel lines below and writing a proportion.

\qquad
\qquad

7-5 Parts of Similar Triangles

What You'll Learn

Scan the text in Lesson 7-5. Write two facts you learned about parts of similar triangles.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Label the diagrams with the correct terms. (Lessons 5-1 and 5-2)
angle bisector
altitude - median

\qquad
\qquad

Lesson 7-5 (continued)

Main Idea

Details

Special Segments of Similar Triangles
pp. 495-497

Use Theorem 7.8 in the student book to solve for $B D$ in the similar triangles below.

Step 1: Use Theorem 7.8 to write a proportion.

Step 2: Substitute the known values into the proportion.

Step 3: Solve the proportion for $B D$.

Model the Triangle Angle Bisector Theorem by drawing an angle bisector and writing a proportion.

Helping You Remember A good way to remember a large amount of

 information is to remember key words. What key words will help you remember the features of similar triangles that are proportional to the lengths of the corresponding sides?
Triangle Angle Bisector Theorem

p. 498 ?
\qquad
\qquad
\qquad

7-6 Similarity Transformations

What You'll Learn Skim the lesson. Write two things you already know about similarity transformations.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Fill in each blank with the correct term or phrase.

Dilations are performed with respect to a \qquad called the center of dilation.
dilation A dilation is a transformation that \qquad or
\qquad the original figure proportionally.
enlargement A dilation with a scale factor \qquad produces an enlargement.
scale factor of a dilation
similarity transformation
reduction

The scale factor of a dilation describes the \qquad of the dilation.

A similarity transformation is a transformation that maps a figure onto a \qquad figure.

A dilation with a scale factor \qquad produces a reduction.
\qquad
\qquad

Details

Identify Similarity Transformations pp. 505-506

Verify Similarity

p. 507

Model a reduction and an enlargement by drawing a similar triangle on each coordinate grid. Write the scale factor of each dilation.

Reduction

scale factor: \qquad

Enlargement

scale factor: \qquad

Graph the original figure and its dilated image on a sheet of graph paper. Verify that the dilation is a similarity transformation.

Preimage: $A(0,0), B(2,3), C(4,1)$
Image: $A^{\prime}(0,0), B^{\prime}(4,6), C^{\prime}(8,2)$

Helping You Remember

A good way to develop a higher understanding of a concept is to compare and contrast it with other similar topics. Compare and contrast similarity transformations with the congruency transformations that you learned about in chapter 6.
\qquad
\qquad
\qquad
\qquad
\qquad

7-7 Scale Drawings and Models

What You'll Learn Scan the text in Lesson 7-7. Write two facts you learned about scale drawings and models.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Write the definition next to each term.

scale

\qquad
\qquad
scale drawing
scale model

New Vocabulary Scale drawings and models have a wide range of applications. For instance, a roadmap is a real world example of a scale drawing. Can you think of other real world examples of scale drawings and scale models?
\qquad
\qquad

Lesson 7-7 (continued)

Scale Models

pp. 512-513

The scale on a map is 2 centimeters : 15 kilometers. If the distance between two cities on the map is 9 centimeters, find the actual distance between the cities.

Method 1

Write a proportion using the scale.

Method 2
Write an equation using the number of kilometers per centimeters.

Suppose a model airplane has a wingspan of 8 inches. The actual plane has a wingspan of 48 feet.

1. What is the scale of the model? \qquad in. : \qquad ft
2. How many times as long as the actual plane is the model? \qquad

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose one of your classmates is having trouble understanding how to use the scale on a map to calculate actual distances. How can you explain the procedure to her?
\qquad
\qquad
\qquad
\qquad

CHAPTER
 7
 Proportions and Similarity

The It Together
Complete the graphic organizer with a phrase or formula from the chapter.

\qquad

CHAPTER
 7 Proportions and Similarity

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.I completed the Chapter 7 Study Guide and Review in the textbook.
\square I took the Chapter 7 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.
\qquad
\qquad

ant
 \square
 Right Triangles and Trigonometry

Before You Read

Before you read the chapter, think about what you know about right triangles and trigonometry. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDA A_{B} LES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- When searching for the main idea of a lesson, ask yourself, "What is this paragraph or lesson telling me?"
- When you take notes, include definitions of new terms, explanations of new concepts, and examples of problems.
\qquad
\qquad
\qquad

cumb
 8 Right Triangles and Trigonometry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on geometric mean, one fact might be the geometric mean between two numbers is the positive square root of their product. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Geometric Mean	
8-2 The Pythagorean Theorem and Its Converse	
8-3 Special Right Triangles	
8-4 Trigonometry	
8-5 Angles of Elevation	
8-6 The Law of Sines and Law of Cosines	

\qquad
\qquad

8-1 Geometric Mean

What You'll Learn

Skim Lesson 8-1. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
 Review Vocabulary Write the correct term next to each

\qquad an equation stating that two ratios are equal
the numbers a and d in the proportion $\frac{a}{b}=\frac{c}{d}$ definition. (Lesson 7-1)
the numbers b and c in the proportion $\frac{a}{b}=\frac{c}{d}$
New Vocabulary Complete each statement by filling in the blank with the correct term or phrase or writing the correct formula.
geometric mean \quad The geometric mean of two positive numbers a and b is the number x such that \qquad

The measure of the altitude drawn from the vertex of a right triangle to its hypotenuse is the geometric mean between the measures of the two segments of the \qquad .

The geometric mean of two positive numbers a and b can be calculated using the expression \qquad .
\qquad
\qquad

Lesson 8-1 (continued)

Main Idea

Geometric Mean

p. 531

Details

Find the geometric mean between 8 and 18.
\qquad
\qquad
\qquad
\qquad
definition of geometric mean

Substitute for a and b.

Multiply.

Simplify.

Geometric Means in Right Triangles
pp. 531-534

Model Theorem 8.2, the Geometric Mean (Altitude) Theorem, by drawing a segment on right triangle DEF and writing a proportion.

\qquad
\qquad

8-2 The Pythagorean Theorem and Its Converse

What You'll Learn
 Scan the text in Lesson 8-2. Write two facts you learned about the Pythagorean Theorem and its converse as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary Review Vocabulary Fill in each blank with the correct term or phrase. (Lesson 1-5)

The geometric mean of two \qquad numbers a and b can be calculated using the expression $x=\sqrt{a b}$. The measure of the \qquad drawn from the vertex of the right triangle to its hypotenuse is the geometric mean between the measures of the two segments of the hypotenuse.

New Vocabulary Write the definition next to the term.

Pythagorean triple

\qquad
\qquad

The Pythagorean Theorem
pp. 541-544

Circle each set of numbers that is a Pythagorean triple.

1. $6,8,10$
2. $7,21,25$
3. $5,12,13$
4. $24,45,51$
5. $14,48,50$
6. $10,15,17$
7. $21,72,75$
8. $16,30,36$
9. $15,36,39$

Fill in each blank to complete the converse of the Pythagorean Theorem.

Converse of the Pythagorean Theorem

Words If the sum of the \qquad of the lengths of the shortest sides of a triangle is equal to the square of the length of the \qquad side,
then the triangle is a right triangle.
Symbols If $a^{2}+b^{2}=c^{2}$, then \qquad .

Converse of the Pythagorean Theorem	
Words \quadIf the sum of the ___ of the lengths of the shortest sides of a triangle is equal to the	
	square of the length of the ___ side,
then the triangle is a right triangle.	

Converse of the Pythagorean Theorem
pp. 544-545

Details

Helping You Remember

Many students who studied geometry long ago remember the Pythagorean Theorem as the equation $a^{2}+b^{2}=c^{2}$, but cannot tell you what this equation means. A formula is useless if you don't know what it means and how to use it. How could you help someone who has forgotten the Pythagorean Theorem remember the meaning of the equation $a^{2}+b^{2}=c^{2}$?
\qquad
\qquad
\qquad

8-3 Special Right Triangles

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Quadrilateral $A B C D$ is a square with side lengths s. Fill in each blank to show what you know about the figure.

$$
A B=
$$

\qquad

$$
\begin{aligned}
& m \angle A D C= \\
& m \angle A C D=
\end{aligned}
$$

$$
A C=
$$

Triangle $L M N$ is equilateral with side lengths $2 s$. Fill in each blank to show what you know about the figure.

$$
O N=
$$

\qquad

$$
\begin{aligned}
& m \angle O L N= \\
& m \angle L N O=
\end{aligned}
$$

$L O=$ \qquad
\qquad
\qquad

Lesson 8-3 (continued)

Main Idea

Properties of $\mathbf{4 5}^{\circ}-\mathbf{4 5}^{\circ}-90^{\circ}$ Triangles

pp. 552-553

Details

Fill in each blank and label the figure to illustrate the $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem.

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the legs ℓ are \qquad and the length
of the hypotenuse h is \qquad
 times the length of a leg.

Solve for q and \boldsymbol{s} in the figure below.

Properties of $\mathbf{3 0}^{\circ}-\mathbf{6 0} 0^{\circ}-90^{\circ}$ Triangles
pp. 553-555

$q=$ \qquad
$s=$ \qquad

Helping You Remember

Some students find it easier to remember mathematical concepts in terms of specific numbers rather than variables. How can you use specific numbers to help you remember the relationship between the lengths of the three sides in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8-4 Trigonometry

What You'll Learn

Skim the Examples for Lesson 8-4. Predict two things you think you will learn about trigonometry.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the correct term next to each definition.
\qquad the ratio of the opposite leg to the hypotenuse of a right triangle
\qquad the measure of $\angle A$ if $\sin A$ is known
\qquad - the study of triangle measurement
\qquad - the measure of $\angle A$ if $\tan A$ is known
\qquad - the ratio of the adjacent leg to the hypotenuse of a right triangle
the measure of $\angle A$ if $\cos A$ is known
\qquad - a ratio of the lengths of two sides of a right triangle
\qquad - the ratio of the opposite leg to the adjacent leg of a right triangle
\qquad
\qquad

Lesson 8-4 (continued)

Main Idea

Details

Trigonometric Ratios

pp. 562-564

Complete the statements to show the trigonometric ratios for angles H and K.
$\sin H=$ \qquad
$\sin K=$ \qquad
$\cos H=$ \qquad

$\cos K=$ \qquad
$\tan H=$ \qquad
$\tan K=$ \qquad

Use Inverse Trigonometric Ratios

 pp. 564-566Use a calculator to find $m \angle F$ to the nearest tenth.

$m \angle F \approx$ \qquad

Helping You Remember

How can the co in cosine help you remember the relationship between the sines and the cosines of the two acute angles of a right triangle?
\qquad
\qquad
\qquad

8-5 Angles of Elevation and Depression

What You'll Learn Skim the lesson. Write two things you already know about angles of elevation and depression.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary New Vocabulary Write the definition next to each term.
angle of elevation \qquad
\qquad

Vocabulary Link What are some real-world examples of angles of elevation and depression?
\qquad
\qquad
\qquad

Lesson 8-5 (continued)

Main Idea

Details

Angles of Elevation and Depression
pp. 574-575

A plane takes off and climbs at an angle of elevation of 35°. How high above the ground is the plane after traveling 250 yards? Model the situation with a diagram and solve.

Two Angles of Elevation or Depression
pp. 575-576

Solve for \boldsymbol{x} in the figure below.

$$
x \approx
$$

\qquad

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose a classmate finds it difficult to distinguish between angles of elevation and angles of depression. What are some hints you can give her to get it right every time?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8-6 The Law of Sines and Law of Cosines

What You'll Learn

Active Vocabulary

tangent
angle of depression
cosine
angle of elevation
the ratio of the adjacent leg to the hypotenuse of a right triangle
Scan Lesson 8-6. List two headings you would use to make an outline of this lesson.

1. \qquad
2. \qquad

Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lesson 1-5)
the angle formed by a horizontal line and an observer's line of sight to an object above the horizontal line
the ratio of the opposite leg to the adjacent leg of a right triangle
the angle formed by a horizontal line and an observer's line of sight to an object above the horizontal line

New Vocabulary Fill in each blank with the correct term or phrase.

Law of Sines \quad You can use the Law of Sines to solve a \qquad if you know the measures of \qquad and
\qquad (AAS). If given ASA, use the Triangle
Angle Sum Theorem to find the measure of the
\qquad .

Law of Cosines \quad You can use the Law of Cosines to solve a triangle if you know the measures of two \qquad and the
\qquad
\qquad

Lesson 8-6 (continued)

Main Idea

Details

Law of Sines

pp. 582-583

Law of Cosines
pp. 583-585

Use the Law of Cosines to solve for \boldsymbol{x} to the nearest tenth.

\qquad
\qquad

8-7 Vectors

What You'll Learn Skim the Examples for Lesson 8-7. Predict two things you think you will learn about vectors.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary New Vocabulary Write the correct term next to each definition.

- a description of a vector in terms of its horizontal change x and vertical change y from its initial point to its terminal point
\qquad - the angle that is formed with the x-axis or any other horizontal line
the length of the vector from its initial point to its terminal point
\qquad a way to find the sum of two vectors using a parallelogram
\qquad - the sum of two vectors
\qquad - a vector that is placed in the coordinate plane with its initial point at the origin
\qquad - a way to find the sum of two vectors using a triangle
\qquad a quantity that has both magnitude and direction
\qquad
\qquad

Main Idea

Describe Vectors

pp. 593-594

Vector Addition

pp. 594-596

Details

Write the component form of $\overrightarrow{\boldsymbol{S T}}$.

Model the parallelogram method and the triangle method below by drawing two vectors and showing the resultant.

Parallelogram Method	Triangle Method

Helping You Remember

A good way to remember a new mathematical term is to relate it to a term you already know. You learned about scale factors when you studied similarity and dilations. How is the idea of a scalar related to scale factors?
\qquad
\qquad
\qquad
\qquad
\qquad

CHAPTER
 8 Right Triangles and Trigonometry

Tie It Together

Complete the graphic organizer with a term or formula from the chapter.

Right Triangles		
	Notation	Diagram/Examples
Similar Right Triangles		
Geometric Mean		
Right Triangle Geometric Mean Theorem		
Pythagoras		
Pythagorean Theorem		
Pythagorean Inequality Theorems		
Special Right Triangles		
$45^{\circ}-45^{\circ}-90^{\circ}$		
$30^{\circ}-60^{\circ}-90^{\circ}$		
Trigonometry		
Ratios		
Law of Sines Law of Cosines		
Chapter 8		Glencoe Geometry

\qquad
\qquad
\qquad

curnit
 8 Right Triangles and Trigonometry

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 8 Study Guide and Review in the textbook.I took the Chapter 8 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- While note-taking use abbreviations to use less time and room. Write neatly and place a question mark by any information that you do not understand.
\qquad DATE \qquad
\qquad

cump
 9
 Transformations and Symmetry

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Transformations and Symmetry
- The orientation of an image that undergoes a reflection stays the same.	
	- The image after a 180° rotation is equal to the original image.
	An image after 2 reflections in parallel lines is equal to a translation.
	- Vectors can be used to define translations.
	- Dilations can have positive or negative scale factors.

OLDA A^{\prime} SS Study Organizer Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- At the end of each lesson, write a summary of the lesson, or write in your own words what the lesson was about.
- As you read each lesson, list examples of ways the new knowledge has been or will be in your daily life.
\qquad
\qquad

chatio
 9 Transformations and Symmetry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on symmetry, one fact might be the number of times a figure maps onto itself as it rotates from 0° to 360° is called the order of symmetry. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
9-1 Reflections	
9-2 Translations	
9-3 Rotations	
9-4 Compositions of Transformations	
9-5 Symmetry	
Chapter 9 Dilations	

\qquad
\qquad

9-1 Reflections

What You'll Learn Scan the text in Lesson 9-1. Write two facts you learned about reflections as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Write the definition next to the term. (Lesson 7-2)
similar polygons

New Vocabulary Label the diagram with the correct term.

Vocabulary Link When you look into a mirror, you see your reflection. Explain how this relates to reflections in geometry.
\qquad
\qquad

Lesson 9-1 (continued)

Main Idea

Details

Draw Reflections

Reflect $\triangle A B C$ in the line shown.
pp. 615-616

Draw Reflections in the Coordinate Plane
pp. 616-618

Describe the similarities and differences between reflecting a point in the x-axis and reflecting a point in the y-axis.

Similarities \qquad
\qquad
\qquad
\qquad

Differences \qquad
\qquad
\qquad
\qquad

Helping You Remember

Sometimes it is helpful to put a geometric concept into your own words to help you remember it. Explain in your own words how you can reflect a point (x, y) in the line $y=x$.
\qquad
\qquad

9-2 Translations

What You'll Learn

Skim the Examples for Lesson 9-2. Predict two things you think you will learn about translations.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lesson 8-7)
a quantity that has both magnitude and direction
\qquad
quantity that has bog mand direction
\qquad the length of the vector from its initial point to its terminal point
a description of a vector in terms of its horizontal change x and vertical change y from its initial point to its terminal point
a vector that is placed in the coordinate plane with its initial point at the origin

New Vocabulary Fill in each blank with the correct term or phrase.
translation vector A translation maps each point to its image along a \qquad called the translation vector, such that

- each \qquad joining a point and its image has the same \qquad as the vector, and
- this segment is also \qquad to the vector.
\qquad
\qquad
Lesson 9-2 (continued)

Main Idea

Details

Draw Reflections

pp. 615-616

Draw the translation of $\triangle R S T$ along the translation vector.

Draw Reflections in the Coordinate Plane pp. 616-618

Complete the following table to demonstrate how to translate a point in the coordinate plane.

Words	To translate a point along vector (a, b),
	$(x, y) \rightarrow$ ExampleThe image of point $R(2,9)$ translated along vector $(1,-4)$ is

Melphig You Remember

A good way to remember a new mathematical term is to relate it to an everyday meaning of the same word. How is the meaning of translation in geometry related to the idea of translation from one language to another?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9-3 Rotations

What You'll Learn

Skim Lesson 9-3. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary phrase.

New Vocabulary Fill in each blank with the correct term or
center of rotation angle of rotation

A rotation about a \qquad called the center of rotation, through an angle of x° maps a point to its image such that

- if the point is the center of rotation, then the image and preimage are the \qquad , or
- if the point is not the center of rotation than the image and preimage are the same \qquad from the center of rotation. The measure of the angle of rotation formed by the preimage, center of rotation, and image points is x.

Vocabulary Link Describe some real-world examples of rotations that you have encountered.
\qquad
\qquad
Lesson 9-3 (continued)

Main Idea

Details

Draw Rotations

pp. 632-633

Draw Rotations in the Coordinate Plane
pp. 633-634 direction.

Draw a 90° counterclockwise rotation of $\triangle A B C$ about point D.

Fill in the boxes to describe the rotation of $\triangle D E F$ about the origin. Include the angle of rotation and the

Helping You Remember

A good way to help you remember a concept in geometry is to explain it to someone else. Suppose a classmate is having difficulty remembering how to find the coordinates of a point after a 180° rotation about the origin. How would you explain it to him?
\qquad
\qquad

9-4 Compositions of Transformations

What You'll Learn

Scan Lesson 9-4. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

center of rotation
line of reflection
angle of rotation
the point about which a preimage is turned to create its image
translation vector the amount a preimage is turned to create its image

New Vocabulary Write the correct term next to each definition.
the result when a transformation is applied to a figure and then another transformation is applied to its image
the composition of a translation followed by a reflection in a line parallel to the translation vector
\qquad
\qquad

Lesson 9-4 (continued)

Main Idea Details

Glide Reflections
pp. 641-642

Compositions of Two Reflections
pp. 642-644 to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
 each of the following compositions.

Describe the composition of transformations that lead
\qquad
\qquad
\qquad

State the type of transformation that is achieved by

Compositions of Transformations		
the composition of a reflection and a translation	the composition of two reflections in parallel lines	the composition of two reflections in intersecting lines

Helping You Remember

Theorem 9.1 in the student text states that the composition of two or more isometries is also an isometry. Describe what this means in your own words, and state a property of congruence that leads to this theorem.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9-5 Symmetry

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

\qquad
\qquad :
also called the point of symmetry
\qquad - the number of times a figure maps onto itself as it rotates from 0° to 360°
the characteristic of a figure if there exists a rigid motion that maps the figure onto itself
\qquad the smallest angle through which a figure can be rotated so that it maps onto itself
the characteristic of a figure if the figure can be mapped onto itself by a reflection in a line
the characteristic of a figure if the figure can be mapped onto itself by a rotation between 0° and 360°

Vocabulary Link Symmetry is a word that is used in everyday English. Find the definition of symmetry using a dictionary. Describe how the definition of symmetry can help you remember the mathematical definition of symmetry.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Lesson 9-5 (continued)

Details

Symmetry in TwoDimensional Figures
pp. 653-654

Symmetry in ThreeDimensional Figures p. 655

Circle the figures that have rotational symmetry.
1.

3.

2.

4.

State whether the figure below has plane symmetry, axis symmetry, both, or neither.

Step 1: Can the figure be mapped onto itself by a reflection in a plane?
\downarrow
Step 2: Can the figure be mapped onto itself by a rotation between 0° and 360° in a line?

Step 3: What kind of symmetry does the figure have?

Helping You Remember

What is an easy way to remember the order and magnitude of the rotational symmetry of a regular polygon?
\qquad
\qquad

9-6
 Dilations

What You'll Learn
 Skim the lesson. Write two things you already know about dilations.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary State whether the dilation from figure B to B^{\prime} is an enlargement or a reduction. Then find the scale factor of the dilation.

type of dilation: \qquad
scale factor: \qquad

Vocabulary Link Describe how the pupils of your eyes serve as a real-world example of dilation in different lighting conditions.
\qquad
\qquad
Lesson 9-6 (continued)

Details

Draw Dilations

pp. 660-662

p.

Draw the image of $\triangle A B C$ under a dilation with center D and scale factor 2.5.

Model a reduction by giving the coordinates of segment $R^{\prime} S^{\prime}$ and plotting it on the coordinate grid. Tell what scale factor you used in your reduction.

Helping You Remember

A good way to remember a new concept in
geometry is to explain it to someone else in your own words. How would you describe the process of dilating a point (x, y) about the origin by a scale factor k ?

Dilations in the Coordinate Plane p. 662
\qquad
\qquad
\qquad
\qquad

CHAPTER
 9 Transformations and Symmetry

The It Together

Complete the graphic organizer with a term or formula from the chapter.

\qquad
\qquad
\qquad

chanter
 9 Transformations and Symmetry

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Transformation and Symmetry	After You Read
- The orientation of an image that undergoes a reflection stays the same.	
- The image after a 180° rotation is equal to the original image.	
- An image after 2 reflections in parallel lines is equal to a translation.	
- Vectors can be used to define translations.	
- Dilations can have positive or negative scale factors.	

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 9 Study Guide and Review in the textbook.
\square I took the Chapter 9 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

- On test day, look over the entire test to get an idea of its length and scope so that you can pace yourself. Answer what you know first, skipping over material you do not know. When finished, go back and check for errors. Don't change an answer unless you are certain you are correct.
\qquad
\qquad

curne
 10 Circles

Before You Read

Before you read the chapter, think about what you know about circles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K	W
What I know...	

OLDABLES
Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, record real-life examples of how you can use fractions, decimals, and percents, such as telling time and making change.
- When you take notes, listen or read for main ideas.

Then record those ideas for future reference.
\qquad
\qquad
\qquad

curio
 10 Circles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on measuring angles and arcs, one fact might be a central angle is an angle with a vertex in the center of the circle. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
10-1 Circles and Circumference	
$10-2$ Measuring Angles and Arcs	
$10-3$ Arcs and Chords	
$10-4$ Inscribed Angles	
$10-5$ Tangents	
$10-6$ Secants, Tangents, and Angle	
Measures	
$10-7$ Special Segments in a Circle	

\qquad
\qquad

10-1 Circles and Circumference

What You'll Learn

2.

Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

\qquad - the distance around the circle

- a segment with endpoints at the center and on the circle
- the locus or set of all points in a plane equidistant from a given point
two coplanar circles that have the same center
a chord which passes though the center of a circle and is made up of collinear radii
an irrational number which by definition is the ratio of the circumference of a circle to the diameter of the circle
\qquad - descriptor give to a polygon which is drawn inside a circle such that all of its vertices lie on the circle
the name used to describe the given point in the definition of a circle
\qquad a segment with endpoints on the circle
\qquad - descriptor given to a circle which is drawn about a polygon such that the circle contains all of the vertices of the polygon two circles with congruent radii
\qquad
\qquad

Segments in a circle pp. 683-685

Compare and contrast the pairs of special segments of a circle in the diagram below.

Circumference

pp. 685-686

The circumference of a circle is 234 inches. Determine the radius and the diameter of the circle to the nearest hundredth inch.

| Start with
 $=\pi d$, and fill
 in what you
 know. |
| :---: | :---: |\longrightarrow| Solve for the | |
| :---: | :---: |
| unknown. | |
| | Determine the
 radius. |
| | |

Helping You Remember

Look up the origins of the two parts of the word diameter in your dictionary. Explain the meaning of each part and give a term you already know that shares the origin of that part.
\qquad
\qquad
\qquad
\qquad

10-2 Measuring Angles and Arcs

What You'll Learn
 Scan the text in Lesson 10-2. Write two facts you learned about measuring angles and arcs as you scanned the text.

1. \qquad
\qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Label the diagram with the terms listed at the left.
central angle arc
minor arc
major arc
semicircle
congruent arcs
adjacent arcs
.

\qquad
\qquad
Lesson 10-2 (continued)

Main Idea

Details

Angles and Arcs
pp. 692-694

Given the $m \angle E J D=15$, find each measure in $\odot J$ in the order specified. Justify your answer.
$m \overparen{E F G}=$ \qquad
\qquad
\qquad
\qquad
\qquad
$m \overparen{G H}=$ \qquad
\qquad
$m \overparen{E D}=$ \qquad

$$
m \widehat{E D H}=
$$

\qquad
\qquad
\qquad
\qquad

Find the length of $\overparen{B C}$ and $\overparen{B D C}$. The radius of $\odot A$ is 5 centimeters. What is the relationship between the two arc lengths?

$$
\begin{aligned}
& m \overparen{B C}= \\
& m \overparen{B D C}= \\
&
\end{aligned}
$$

Relationship: \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10-3 Arcs and Chords

What You'll Learn

2.

Scan Lesson 10-3. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary In the circle provided, draw a chord which is not a diameter using a regular line, a diameter using a heavy line, and a radius using a dashed line. Identify 3 arcs that were created on the circle. (Lessons 10-1 and 10-2)

Main Idea

Details

Arcs and Chords
pp. 701-702

Find the value of x.

Use the definition of congruence to write an equation. Solve the equation for x.

What is $P O$? \qquad What is $M N$? \qquad
What realtionship exists between $\overparen{P O}$ and $\overparen{M N}$?
\qquad
\qquad

Main Idea

Details

Bisecting Arcs and Chords

pp. 702-704 10.4, from the student book, in your own words.

Use the diagram below to state Theorems 10.3 and

Theorem 10.3 \qquad
\qquad
\qquad

Theorem 10.4 \qquad
\qquad
\qquad

Helping You Remember
 Writing a mathematical concept in your own

 words can help you better remember the concept. Describe Theorem 10.5, from the student book, in your own words.\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10-4 Inscribed Angles

What You'll Learn

Skim Lesson 10-4. Predict two things that you expect to learn based on the headings and figures.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary
Review Vocabulary Complete the chart below. (Lesson 6-1)

New Vocabulary Write the definition next to each term.
inscribed angle \qquad
\qquad
intercepted arc
\qquad
\qquad

Main Idea

Inscribed Angles

pp. 709-711

Angles of Inscribed Polygons
pp. 711-712

Details

Find the indicated measure for each figure.
1.

$$
m \angle B A C=
$$

2.

$m \overparen{R S}=$ \square

Provide details for Theorem 10.9 in the student book by defining each boldface word.

If a quadrilateral is inscribed in a circle, then its opposite angles

Helping You Remember
Describe how you could make a sketch that would help you remember the relationship between the measure of an inscribed angle and the measure of its intercepted arc.
\qquad
\qquad
\qquad
\qquad
\qquad

10-5 Tangents

What You'll Learn Skim the Examples for Lesson 10-5. Predict two things you think you will learn about tangents.

1. \qquad
\qquad
2. \qquad

Active Vocabulary Review Vocabulary Use the Pythagorean Theorem to

 determine if the triangles with the specified sides are right triangles. (Lesson 8-2)| $a=6, b=8, c=10$ | $a=4, b=5, c=41$ | $a=9, b=40, c=41$ |
| :--- | :--- | :--- |

New Vocabulary Fill in each blank with the correct term or phrase.

tangent \boldsymbol{a}

\qquad in the same plane as a
\qquad that \qquad the circle in
exactly \qquad point
point of tangency the point where a __ line intersects a

Vocabulary Link Use a dictionary to look up the origin of the word tangent. How can the origin of this word help you remember the definition of a tangent line?
\qquad
\qquad
\qquad
\qquad
Lesson 10-5 (continued)

Main Idea

Tangents

pp. 718-720

Circumscribed Polygons
p. 721

Details

Find the value of x. Assume that segments that appear to be tangent are tangent. Show your work in each box as indicated.

Identify the length of each side of the right triangle.

Leg $1=$ \qquad Leg $2=$

Use the Pythagorean Theorem to write an equation, then solve for x.

Fill in the missing measurements in the diagram below in the order specified. Justify each measurement.

\qquad
\qquad

10-6 Secants, Tangents, and Angle Measures

What You'll Learn

Skim the lesson. Write two things you already know about secants, tangents, and angle measures.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Determine the measure of each angle in the diagram. Justify your answers. (Lesson 1-5)

Angle 1
Angle 2
Angle 3

New Vocabulary Write the definition next to the term.
secant

Main Idea

Intersections On or Inside a Circle
pp. 727-729

Details

Find the value of \boldsymbol{x}. Show your work in each box as indicated.

Determine the measure of $\angle E A F$. $m \angle E A F=\frac{1}{2}(-\quad+\quad)=$ \qquad
Determine the measure of $\angle C A F$.
\qquad

Main Idea

Intersections Outside a Circle

pp. 729-731

Label each diagram and explain how you would
determine the measure of $\angle 1$ in each diagram.

The measure of $\angle 1$ is

The measure of $\angle 1$ is

Some students have trouble remembering the difference between a secant and a tangent. What is an easy way to remember which is which?
\qquad
\qquad

10-7 Special Segments in a Circle

What You'll Learn Scan the text under the Now heading. List two things you will learn about in the lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad
\qquad

Active Vocabulary

Review Vocabulary Write the definition next to each term. (Lessons 10-1, 10-5, and 10-6)

chord \downarrow

chord \downarrow	New Vocabulary Match each term with its definition by drawing a line to connect the two.
tangent \downarrow	a segment formed when two chords intersect inside a circle the circle
secant segment a secant line that has exactly one endpoint on	
external secant	
segment	a segment of a tangent line that has exactly one endpoint on the circle
chord segment	a segment of a secant line that has an endpoint which lies in the exterior of the circle

\qquad
\qquad
Lesson 10-7 (continued)

Main Idea

Details

Segments Intersecting Inside a Circle
pp. 736-737
\qquad

- \qquad $=$ \qquad . \qquad
\qquad $=$ \qquad
\qquad $=$ \qquad

Compare and contrast Theorem 10.16 with Theorem 10.15 from the student book.

How are they the same?	How are they different?

\qquad
\qquad

10-8 Equations of Circles

What You'll Learn

Skim the lesson. Write two things you already know about equations of circles.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Use the Distance Formula to find the distance between the given pairs of points on the coordinate plane. (Lesson 1-5)

$(1,2)$ and $(9,11)$	$(1,2)$ and $(-7,-7)$	$(9,11)$ and $(-7,-7)$

New Vocabulary Fill in the blank with the correct term or phrase.
\qquad

Vocabulary Link Previously, you wrote the equation of a line when given the graph of the line. Compare and contrast this process with writing the equation of a circle given the graph of the circle.
\qquad
\qquad

Main Idea

Equation of a Circle

pp. 744-745

Graph Circles

pp. 745-746

Write the equation of a circle that has a center at $(1,3)$ and passes though ($6,-3$).

Find the length of the radius using the center and the point of the circle.

Details

Determine h, k, and r^{2}.
$h=$ \qquad $k=$ \qquad $r^{2}=$ \qquad

Write the equation of the circle.

$$
(x-
$$

\qquad $)^{2}+(y-$ \qquad $)^{2}=$ \qquad

Graph the circle given by the equation

 $(x+4)^{2}+(y-2)^{2}=16$.Rewrite the equation in standard form.

Identify the center. \qquad

Identify the radius. \qquad

Use the center and radius to identify four points on the circle.
\qquad
\qquad

\qquad
\qquad

CHAPTER
 10 Circles

The It Together

Name each part of the circle shown below.

\qquad
\qquad

curtio
 10 Circles

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 10.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 10 Study Guide and Review in the textbook.I took the Chapter 10 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- To prepare to take lecture notes, make a column to the left about 2 inches wide. Use this column to write additional information from your text, place question marks, and to summarize information.
\qquad
\qquad

curne
 11 Areas of Parallelograms and Triangles

Before You Read

Before you read the chapter, think about what you know about areas of parallelograms and triangles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

K K	
What I know...	W

Construct the Foldable as directed at the beginning of this chapter.
\int Note Taking Tips

- Write down questions that you have about what you are reading in the lesson. Then record the answer to each question as you study the lesson.
- A visual (graph, diagram, picture, chart) can present information in a concise, easy-to-study format.
Clearly label your visuals and write captions when needed.
\qquad

antic
 11 Areas of Parallelograms and Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on areas of circles and sectors, one fact might be a sector of a circle is a region of a circle bounded by a central angle and its intercepted arc. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Areas of Parallelograms and Triangles	
11-2 Areas of Trapezoids, Rhombi, and Kites	
11-3 Areas of Circles and Sectors	
11-4 Areas of Regular Polygons and Composite Figures	
11-5 Areas of Similar Figures	

\qquad
\qquad

11-1 Areas of Parallelograms and Triangles

What You'll Learn

Active Vocabulary

Review Vocabulary Define parallelogram in your own words.
(Lesson 6-2)

New Vocabulary Match each term with its definition.
base of a parallelogram height of a parallelogram base of a triangle height of a triangle

Skim Lesson 11-1. Predict two things you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad
(Lesson 6-2)
\qquad
the perpendicular distance between any two parallel bases any side of a triangle
any side of a parallelogram
the length of an altitude drawn to a given base

Vocabulary Link Formula is a word that is used in everyday English. This lesson introduces two new formulas. Find the definition of formula using a dictionary. Explain how its English definition can help you understand the meaning of formula in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 11-1 (continued)

Main Idea

Areas of Parallelograms

pp. 763-764

Areas of Triangles

pp. 765-766

Details

Find the perimeter and area of the parallelogram below. Round to the nearest tenth if necessary.

The perimeter measures \qquad cm .

The height of the parallelogram measures \qquad cm .

The area of the parallelogram measures \qquad cm^{2}.

Use the organizer below to determine how the area of a triangle is related to the area of a rectangle.

Helping You Remember

A good way to remember a new formula in geometry is to relate it to a formula you already know. How can you use the formula for the area of a rectangle to help you remember the formula for the area of a parallelogram?
\qquad
\qquad

11-2 Areas of Trapezoids, Rhombi, and Kites

What You'll Learn
 Scan the text in Lesson 11-2. Write two facts you learned about trapezoids, rhombi, and kites as you scanned the text.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 6-2, 6-6, and 11-1)

parallelogram	The \quad is any side of a triangle.
trapezoid \downarrow	A quadrilateral with both pairs of opposites sides is known as a(n) base of a triangle
$\mathrm{A}(\mathrm{n}) \ldots$ of parallel sides.	

New Vocabulary Define height of a trapezoid in your own words.

Vocabulary Link Area is a word that is used in everyday English. Find the definition of area using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.
\qquad
\qquad

Lesson 11-2 (continued)

Main Idea

Details

Areas of Trapezoids
pp. 773-774

Areas of Rhombi and Kites

pp. 775-776

Derive the formula for the area of a trapezoid.

In the formula for finding the area of a rhombus or kite, $A=\frac{1}{2} d_{1} d_{2}$, what do d_{1} and d_{2} represent?
\qquad

Find the area of the kite.

The area of the kite is \qquad .

Helping You Remember

A good way to remember a new geometric formula is to state it in words. Write a short sentence that tells how to find the area of a trapezoid in a way that is easy to remember.
\qquad
\qquad

11-3 Areas of Circles and Sectors

What You'll Learn Scan the text under the Now heading. List two things you will learn about areas of circles and sectors.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Write the correct term next to each definition. (Lessons 10-2, 11-1, and 11-2)
\qquad
any side of a triangle
\qquad an angle with a vertex in the center of a circle and with sides that contain two radii of the circle
the length of an altitude drawn to a given base of a triangle
the distance between the two bases of a trapezoid
a portion of a circle defined by two endpoints
any side of a parallelogram

New Vocabulary Define the sector of a circle in your own words.
\qquad
\qquad

Lesson 11-3 (continued)

Main Idea

Details

Areas of Circles

pp. 782-783

Areas of Sectors

pp. 783-784
Find the area of each circle. Round to the nearest tenth.
1.

2.
 proportion that can be used to find the area of a

Use the organizer below and fill in the parts of the sector.

Use the completed proportion to find the area of the shaded sector. Round to the nearest tenth.
$A \approx$ \qquad

Helping You Remember

A good way to remember something is to explain it to someone else. Suppose your classmate Joelle is having trouble remembering which formula is for circumference and which is for area. How can you help her?
\qquad
\qquad

11-4 Areas of Regular Polygons and Composite Figures

What You'll Learn

Active Vocabulary

radius of a regular polygon center of a regular polygon
central angle of a polygon
apothem

Skim the Examples for Lesson 11-4. Predict two things you think you will learn about areas of regular polygons and composite figures.

1. \qquad
\qquad
2. \qquad
\qquad

Review Vocabulary Answer the questions about the elements of the diagram below. (Lesson 10-2)

1. Angle A is what type of angle? \qquad
2. The portion of the circle that is defined by endpoints B and C is known as a(n) \qquad .

New Vocabulary Match each term with its definition.
the radius of the circle that is circumscribed about the regular polygon
the center of the circle in which the regular polygon is inscribed
has its vertex at the center of the polygon and its sides pass through consecutive vertices of the polygon
a segment drawn perpendicular to a side of a regular polygon
\qquad
\qquad

Lesson 11-4 (continued)

Main Idea

Areas of Regular

 Polygonspp. 791-793

Areas of Composite Figures
pp. 793-794

Details

Identify the parts of the regular polygon.

Using the formula $A=\frac{1}{2} a P$, where A is the area of a regular polygon, a is the apothem, and P is the perimeter, find the area of the regular octagon below.

The area of the regular octagon is \qquad ـ.

Helping You Remember

Rolando is having trouble remembering when to subtract an area when finding the area of a composite figure. How can you help him remember?
\qquad
\qquad
\qquad

11-5 Areas of Similar Figures

What You'll Learn \quad Scan Lesson 11-5. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

Review Vocabulary Define similar polygons in your own words. (Lesson 7-2)

Fill in each blank with the correct term or phrase.
(Lessons 10-1 and 11-3)
segment of a circle \quad A slice of pie would be an example of $a(n)$ \qquad
sector of a circle A figure or shape enclosed by another geometric shape or figure is \qquad inscribed

A(n) \qquad is the part of the interior of a circle bound by a chord and an arc.

Vocabulary Link Similar is a word that is used in everyday English. Find the definition of similar using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.
\qquad
\qquad
\qquad

Lesson 11-5 (continued)

Main Idea

Details

Areas of Similar Figures

pp. 802-803

For the pair of similar triangles below, find the area of $\triangle D E F$.

Scale Factors and Missing Measures in Similar Figures

pp. 803-804

Complete the missing parts of the proportion below.
If you know the areas of two similar geometric shapes, you can use them to find the scale factor between them.

Helping You Remember

Anthony thinks that similar figures are equal figures. How can you explain to him that similar and equal are not the same?
\qquad
\qquad
\qquad

cuntie
 11 Areas of Polygons and Circles

The It Together

Complete the graphic organizer with a formula from the chapter and identify the variables in the diagram.

Figure	Formula	
Parallelogram		
Triangle		
Trapezoid		
Rhombus		
Kite		
Regular Polygon		

\qquad
\qquad

charie
 11 Areas of Polygons and Circles

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K	W	L
What I know...	What I want to find out...	What I learned...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 11 Study Guide and Review in the textbook.I took the Chapter 11 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.
\qquad
\qquad
\qquad

cuntir
 12
 Extending Surface Area and Volume

Before You Read

Before you read the chapter, think about what you know about surface area and volume. List three things you already know about extending surface area and volume in the first column. Then list three things you would like to learn about in the second column.

K	W
What I know...	

OLDA A : $5 S$ Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

- When you take notes, listen or read for main ideas.

Then record those ideas for future reference.

- To help you organize data, create study cards when taking notes, recording and defining vocabulary words, and explaining concepts.
\qquad
\qquad
\qquad

cmatir
 Extending Surface Area and Volume

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on volumes of pyramids and cones, one fact might be pyramids use $\frac{1}{3}$ of the area of base in the formula for volume. After completing the chapter, you can use this table to review for your chapter test.

\qquad
\qquad

12-1 Representations of Three-Dimensional Figures

What You'll Learn

Active Vocabulary

Review Vocabulary Define arc of a circle in your own words. (Lesson 11-3)

New Vocabulary Write the correct term next to each definition.
the intersection of a solid and a plane
\qquad a corner view of a three-dimensional geometric solid on twodimensional paper

Vocabulary Link Cross section is an expression that is used in everyday English. Either find the definition of cross section using a dictionary or think of how you have heard it used outside of geometry. Explain any similarities between its everyday use and its use in mathematics.
\qquad
\qquad

Lesson 12-1 (continued)

Main Idea

Details

Draw Isometric Views

pp. 823-824

Investigate Cross

Sections
p. 824

Complete the graphic organizer below. get that particular cross section.

Name the different cross sections of a cylinder. State how the plane would have to intersect the cylinder to

1. \qquad
2. \qquad
\qquad
3. \qquad
\qquad

Helping You Remember

Look up the word isometry in the dictionary. Compare its definition with the definition of corner view and perspective view. Why are corner views considered isometric views, but three-dimensional views not considered isometric views?
\qquad
\qquad
\qquad

12-2 Surface Areas of Prisms and Cylinders

What You'll Learn

Scan Lesson 12-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

New Vocabulary Label the elements of this oblique pentagonal prism with the correct terms.

Fill in each blank with the correct term or phrase
lateral area $\quad \mathrm{A}(\mathrm{n}) \quad$ of a cylinder is the segment with endpoints that are centers of the circular bases.
axis \quad The \qquad of a prism is the sum of the areas of the lateral faces.
\qquad
\qquad

Lesson 12-2 (continued)

Main Idea

Lateral Areas and

 Surface Areas of Prismspp. 830-831

Lateral Areas and Surface Areas of Cylinders
pp. 832-833

Details

Complete the diagram to show the parts of the area formulas for prisms.
 L is $L=$ \qquad

Given the base edges of the prism above are: $8,6,5$, and 5 inches, and that the height of the prism is 10 inches, find its lateral area.

The cylindrical canister below has a surface area of $33 \mathrm{in}^{2}$. Use the formula $S=2 \pi r h+2 \pi r^{2}$.

What is the approximate height of the canister?

Helping You Remember

A good way to remember a new mathematical term is to relate it to an everyday use of the same word. How can the way the word lateral is used in sports help you remember the meaning of the lateral area of a solid?
\qquad
\qquad
\qquad
\qquad

12-3 Surface Areas of Pyramids and Cones

What You'll Learn

Scan the text under the Now heading. List two things you will learn about surface areas of pyramids and cones.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Label the following solids as right or oblique. (Lesson 12-1)
1.

2.

1. \qquad
2. \qquad
3.

.

New Vocabulary Match each term with its definition.
regular pyramid slant height
right cone oblique cone
\qquad
\qquad

Lesson 12-3 (continued)

Main Idea

Lateral Area and Surface Area of Pyramids

pp. 838-840

Lateral Area and Surface Area of Cones pp. 840-842

Details

Use the formulas below to find the lateral and the surface area of the regular pyramid pictured.

Lateral area, $L=\frac{1}{2} P \ell$, where P is the perimeter of the base and ℓ is the slant height.
$L=$ \qquad
Surface area, $S=\frac{1}{2} P \ell+B$, where P is the perimeter of the base, ℓ is the slant height, and B is the area of the base.
 $S=$ \qquad

Follow the steps to find the surface area of a cone.

1. Use the Pythagorean Theorem to find the slant height of the cone. Round your answer to the nearest tenth.
2. Use the formula above to find the cone's surface area. Round to the nearest centimeter. \qquad

Helping You Remember

One way to remember a new formula is to relate it to a formula you already know. Explain how the formulas for the lateral areas of a pyramid and cone are similar.
\qquad
\qquad

12-4 Volumes of Prisms and Cylinders

What You'll Learn

Skim Lesson 12-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

isometric

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 12-1 through 12-3)

What shape describes the cross section of this sphere? \qquad

circle $\quad \mathrm{A}(\mathrm{n})$ \qquad of a cylinder is the segment with endpoints that are centers of the circular bases.
axis When the axis of a cone is not its altitude this represents a(n) \qquad cone.
lateral area \quad The \qquad of a prism is the sum of the areas of the lateral faces.
oblique This type of paper is used to draw a(n) \qquad view of a solid.
\qquad
\qquad

Lesson 12-4 (continued)

Main Idea

Volume of Prisms

p. 847

Volume of Cylinders

pp. 848-849

Helping You Remember

A good way to remember a mathematical concept is to explain it to someone else. Suppose that your younger sister, who is in eighth grade, is having trouble understanding why square units are used to measure area, but cubic units are needed to measure volume. How can you explain this to her in a way that will make it easy for her to understand and remember the correct units to use?
\qquad
\qquad
\qquad
Use the formula $V=\pi r^{2} h$ to find the volume of the cylinder shown.

Complete the steps to finding the volume of the prism below.

Use the the area of the triangular base, B. Round to the nearest cubic inch. $B=$
To find the volume, V of the prism, multiply the base,B by the of the prism.
$V=$

$V=$ \qquad
\qquad
\qquad

12-5 Volumes of Pyramids and Cones

What You'll Learn
 Skim the lesson. Write two things you already know about volumes of pyramids and cones.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 11-1 through 11-5)
A.

B.

C.

D.
area of a trapezoid \downarrow Polygon A represents a(n)
\qquad —.
height of a triangle \quad Polygon B represents a(n) \qquad .
cubic unit \quad The arrow in C is pointing to the \qquad -
area of a circle \quad Figure D represents an example of $\mathrm{a}(\mathrm{n})$ \qquad .
πr^{2} is the formula for the \qquad ـ.
parallelogram $\quad \frac{1}{2}\left(b_{1}+b_{2}\right) h$ is the formula for the
\qquad
\qquad

Lesson 12-5 (continued)

Main Idea

Volume of Pyramids

 p. 857
Volume of Cones

p. 858

Details

Use the pyramid shown to answer the following questions.

1. What is the height of the pyramid?
2. In the formula for finding the volume of a pyramid, $V=\frac{1}{3} B h$, what does the B represent?

3. Given that $B=17.5 \mathrm{ft}^{2}$, find the volume of this pyramid to the nearest tenth of a cubic foot. \qquad

Use the diagram of a cone to fill in the missing measurements in the chart. Round your answer to the nearest tenth, as needed.

Helping You Remember

Many students find it easier to remember mathematical formulas if they can put them in words. Use words to describe in one sentence how to find the volume of any pyramid or cone.
\qquad
\qquad
\qquad
\qquad

12-6 Surface Areas and Volumes of Spheres

What You'll Learn Scan the text in Lesson 12-6. Write two facts you learned about surface areas and volumes of spheres.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

New Vocabulary Label the parts of the sphere pictured below.

Fill in each blank with the correct term or phrase.
great circle \quad One of the two congruent halves of a sphere separated by the great circle is known as $a(n)$ \qquad .
pole When a plane intersects a sphere to form a circle which contains the center of the sphere, this forms a(n) \qquad
hemisphere $\quad \mathrm{A}(\mathrm{n})$ \qquad is one of the endpoints of a diameter of a great circle.
\qquad
\qquad

Lesson 12-6 (continued)

Main Idea

Surface Area of Spheres

pp. 864-865

Volume of Spheres

pp. 866-867

Details

Follow the steps of the flowchart to find the surface area of the hemisphere.

Use the formula $V=\frac{4}{3} \pi r^{3}$ (the formula for finding the volume of a sphere) to answer each question. Round your answers to the nearest tenth.

1. Find the volume of a sphere with a diameter of 1.6 feet.
2. Find the volume of a sphere with a great circle circumference of 19 inches.
3. Find the volume of a hemisphere with a radius of 7 centimeters.

Helping You Remember

Many students have trouble remembering all of the formulas they have learned in this chapter. What is an easy way to remember the formula for the surface area of a sphere?
\qquad
\qquad
\qquad
\qquad
\qquad

12-7 Spherical Geometry

What You'll Learn

Scan Lesson 12-7. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

Review Vocabulary Match each term with its definition. (Lessons 12-1 and 12-3)
oblique cone
right cone
cross section

isometric view

regular pyramid slant height
the intersection of a solid and a plane
a figure with a base that is a regular polygon and the altitude has an endpoint at the center of the base

The axis of a cone is also its altitude.
a corner view of a three-dimensional geometric solid on twodimensional paper
the height of each lateral face of a regular pyramid
The axis of a cone is not its altitude.

New Vocabulary Fill in each blank with the correct term or phrase.
\qquad is geometry where a plane is the surface of a sphere.

A geometry where a plane is a flat surface made up of points that extend infinitely in all directions is known as

A type of geometry in which at least one of the postulates is from Euclidean geometry is known as
\qquad
\qquad

Geometry on a Sphere

pp. 873-874

Compare Plane
Euclidean and Spherical Geometries
p. 874

Use the diagram of the sphere below to answer each question.

1. Name two lines containing point \boldsymbol{P}.
2. Name a segment containing point \boldsymbol{Q}.

3. Name a triangle.

Complete the table below which compares different facts about Euclidean geometry and Spherical geometry.

Euclidean	Spherical
A plane is a flat surface.	$\begin{array}{l}\text { A plane is a } \\ \text { surface. }\end{array}$
$\begin{array}{l}\text { The shortest distance } \\ \text { between two points is a line }\end{array}$	$\begin{array}{l}\text { The shortest distance } \\ \text { between two points is a(n) } \\ \text { of a great circle. }\end{array}$
A line is infinite.	A line is _
$\begin{array}{l}\text { Through any two given } \\ \text { points, there is exactly one }\end{array}$	
passing through them.	

points, there is one great

passing through them.\end{array}\right]\)| A unit used to measure |
| :--- |
| length is a(n) |
| Degrees are the unit used to
 measure length. |
| Two points can be any
 distance apart. There is no
 greatest distance. |
| The greatest distance
 between two points is |

\qquad
\qquad

12-8 Congruent and Similar Solids

What You'll Learn Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary

New Vocabulary Define the following terms in your own words.
\qquad

In your own words, what is meant by scale factor?
\qquad
\qquad

Lesson 12-8 (continued)

Identify Congruent or Similar Solids
pp. 880-881

Fill in the missing parts to the organizer below.
How do you know if
solids are similar?

They have the same \qquad .
Ratios of corresponding linear measures are \qquad .

Corresponding are \cong.	Corresponding are \cong. ent Volumes are
Corresponding are \cong.	

Properties of Congruent and Similar Solids

pp. 881-882

Apply what you learned with Theorem 12.1 in the Student Edition to answer the following:

Two similar pyramids have volumes of 125 cubic inches and 64 cubic inches. What is the ratio of the slant height of the large pyramid to the slant height of the small pyramid?

Helping You Remember

A good way to remember a new mathematical concept is to relate it to something you already know. How can what you know about the units used to measure lengths, areas, and volumes help you to remember the theorem about the ratios of surface areas and volumes of similar solids?
\qquad
\qquad
\qquad
\qquad

Extending Surface Area and Volume

The It Together

Complete the graphic organizer with a formula from the chapter.

Shape	Lateral Area	Surface Area	Volume
Prism			
Cylinder			
Pyramid			
Cone			
Sphere			

\qquad

chatiex
 Extending Surface Area and Volume

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

K		
What I know...	W	L
		What I want to find out...

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 12.

Are You Ready for the Chapter Test?

Use this checklist to help you study.I used my Foldable to complete the review of all or most lessons.I completed the Chapter 12 Study Guide and Review in the textbook.I took the Chapter 12 Practice Test in the textbook.I used the online resources for additional review options.I reviewed my homework assignments and made corrections to incorrect problems.I reviewed all vocabulary from the chapter and their definitions.

- Use flash cards to study for tests by writing the concept on one side of the card and its definition on the other.
\qquad
\qquad
\qquad

 13 Probability and Measurement

Before You Read

Before you read the chapter, respond to these statements.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Before You Read	Probability and Measurement
	- There are many different ways to represent the sample space of an experiment.
- The Fundamental Counting Principle uses addition to count the total number of outcomes.	
	- In a permutation, the order is not important.
	- Compound events can be independent or dependent.
	When one event affects another event, the events are mutually exclusive.

FOLDABLES Study Organizer
Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When taking notes, use a table to make comparisons about the new material.

Determine what will be compared, decide what standards will be used, and then use what is known to find similarities and differences.

- When taking notes on statistics, include your own statistical examples as you write down concepts and definitions.

This will help you to better understand statistics.
\qquad DATE \qquad
\qquad

convie
 Probability and Measurement

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on geometric probability, one fact might be probability that involves a geometric measure such as length or area is called geometric probability. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact		
13-1 Representing Sample Spaces			13-2 Probabilities with Permutations and
:---			
Combinations	\quad	13-3 Geometric Probability	
:---			

\qquad
\qquad

13-1 Representing Sample Spaces

What You'll Learn

Active Vocabulary

sample space
tree diagram
two-stage experiment multi-stage experiment

Fundamental Counting Principle

Scan the text under the Now heading. List two things you will learn about in this lesson.

1. \qquad
\qquad
2. \qquad
\qquad

New Vocabulary Match each term with its definition.
one way of representing a sample space, using line segments known as branches, to display possible outcomes
experiments with more than two stages
the set of all possible outcomes of an experiment
a means used to find the entire sample space from an experiment that does not require listing all the possible outcomes
an experiment with two stages or events

Vocabulary Link Experiment is a word that is used in everyday English. Find the definition of experiment using a dictionary. Explain how its English definition can help you understand the meaning of experiment in mathematics.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lesson 13-1 (continued)

Main Idea

Details

Represent a Sample Space

A number cube is rolled twice. Complete the sample space for this experiment.
pp. 899-900

How many possible outcomes are there?

Fundamental Counting Principle p. 901

Sara takes orders at a restaurant where each sandwich is customized. Sara's manager requires her to ask the following series of questions when placing the orders.

Sandwich Shop

1. Would you like your chicken fried or grilled?
2. Would you like bbq, honey mustard, mayo, or no sauce?
3. Would you like your sandwich deluxe or regular?

Use the Fundamental Counting Principle to find the number of different types of sandwiches that represent the sample space for chicken sandwich orders?
\qquad

13-2 Probability with Permutations and Combinations

What You'll Learn Scan Lesson 13-2. List two headings you would use to make an outline of this lesson.

1. \qquad
\qquad
2. \qquad
\qquad
Active Vocabulary

Review Vocabulary Define each term in your own words.
(Lesson 12-7)

Non-Euclidean geometry
\qquad
\qquad
Euclidean geometry \qquad

Spherical geometry
\qquad given a positive integer n, it is the product of the integers less than or equal to n
an arrangement of objects in which order is important an arrangement of objects in which order is not important an arrangement of objects in the form of a circle or loop
\qquad
\qquad

Probability Using Permutations

pp. 906-909

Probability Using Combinations
pp. 909-910

Follow and complete the steps in the flowchart below. A marching band is divided into squads of 8 musicians. Each squad is required to select leaders: a head squad leader and an assistant squad leader. Anders and Matthew are in one of the squads.
If the positions are decided at random, what is the probability that Anders and Matthew are selected as leaders?

Step 1 The number of possible outcomes in the number of permutations of 8 people taken 2 at a time, ${ }_{8} P_{2}$.
${ }_{8} P_{2}=\frac{8!}{\left(8-_\right)!}=\frac{8 \cdot 7 \cdot 6!}{_!}=$ \qquad

Step 2 The number of favorable outcomes in the number of permutations of these 2 students in each of the 2-leader positions is 2 !, which is $2 \cdot 1$ or 2 .
\downarrow
Step 3 So, the probability of Anders and Matthew being selected as the 2 squad leaders is $\overline{56}$ or

Leah is packing for a trip to Florida. She decides to pack 3 of her 8 travel games to take on the trip. If she chooses to select games at random, what is the probability that the games chosen are Leah's 3 favorites?
Use the formula for combinations, ${ }_{n} C_{r}=\frac{n!}{(n-r)!r!}$, when you have n objects taken r at a time.
\qquad
\qquad

13-3 Geometric Probability

What You'l| Learn Scan the text in Lesson 13-3. Write two facts you learned about geometric probability as you scanned the text.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

Active Vocabulary
 Review Vocabulary Fill in each blank with the correct term or

 phrase. (Lesson 11-1)base of a parallelogram \quad The \qquad is the length of an altitude drawn to a given base.

base of a triangle Any side of a triangle is known as the
\qquad .
height of a parallelogram - Any side of a parallelogram is known as the
height of a triangle \quad The
\qquad is the perpendicular distance between any two parallel bases.
New Vocabulary Define geometric probability in your own words.

\qquad
\qquad

Details

Probability with Length pp. 915-916

The schedule for Meghan's school is shown on the number line. The local fire department is going to randomly have a fire drill today. Find the probability the fire drill will be during Meghan's lunch.

Probability with Area
pp. 916-917

Darcy has a magnetic dartboard. What is the probability that Darcy's magnetic darts will land in the central circle?

\qquad
\qquad
\qquad
\qquad

13-4 Simulations

What You'll Learn

Skim Lesson 13-4. Predict two things that you expect to learn based on the headings and the Key Concept box.

1. \qquad
\qquad
2. \qquad
\qquad

Active Vocabulary

probability model
the average value of a random variable that one anticipates after repeating an experiment or simulation a theoretically infinite number of times
simulation
random variable expected value

Law of Large Numbers
New Vocabulary Match each term with its definition.
a variable that can assume a set of values, each with fixed probabilities
a mathematical model used to match a random phenomenon
as the number of trials of a random process increases, the average will approach the expected value
the use of a probability model to recreate a situation again and again so that the likelihood of various outcomes can be estimated

Vocabulary Link Simulation is a word that is used in everyday English. Explain how the English definition can help you remember how simulation is used in mathematics.
\qquad
\qquad
\qquad

Main Idea

Design a Simulation
pp. 923-924

Summarize Data from a Simulation
pp. 924-926

Miranda bowled a strike in 75% of her frames over the last 9 months. Design a simulation that can be used to estimate the probability that she will bowl a strike in the next frame.
Complete the missing pieces to the steps below.

Details

Step 2 Assume that Miranda will have the opportunity to bowl 50 more frames.

Step 3 Divide the spinner provided into two sectors to represent the two possible outcomes listed in Step 1.
bowl a strike not bowl a strike

75\% (\qquad) \qquad (360 $)$

Step 4 A trial, one spin of a spinner, will represent bowling 1 frame.
What will a successful trial represent? \qquad
What will a failed trial represent?
The simulation will consist of how many spins? \qquad
Conduct the simulation above and record your results in the table provided below. When your simulation is complete, find the experimental probability of Miranda bowling a strike on her next frame.

Outcome	Tally	Frequency		
	H14			
	\|	I		
Total		50		

[^1]\qquad
\qquad
\qquad

13-5 Probabilities of Independent and Dependent Events

What You'll Learn

Skim the Examples in Lesson 13-5. Predict two things you think you will learn about this lesson.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

New Vocabulary Write the correct term next to each definition.
\qquad - a specific type of tree diagram that includes probabilities
\qquad - events where the probability of one event occurring does not affect the probability of the other event occurring
consists of two or more simple events
a probability that uses the notation $P(B \mid A)$
\qquad events where the probability of one event occurring in some way changes the probability that the other event occurs

Vocabulary Link Independent and dependent are words used in everyday English. How do their English definitions apply to their definitions in probability?
\qquad

Main Idea Details

Independent and Dependent Events pp. 931-933

Conditional
Probabilities
p. 934

The probability that two independents occur follows the multiplication rule for probability: $P(A$ and $B)=$ $P(A) \cdot P(B)$. Extend the use of this multiplication rule for probability by creating a model of another set of independent events that can be used to demonstrate this rule.
\qquad
Ms. Alexander's class of 16 students sits at four different tables, with four students at each table. Ms. Alexander chose tables A and B to go to the lab, while those students at tables C and D remained seated. If Carly has to go to the lab, then what is the probability that she sits at Table A?
\qquad
\qquad
\qquad
\qquad
\qquad

13-6 Probabilities of Mutually Exclusive Events

What You'll Learn

Skim the lesson. Write two things you already know about mutually exclusive events.

1. \qquad
\qquad
2. \qquad

Active Vocabulary

trapezoid
base of a parallelogram
height of a triangle
height of a parallelogram

Review Vocabulary Label the part of each diagram to which the arrow is pointing. (Lessons 11-1 and 11-2)

\qquad
\qquad

New Vocabulary Define the following terms in your own words.
mutually exclusive events
complement
\qquad
\qquad

Mutually Exclusive Events
pp. 938-940

Model the following mutually exclusive events by representing their relationship in a Venn diagram below.

When a die is rolled, find the probability of rolling a 1 or 6.

Is the following event mutually exclusive or not mutually exclusive?
when a die is rolled, the probability of rolling a number less than 5 or an odd number \qquad

At the local carnival, the probability of a dart to land on one of the playing cards on the board is 33%.

Name the complement of landing on one of the cards and the probability of the complement occurring.
\qquad
\qquad

CHAPTER
 13 Probability and Measurement

Tie It Together
Complete each graphic organizer with a definition or formula from the chapter.

Sample Space	
Experiment	
Outcome	
Event	

Calculating Probability	
Fundamental Counting Principle	
Permutations	
Combinations	
Circular Permutations	
Simulations	
Complement	

Types of Probability	
Geometric Probability	
Independent Events	
Dependent Events	
Conditional Probability	
Mutually Exclusive Events	

\qquad

chaptie
 Probability and Measurement

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

1. Write an \mathbf{A} if you agree with the statement.
2. Write a \mathbf{D} if you disagree with the statement.

Probability and Measurement	After You Read		
- There are many different ways to represent the sample			
space of an experiment.		\quad	- The Fundamental Counting Principle uses addition to
:---:			
count the total number of outcomes.	\quad.		

Math Online Visit glencoe.com to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 13.

Are You Ready for the Chapter Test?

Use this checklist to help you study.
\square I used my Foldable to complete the review of all or most lessons.
\square I completed the Chapter 13 Study Guide and Review in the textbook.
\square I took the Chapter 13 Practice Test in the textbook.
\square I used the online resources for additional review options.
\square I reviewed my homework assignments and made corrections to incorrect problems.
\square I reviewed all vocabulary from the chapter and their definitions.

Study Tips

- You will do better on a test if you are relaxed. If you feel anxious, try some deep breathing exercises. Don't worry about how quickly others are finishing; do your best and use all the time that is available to you.

[^0]: included angle

[^1]: $\frac{\text { number of strikes }}{\text { number of non-strikes }}=$

