

The **McGraw·Hill** Companies

Mc Graw **Glencoe** Hill

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240

ISBN: 978-0-07-890857-6 MHID: 0-07-890857-4

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 009 14 13 12 11 10 09 08

Contents

Chapter 1

1
2
3
5
7
9
11
13
15
17
18

Chapter 2

Before You Read	19
Key Points	20
2-1 Inductive Reasoning and Conjecture.	21
2-2 Logic	23
2-3 Conditional Statements	25
2-4 Deductive Reasoning	27
2-5 Postulates and Paragraph Proofs	29
2-6 Algebraic Proof	31
2-7 Proving Segment Relationships	33
2-8 Proving Angle Relationships	35
Tie It Together	37
Before the Test	38

Chapter 3

Before You Read	39
Key Points	40
3-1 Parallel Lines and Transversals	41
3-2 Angles and Parallel Lines	43
3-3 Slopes of Lines	45
3-4 Equations of Lines	47
3-5 Proving Lines Parallel	49
3-6 Perpendiculars and Distance	51
Tie It Together	53
Before the Test	54

Chapter 4

Before You Read	55
Key Points	56
4-1 Classifying Triangles	57
4-2 Angles of Triangles	59
4-3 Congruent Triangles	61
4-4 Proving Congruence: SSS, SAS	63
4-5 Proving Congruence: ASA, AAS	65
4-6 Isosceles and Equilateral Triangles	67
4-7 Congruence Transformations	69
4-8 Triangles and Coordinate Proof	71
Tie It Together	73
Before the Test	74

Chapter 5

Before You Read	75
Key Points	76
5-1 Bisectors of Triangles	77
5-2 Medians and Altitudes of Triangles	
5-3 Inequalities in One Triangle	81
5-4 Indirect Proof	83
5-5 The Triangle Inequality	85
5-6 Inequalities in Two Triangles	87
Tie It Together	89
Before the Test	

Chapter 6

Before You Read	
Key Points	
6-1 Angles of Polygons	
6-2 Parallelograms	
6-3 Tests for Parallelograms	
6-4 Rectangles	
6-5 Rhombi and Squares	101
6-6 Kites and Trapezoids	103
Tie It Together	105
Before the Test	106

Chapter 7

Bef	ore You Read	107
Key	Points	108
7-1	Ratios and Proportions	109
7-2	Similar Polygons	111
7-3	Similar Triangles	113
7-4	Parallel Lines and Proportional	
	Parts	115
7-5	Parts of Similar Triangles	117
7-6	Similarity Transformations	119
7-7	Scale Drawings and Models	121
Tie	It Together	123
Bef	ore the Test	124

Chapter 8

ore You Read	125
Points	126
Geometric Mean	127
The Pythagorean Theorem and Its	
Converse	129
Special Right Triangles	131
Trigonometry	133
Angles of Elevation and Depression	135
The Law of Sines and Cosines	137
Vectors	139
It Together	141
ore the Test	142
	ore You Read Points Geometric Mean The Pythagorean Theorem and Its Converse Special Right Triangles Trigonometry Angles of Elevation and Depression The Law of Sines and Cosines Vectors It Together.

Chapter 9

Before You Read	. 143
Key Points	. 144
9-1 Reflections	. 145
9-2 Translations	. 147
9-3 Rotations	. 149
9-4 Compositions of Transformations	. 151
9-5 Symmetry	. 153
9-6 Dilations	. 155
Tie It Together	. 157
Before the Test	. 158

Chapter 10

Befo	re You Read	159
Key	Points	160
10-1	Circles and Circumference	161
10-2	Measuring Angles and Arcs	163
10-3	Arcs and Chords	165
10-4	Inscribed Angles	167
10-5	Tangents	169
10-6	Secants, Tangents, and Angle	
	Measures	171
10-7	Special Segments in a Circle	173
10-8	Equations of Circles	175
Tie It	t Together	177
Befo	re the Test	178

Chapter 11

Befo	re You Read1	79
Key Points		80
11-1	Areas of Parallelograms and	
	Triangles1	81
11-2	Areas of Trapezoids, Rhombi	
	and Kites 1	83
11-3	Areas of Circles and Sectors1	85
11-4	Areas of Regular Polygons and	
	Composite Figures 1	87
11-5	Areas of Similar Figures1	89
Tie It	t Together1	91
Befo	re the Test 1	92

Chapter 12

Befo	re You Read	193
Key	Points	194
12-1	Representations of	
	Three-Dimensional Figures	195
12-2	Surface Areas of Prisms and	
	Cylinders	197
12-3	Surface Areas of Pyramids and	
	Cones	199
12-4	Volumes of Prisms and Cylinders	201
12-5	Volumes of Pyramids and Cones	203
12-6	Surface Areas and Volumes	
	of Spheres	205
12-7	Spherical Geometry	207
12-8	Congruent and Similar Solids	209
Tie It	t Together	211
Befo	re the Test	212

Chapter 13

Before You Read				
Key	Points	214		
13-1	Representing Sample Spaces	215		
13-2	Permutations and Combinations	217		
13-3	Geometric Probability	219		
13-4	Simulations	221		
13-5	Probabilities of Independent and			
	Dependent Events	223		
13-6	Probabilities of Mutually Exclusive			
	Events	225		
Tie It Together				
Before the Test 228				

Note-Taking Tips

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	¥
such as	i.e.	approximately	~
with	w/	therefore	·.
without	w/o	versus	vs
and	+	angle	Z

- Use a symbol such as a star (★) or an asterisk (*) to emphasis important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

_ PERIOD _

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an \boldsymbol{A} if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Before You Read	The Tools of Geometry
	• Collinear points are lines that run through the same point.
	• Line segments that are congruent have the same measure.
	• Distance on a coordinate plane is calculated using a form of the Pythagorean Theorem.
	• The Midpoint Formula can be used to find the coordinates of the endpoint of a segment.
	• The formula to find the area of a circle is $A = \pi r^2$.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When taking notes, summarize the main ideas presented in the lesson. Summaries are useful for condensing data and realizing what is important.
- When you take notes, write descriptive paragraphs about your learning experiences.

The Tools of Geometry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on linear measure, one fact might be that unlike a line, a line segment can be measured because it has two endpoints. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
1-1 Points, Lines, and Planes	
1-2 Linear Measure	
1-3 Distance and Midpoints	
1-4 Angle Measure	
1-5 Angle Relationship	
1-6 Two-Dimensional Figures	
1-7 Three-Dimensional Figures	

1-1 /Points, Lines, and Planes

What You'll Learn	Scan the text in Lesson 1-1. Write two facts you learned about points, lines, and planes as you scanned the text. 1. 2.
Active Vocabulary	New Vocabulary Write the definition next to each term.
undefined term \blacktriangleright	
point >	
line 🕨	
plane 🕨	
collinear b	
coplanar 🕨	
intersection >	
definition / defined term 🕨	
space 🕨	

NAME	D	ATE	PERIOD	
Lesson 1-1 (continued)				
Main Idea		Details		
Points, Lines, and Planes	Model a point, line, drawing. Label you	Model a point, line, and plane with a representative drawing. Label your drawing.		
pp. 5–6				
Intersections of Lines and Planes pp. 6–7	Compare <i>undefined</i> the table. Provide d	and <i>defined ter</i> lefinitions and e	ms by completing examples.	
PP. C	Term	Definition	Examples	
	defined term			
	undefined term			
	undefined term			

Linear Measure 1-2

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson.		
	1		
	2		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
betweenness of points \blacktriangleright	Between any two on a line there is another		
line segment 🕨	a portion of a with two		
between 🕨	point <i>A</i> is between two other points, <i>B</i> and <i>C</i> ; <i>A</i> , <i>B</i> , and <i>C</i> are on the same line, and $___+__=$		
construction >	method of creating without		
$congruent \ segment \ ightarrow$	two with the same		
	Vocabulary Link <i>Congruent segments</i> can be illustrated by real-world examples. Consider opposite sides of this book. The lines are the same size. Write some real-world examples of other <i>congruent segments</i> .		

Lesson 1-2 (continued)			
Main Idea		Details	
Measure Line Segments pp. 14–15	Use the model to A in. 1. Each inch is diverted 2. Point <i>B</i> is close	fill in each blanks	• 3 mark.
Calculate Measures pp. 15–17	3. AB is about Model the three t measures of a lin Find measurements by adding.	inches long. ypes of methods to e segment with an Find measurements by subtracting.	o calculate example. Find measurements by writing and solving equations.

_____ DATE ____

_____ PERIOD _

as well as in mathematics. Look up *construction* in the dictionary. Explain how the everyday definition can help you remember how *construction* is used in mathematics.

Distance and Midpoints 1-3

What You'll Learn	Skim Lesson 1-3. Predict two things that you expect to learn based on the headings and the Key Concept box.		
	1		
	2.		
Active Vocabulary	New Vocabulary Write the definition next to each term.		
distance >			
midpoint 🕨			
segment bisector >			
	Vocabulary Link <i>Midpoint</i> can have non-mathematical meanings as well. Look up <i>midpoint</i> in the dictionary. Explain how the English definition can help you remember how <i>midpoint</i> is used in mathematics.		

Lesson 1-3

NAME	DATE PERIOD	
Lesson 1-3 (continued)		
Main Idea	Details	
Distance Between Two Points pp. 25–26	Fill in the organizer for the <i>distance formula</i> number line and a coordinate plane with line <i>AB</i> , with endpoints (x_1, y_1) and (x_2, y_2) .	on a segment
	Distance Formula	
Num	ber Line Coordinate H	Plane
	Symbols -	
	Words	

Model the solution to find the distance between the points on the coordinate plane. Use the lines to show your calculations. Round to the nearest tenth if necessary.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Midpoint of a Segment

pp. 27–30

1-4 Angle Measure

What You'll Learn	Skim the Examples for Lesson 1-4. Predict two things you think you will learn about angle measures.		
	1		
	2.		
Active Vocabulary	New Vocabulary Write the correct term next to each		
	definition.		
►	angle with measure of 90°		
►	where two rays meet to form an angle		
►	angle with measure greater than 90°		
►	a ray that divides an angle into two congruent angles		
►	the region of a plane inside of an angle		
►	angle with measure less than 90°		
►	a ray that forms part of an angle		
►	part of a line with one endpoint and one end that extends forever		
►	formed by two noncollinear rays with a common endpoint		
►	units used to measure angles		
►	extend in two directions from a point on a line		
	the region of a plane outside of an angle		

Lesson 1-4

	-	-	_	_
N	Δ	N	Λ	F
1.1	/ \	1 4		_

NAME	DATE PERIOD
Lesson 1-4 (continued)	
Main Idea	Details
Measure and Classify Angles	Summarize information about angles in the graphic organizer below.
pp. 36–38	1. Draw and label an obtuse, acute, and right angle.
	2. Draw and label one angle that has these 3 names: $\angle B$, $\angle ABC$, and $\angle 3$.

Congruent Angles рр. 39–40

Model a pair of congruent angles. Use a compass and straightedge.

Helping You Remember

Compare and contrast *congruent segments* and

congruent angles.

Angle Relationships 1-5

Vocabulary Link *Perpendicular* has a nonmathematical meaning. Look up *perpendicular* in the dictionary. List at least five examples of things that are perpendicular in everyday life.

NAME	DATE	PERIOD
Lesson 1-5 (continued)		
Main Idea	De	tails
Pairs of Angles pp. 46–48	Summarize angle relation graphic organizer with the complementary angles, ver supplementary angles. relationsh to positio Special a relationsh to angle n	ships by completing the e terms adjacent angles, stical angles, and hip due ning angle pairs hip due neasures
Perpendicular Lines pp. 48–50	If $m \angle ABC = 2x + 12$, find x	c so that $\overrightarrow{BC} \perp \overrightarrow{BA}$. A \overrightarrow{E} \overrightarrow{C} definition of perpendicular Simplify.
Helping You Ren supplementary in a diction meaning of supplementar	Look up the nonmation on ary. How can this definition help angles?	athematical meaning of o you to remember the
Chapter 1	12	Glencoe Geometry

1-6 Two-Dimensional Figures

What You'll Learn	Skim the lesson. Write two things you already know about two-dimensional figures.
	1
	2
Active Vocabulary	New Vocabulary Write each term next to its definition.
>	where two sides of a polygon intersect
>	polygon with no side that passes through the figure's interior
>	a convex polygon that is equilateral and equiangular
>	a polygon where all angles are congruent
>	perimeter of a circle
>	a polygon with <i>n</i> number of sides
>	closed figure formed by coplanar segments where two segments intersect at a common noncollinear endpoint
>	polygon with some side that passes through the figure's interior
>	a polygon where all sides are congruent
>	sum of the lengths of a polygon's sides
•	number of square units needed to cover a surface

NAME	DATE _	PERIOD
Lesson 1-6 (continued)		
Main Idea		Details
Identify Polygons pp. 56–57	Fill in the organizer abo	out <i>polygons</i> .
	What is a polygon?	What is <i>not</i> a polygon?
	Examples Po	olygons Nonexamples
Perimeter, Circumference, and Area pp. 58–60	Summarize the formula circumference, and area the chart.	s for perimeter, a of the figures by completing

Area Perimeter Circumference

1-7 Three-Dimensional Figures

What You'll Learn	Scan the text in Lesson 1-7. Write two facts you learned about three-dimensional figures.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
pyramia 🕨	
cylinder 🕨	
base 🕨	
cone 🕨	
sphere •	

DATE _____ PERIOD _ **Lesson 1-7** (continued) Main Idea Details Complete the concept circle by drawing in a fourth **Identify Three-Dimensional** example. Then state the relationship of the 4 figures **Figures** on the line below the concept circle. pp. 67-68

The relationship is:

Organize information about volume and surface area in the chart. Figure **Surface** Area Volume

Helping You Remember

Surface Area and

Volume

pp. 69–70

A good way to remember the characteristics of geometric solids is to think of how different solids are alike. Name a way which pyramids and cones are alike.

Tie It Together

Complete the graphic organizer with a term or formula from the chapter.

DATE _

The Tools of Geometry

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

The Tools of Geometry	After You Read
• Collinear points are lines that run through the same point.	
• Line segments that are congruent have the same measure.	
• Distance on a coordinate plane is calculated using a form of the Pythagorean Theorem.	
• The Midpoint Formula can be used to find the coordinates of the endpoint of a segment.	
• The formula to find the area of a circle is $A = \pi r^2$.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 1.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 1 Study Guide and Review in the textbook.
- \Box I took the Chapter 1 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- \Box I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Make a calendar that includes all of your daily classes. Besides writing down all assignments and due dates, include in your daily schedule time to study, work on projects, and reviewing notes you took during class that day.

_ PERIOD _

Reasoning and Proof

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an \mathbf{A} if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Reasoning and Proof
	• Listing a counterexample is a method to prove a conjecture is true.
	• A Venn diagram can illustrate a conjunction.
	• A form of inductive reasoning is the Law of Detachment.
	• The statement <i>a line contains two points</i> , is an example of a postulate.
	• Supplementary angles have measures whose sum is 90°.

FOLDABLES[®] Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

- When you take notes, you may wish to use a highlighting marker to emphasize important concepts.
- When you take notes, think about the order in which the concepts are being presented.

Write why you think the concepts were presented in this sequence.

The Reasoning and Proof

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on inductive reasoning and conjecture, one fact might be a concluding statement reached using inductive reasoning is called a conjecture. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
2-1 Inductive Reasoning and Conjecture	
2-2 Logic	
2-3 Conditional Statements	
2-4 Deductive Reasoning	
2-5 Postulates and Paragraph Proofs	
2-6 Algebraic Proof	
2-7 Proving Segment Relationships	
2-8 Proving Angle Relationships	

2-1 Inductive Reasoning and Conjecture

What You'll Learn	Scan Lesson 2-1. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
inductive reasoning >	that uses a number of specific to arrive at a
conjecture 🕨	the that is reached within inductive reasoning
counterexample >	an example that a
	Vocabulary Link <i>Conjecture</i> is a word that is used in everyday English. Find the definition of <i>conjecture</i> using a dictionary. Write how the definition of conjecture can help you remember the mathematical definition of <i>conjecture</i> .

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 2-1 (continued)	
Main Idea	Details
Make Conjectures pp. 89–91	Sequence the steps of making a <i>conjecture</i> with algebraic terms or geometric terms.
Find Counterexamples p. 92	Write a statement in which you can make a true <i>conjecture</i> . Then write another statement in which you can make a false <i>conjecture</i> . Provide a <i>counterexample</i> of the false conjecture.
	True Conjecture:
	False Conjecture:
Helping You Remo	Write a short sentence that can help you es one counterexample to prove that a conjecture is false.

_ DATE _____ PERIOD _

NAME	DATE PERIOD
2-2 Logic	
What You'll Learn	Skim the Examples for Lesson 2-2. Predict two things you think you will learn about logic. 1.
	2
Active Vocabulary	New Vocabulary Match the term with the correct definition by drawing a line between the two.
truth table	a sentence that is either true or false
disjunction	two or more statements joined by and or or
statement	a compound statement that uses the word or
truth value	the value of a statement as either true or false
conjunction	statement with the opposite meaning and opposite truth
negation	a compound statement that uses the word and
compound statement	convenient method to determine the truth value of statement
	Vocabulary Link <i>Negation</i> is a word used in everyday English as well as in mathematics. Look up <i>negation</i> in the dictionary. Explain how the English definition can help you remember how <i>negation</i> is used in mathematics.

Lesson 2-2

Lesson 2-2 (continued) **Main Idea Details** Fill in the blanks to summarize negations, conjunctions, and disjunctions. Write a description of each term. Statement Model the situation using a Venn diagram. **Venn Diagrams** At Terrace Middle school, 68 students play basketball, 77 pp. 99-100 play volleyball, 19 play soccer and basketball, and 27 play all three sports. If 13 students play both volleyball and basketball, how many students play *just* basketball?

DATE ___

Helping You Remember

Prefixes can often help you remember the meaning of words or distinguish between similar words. Use your dictionary to find the meanings of the prefixes *con* and *dis* and explain how these meanings can help you remember the difference between a conjunction and disjunction.

Determine Truth Values pp. 97-99

2-3 Conditional Statements

What You'll Learn	Skim Lesson 2-3. Predict two things you will learn based on the headings and the Key Concept box.
	1
	2.
Active Vocabulary	New Vocabulary Write the definition next to each term.
$conditional\ statement$ \blacktriangleright	
if-then statement \blacktriangleright	
converse 🕨	
hypothesis 🕨	
inverse 🕨	
contrapositive >	
$logically\ equivalent$ >	
related conditionals >	
$conclusion$ \blacktriangleright	

Lesson 2-3

Main Idea	Details	
If-Then Statements pp. 105–107	Identify the hypothesis and conclusion of each conditional statement. Circle the hypothesis and underline the conclusion.	
	1 if the sum of its digits is divisible by 9.	
	2. If the measure of an angle is less than 90 degrees, it acute angle.	
Related Conditionals pp. 107–108	Fill in the organizer for related conditionals.	
	Symbols: Words: Words:	
	Conditional Statements	
	Symbols: Symbols: Words: Words:	

_____ DATE _____ PERIOD ____

its three related conditional, what is an easy way to remember which statements are logically equivalent?

2-4 Deductive Reasoning

What You'll Learn	Scan the text in Lesson 2-4. Write two facts you learned about deductive reasoning as you scanned the text.	
	1	
	2.	
Active Vocabulary	New Vocabulary Write the correct term next to each definition	
►	allows you to draw conclusions from two true conditional statements when the conclusion of one statement is the hypothesis of the other	
►	uses facts, rules, definitions, or properties to reach logical conclusions from given statements	
►	form of deductive reasoning that states that if all the facts are true, then the conclusion reached is also true	
	Vocabulary Link <i>Syllogism</i> is a word used in everyday English as well as in mathematics. Look up <i>syllogism</i> in the dictionary. Explain how the English definition can help you remember how <i>syllogism</i> is used in mathematics.	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 2-4 (continued)

Main Idea		Details	
Law of Detachment pp. 115–117	Identity the steps to validate the two conclusions by completing the graphic organizer.		
	If the light bulb is broken the lamp will not work. Jackson's lamp will not w Jackson's light bulb is broken.	n, vork.	
Law of Syllogism pp. 117–118	Match the portions of e term by drawing a line the true conditional sta conclusion using the La	each statement with the correct to connect the two. Then write atement and the valid aw of Syllogism.	
	р	you buy bread	
	q	you walk to the store	
	r	you can make toast	
	q r	you walk to the store you can make toast	

A good way to remember something is to explain it to someone else. Suppose that a classmate is having trouble remembering the Law of Detachment. In your own words, explain what the Law of Detachment means?

2-5 Postulates and Paragraph Proofs

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson.		
	1		
	2.		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
postulate >	a that is accepted as without		
proof •	a logical in which each statement you make is by a statement that is as		
deductive argument >	a logical of that link the to what you are trying to prove		
theorem >	a or conjecture that has been		
paragraph proof >	writing a to explain why a for a given situation is		
informal proof >	same as		
axiom >	same as		

NAME	DA1	ATE PERIOD
Lesson 2-5 (continued)		
Main Idea		Details
Points, Lines, and Planes pp. 125–126	Write a postulate of p model the postulate.	points, lines, and planes. Then

Paragraph Proofs

pp. 126–127

Sequence the steps in the proof process by completing the organizer.

Steps in the Proof Process

2-6 Algebraic Proof

What You'll Learn	Skim the lesson. Write two things you already know about algebraic proof. 1. 2.	
Active Vocabulary	Review Vocabulary Write the definition next to the term. (Lesson 2-4)	
algebraic proof	New Vocabulary Match the term with its definition by drawing a line to connect the term.	
two-column proof	contains statements and reasons in two columns	
formal proof	uses a group of algebraic steps to solve problems and justify each step.Vocabulary Link <i>Proof</i> is a word that is used in everyday	
	English. Find the definition of <i>proof</i> using a dictionary. Explain how the English definition can help you remember how <i>proof</i> is used in mathematics.	

DATE _____ PERIOD _ **Lesson 2-6** (continued) Main Idea Details **Algebraic Proof** Write a 2-column proof by completing each step. pp. 134–135 Given: $\frac{8}{3} + x = 6 - \frac{1}{3}x$ Prove: $x = 2\frac{1}{2}$ **Statements** Reasons $\frac{8}{3} + x = 6 - \frac{1}{3}x$ $3\left(\frac{8}{3}+x\right) = 3\left(6-\frac{1}{3}x\right)$ 8 + 3x = 18 - xAddition Prop of Equality 8 + 4x = 18Simplify. 8 + 4x - 8 = 18 - 8Substitution Prop of Equality $\frac{4}{4}x = \frac{10}{4}$ $x = \frac{10}{4}$ or $2\frac{1}{2}$ Match the property with its example by drawing a **Geometric Proof** line to connect the example. p. 136 If ST = WX, and WX = YZ, Symmetric Property then ST = YZ. If $\angle C = \angle D$, then $\angle D = \angle C$. **Reflective Property**

 $\angle A = \angle A$ **Transitive Property**

2-7 Proving Segment Relationships

What You'll Learn	Scan the text in Lesson 2-7. Write two facts you learned about proving segment relationships. 1 2
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lessons 2-1 and 2-3)
inductive reasoning >	
conjecture 🕨	
counterexample >	
conditional statement >	
converse 🕨	
contrapositive >	
inverse 🕨	

Lesson 2-7 (continued)

DATE	
DITE	

Main Idea	Details
Ruler Postulate pp. 142–143	Use the Model and Fill in each blank to summarize the <i>Segment Addition Postulate</i> .
	If P , Q , and R are, then point is between and if and only if + = PR .
	$\begin{vmatrix} PQ \\ P \\ Q \\ P \\ Q \\ P \\ PR \end{vmatrix}$
Segment Congruence pp. 143–144	Complete the graphic organizer to prove the statement below.
	Given: $\overline{QR} \cong \overline{ST}$; $\overline{ST} \cong \overline{UV}$ Prove: $\overline{QR} \cong \overline{UV}$
	$\overline{QR} \cong \overline{ST} \text{ and } \overline{ST} \cong \overline{UV}$ $\overline{QR} \cong \overline{UV} \text{ by the }$
	QR = ST and ST = UV by the
	QR = UV by the
Helping You Reme mind is to associate someth postulate. How can you use Segment Addition Postulat	A good way to keep the names straight in your ning in the name of the postulate with the content of the e this idea to distinguish between the Rule Postulate and the e?

2-8 Proving Angle Relationships

What You'll Learn	Scan Lesson 2-8. List two headings you would use to make an outline of this lesson.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lessons 1-4 and 1-5</i>)	
complementary angles 🕨	two angles with measures that have a sum of	
adjacent angles 🕨	angles with a common	
supplemetary angles >	two angles with measures that have a sum of	
interior >	the region of a plane an angle	
exterior ►	the region of a plane an angle	
acute angle 🕨	an angle with a measure of	
obtuse angle 🕨	an angle with a measure of	

_ DATE _____ PERIOD __ NAME . **Lesson 2-8** (continued) **Main Idea** Details Supplementary and **Compare and contrast the Angle Addition Postulate Complementary Angles** and the Segment Addition Postulate by completing the Venn diagram. pp. 149-150 Angle Addition Postulate **Segment Addition Postulate** Write a two-column proof to prove the statement by **Congruent Angles** completing the chart. pp. 151–153 **Given:** $m \angle 2 = 90$ $\angle 1 \cong \angle 3$ **Prove:** $m \angle 1 = 45$ **Statements** Reasons **1.** $m \angle 2 = 90$ $\angle 1 \cong \angle 3$ **2.** $m \angle 3 = m \angle 1$ **3.** $m \angle 1 + m \angle 3 + m \angle 2 =$ 180 **4.** $m \angle 1 + m \angle 1 + 90 = 180$ **5.** $m \angle 1 + m \angle 3 + 90 - 90$ = 180 - 90**6.** $m \angle 1 + m \angle 1 = 90$ $7.\frac{m\angle 1+m\angle 1}{2}=90\div 2$

8. $m \angle 1 = 45$

Tie It Together

Complete the graphic organizer with a term from the chapter.

DATE _

Reasoning and Proof

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Reasoning and Proof	After You Read
• Listing a counterexample is a method to prove a conjecture is true.	
• A Venn diagram can illustrate a conjunction.	
• A form of inductive reasoning is the Law of Detachment.	
• The statement <i>a line contains two points</i> , is an example of a postulate.	
• Supplementary angles have measures whose sum is 90°.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 2.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 2 Study Guide and Review in the textbook.
- \Box I took the Chapter 2 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- \Box I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Make up acronyms to remember lists or sequences. PEMDAS is one acronym for remembering the order of operations (parentheses, exponents, multiply and divide, add and subtract). (Please Excuse My Dear Aunt Sally).

Before You Read

Before you read the chapter, think about what you know about the topic. List three things you already know about parallel and perpendicular lines in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

OLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, preview the lesson and make generalizations about what you think you will learn.

Then compare that with what you actually learned after each lesson.

• Before each lesson, skim through the lesson and write any questions that come to mind in your notes.

As you work through the lesson, record the answer to your question.

39

Parallel and Perpendicular Lines

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on parallel lines and transversals, one fact might be parallel planes are planes that do not intersect. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
3-1 Parallel Lines and Transversals	
3-2 Angles and Parallel Lines	
3-3 Adding and Subtracting Polynomials	
3-4 Equations of Lines	
3-5 Proving Lines Parallel	
3-6 Perpendiculars and Distance	

Parallel Lines and Transversals 3-1

What You'll Learn	Skim the Examples for Lesson 3-1. Predict two things you think you will learn about parallel lines and transversals.		
	1		
	2		
Active Vocabulary	New Vocabulary Use the figure to complete each statement. t_{\perp}		
parallel lines 🕨	t is a $\xrightarrow{1/2}{3/4} a$		
transversal >	$\angle 1 \text{ and } \angle 7 \text{ are } _$		
interior angles 🕨	$\angle 2 \text{ and } \angle 6 \text{ are } _$		
exterior angles 🕨	\angle 4 and \angle 5 are		
consecutive interior angles ► alternative interior angles ►	<i>a</i> and <i>b</i> are ∠ 4 and ∠ 6 are		
alternate exterior angles 🕨	$\angle 2$ and $\angle 7$ are		
corresponding angles >	$\angle 5$ and $\angle 6$ are		
	Vocabulary Link <i>Skew</i> is a word used in everyday English as well as in mathematics. Look up <i>skew</i> in the dictionary. Explain how the English definition can help you remember how <i>skew</i> is used in mathematics.		

NAME	DATE	PERIOD
Lesson 3-1 (continued)		
Main Idea	Details	5
Relationships Between Lines and Planes pp. 171–172	Skew Lines Skew Lines What are parallel lines? What are skew lines?	Image: parallel lines and skew below. How are parallel lines and skew lines similar? How are parallel lines and skew lines different?
Transversal Angle Pair Relationships pp. 172–173	Model a transversal <i>t</i> which in parallel lines. Identify consecu- alternative interior and exteri corresponding angles.	ntersects two or more utive interior angles, ior angles, and
Helping You Reme dictionary. Write down 4 w prefix help you remember t	Example 7 Look up meaning of the ords that have <i>trans</i> - as a prefix. Ho he meaning of transversal?	prefix <i>trans</i> - in the w can the meaning of the

3-2 Angles and Parallel Lines

What You'll Learn	Scan Lesson 3-2. List two headings you would use to make an outline of this heading. 1 2
Active Vocabulary	Review Vocabulary Match the term with the correct definition by drawing a line between the two. (Lesson 3-1)
parallel lines	lie in the regions <i>not</i> between parallel lines that are cut by a transversal
skew	a line that intersects 2 or more coplanar lines at 2 different points
interior angles	lie on the same side of both the parallel lines and the transversal
exterior angles	coplanar lines that never intersect
consecutive interior angles	lie <i>between</i> parallel lines that are cut by a transversal
corresponding angles	interior lines that lie on the same side of a transversal

tranversal lines that are not on the same plane and never intersect

Lesson 3-2 (continued)			
Main Idea	Details		
Parallel Lines and Angle Pairs	Fill in the organizer about the Corresponding Angles Postulate.		
pp. 178–179	Corresponding Angles Postulate		
	Definition	Why is it useful?	
		N. 1	
	Example	Nonexample	
Algebra and Angle Measures	Fill in each blank to summarize the Perpendicular Transversal Theorem.		
pp. 180	The Perpendicular Transversa	l Theorem states that in a	
	, if a line is	to one of two	
	, then it is	to the other.	
Helping You Remember			
How can you use an everyday meaning of the adjective <i>alternate</i> to help you remember the types of angle pairs for two lines and a			
transversal?			

_ DATE _____ PERIOD _

3-3 Slopes of Lines

What You'll Learn	Scan the text in Lesson 3-3. Write two facts you learned about slopes of lines as you scanned the text.		
	1		
	2		
Active vocadulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lesson 1-1</i>)		
line 🕨	made up of with no thickness or width		
point >	a without shape or size		
defined term \blacktriangleright	can be explained using terms		
undefined term \blacktriangleright	can only be explained using and		
	New Vocabulary Write the definition next to each term.		
slope 🕨			
rate of change ►			

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

_ DATE _____ PERIOD __

46

3-4 Equations of Lines

What You'll Learn	Skim Lesson 3-4. Predict two things that you expect to learn based on the headings and the Key Concept Box.		
	2		
Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (<i>Lesson 2-5</i>)		
postulate	a logical chain of statements that link the given to what you are trying to prove		
proof	a statement or conjecture that has been proven		
deductive argument	a logical argument in which each statement you make is supported by a statement that is accepted as true		
theorem	a statement that is accepted as true without proof		
	New Vocabulary Write the correct equation next to each term.		
point-slope form \blacktriangleright			
$slope$ -intercept form \blacktriangleright			
	Vocabulary Link <i>Slope</i> is a word used in everyday English as well as in mathematics. Look up <i>slope</i> in the dictionary. Explain how the English definition can help you remember how <i>slope</i> is used in mathematics.		

Lesson 3-4 (continued)

Main Idea

Details

Write Equations of Lines pp. 196–198

Complete the chart on how to write an equation of a line.

Writing an Equation of a Line		
Forms	Procedures	
Given:		
slope and y-intercept		
Given:		
slope and point on the line		
Given: two points		
Given:		
for a horizontal line, when $m = 0$		
Given: equation of one line and one set of points for ⊥ and lines		

Write Equations to Solve Problems

p. 199

Fill in each blank to write the equations.

Alicia wants to paint for about 5 hours. One art studio charges an \$8 fee plus \$2 per hour. The second studio does not charge a fee and charges \$4 an hour. Write two equations to represent the cost of each studio. Which studio should she choose?

Fee + Hourly fee $\times x$ for Number of Hours = Total Cost

----- x = y

$$----- x = y$$

The ______ studio charges a better deal for up to 4 hours.

Proving Lines Parallel 3-5

What You'll Learn	Skim the lesson. Write two things you already know about proving lines parallel. 1.	
	2	
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lesson 3-1)	
►	nonadjacent interior angles that lie on opposite sides of a transversal	
►	nonadjacent exterior angles that lie on opposite sides of a transversal	
►	angles that lie on the same side of the transversal and on the same side of parallel lines	
►	coplanar lines that do not intersect	
>	line that intersects two or more parallel lines at two different points	
►	Where a transversal cuts through two parallel lines, these angles lie in the same region between parallel lines.	
►	Where a transversal cuts through two parallel lines, these angles lie in the same two regions that are not between the two parallel lines.	

esson 3-5 (continued)			
Main Idea	Details		
lentify Parallel Lines p. 205–207	Use the model to cross out the in the concept circle that do	he congruence statement bes not belong.	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\angle 1 \cong \angle 8 \qquad \angle 2 \cong \angle 4$ $\angle 6 \cong \angle 7 \qquad \angle 2 \cong \angle 7$	
rove Lines Parallel . 208	Fill in each blank to summa proving lines are parallel.	rize the lesson about	
	When two lines are	e cut by a,	
	the angle pairs formed are eithe	er or	
	When a pa	air of lines form angles that	
	do not meet this condition, the	lines be parallel.	
Helping You Rem draw a picture. How can a	A good way to remem a sketch help you to remember the H	ber something new is to Parallel Postulate?	
Helping You Rem draw a picture. How can a	A good way to remem a sketch help you to remember the H	ber something new is to Parallel Postulate?	
Helping You Rem draw a picture. How can a	A good way to remem a sketch help you to remember the H	ber something new is to Parallel Postulate?	
Helping You Rem draw a picture. How can a	A good way to remem a sketch help you to remember the H	ber something new is to Parallel Postulate?	
Helping You Rem draw a picture. How can a	A good way to remem a sketch help you to remember the H	ber something new is to Parallel Postulate?	

3-6 Perpendiculars and Distance

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson.
	1
	2
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lesson 2-4)
parallel lines 🕨	
skew 🕨	
	New Vocabulary Fill in each blank with the correct term or phrase.
equidistance 🕨	The between two lines when
	measured along a line to the lines is always
	Vocabulary Link <i>Equidistance</i> is a word that is used in everyday English. Find the definition of <i>equidistance</i> using a dictionary. Explain how the English definition can help you remember how <i>equidistance</i> is used in mathematics.

Lesson 3-6 (continued)			
Main Idea	Details		
Distance from a Point to a Line	Summarize the steps to find the distance between a point p and a line ℓ on a coordinate plane.		
pp. 213–210	Find the Distance between a Point and a Line.		
	Step 1: Write an for the line ℓ .		
	Step 2: Write an for the perpendicular line that goes through point <i>p</i>		
	Step 3: Use to find the coordinates where line ℓ the perpendicular line. Step 4: Use the to find the distance between point P and the point of intersection of		
	the two lines.		
Distance Between Parallel Lines	Fill in each blank to find the distance between the parallel lines.		
рр. 216–217	1. $y = 3x - 7$ The lines are units apart. y = 3x + 4		
	2. $y = -2x - 8$ The lines are <u>units apart</u> . y = -2x + 2		

_____ DATE ___

_____ PERIOD _

Helping You Remember

Use your dictionary to find the meaning of the Latin root *aequus*. List three words that are derived from this root and give meaning to each.

Tie It Together

Complete the graphic organizer with a term or formula from the chapter.

_ PERIOD

DATE _

Barallel and Perpendicular Lines

Before the Test

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 3.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 3 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 3 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Designate a place to study at home that is free of clutter and distraction. Try to study at about the same time each afternoon or evening so that it is part of your routine.

Before You Read

Before you read the chapter, think about what you know about congruent triangles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- **Remember to always take notes on your own.** Don't use someone else's notes as they may not make sense.
- When you take notes, listen or read for main ideas. Then record those ideas in a simplified form for future reference.

Congruent Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on congruent triangle, one fact might be that in two congruent triangles all of the side and angles of one triangle are congruent to the corresponding parts of the other triangle. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
4-1 Classifying Triangles	
4-2 Angles of Triangles	
4-3 Congruent Triangles	
4-4 Proving Triangles Congruent–SSS, SAS	
4-5 Proving Triangles Congruent–ASA, AAS	
4-6 Isosceles and Equilateral Triangles	
4-7 Congruence Transformations	
4-8 Triangles and Coordinate Proof	

Classifying Triangles 4-1

(continued) Lesson 4-1

4-2 Angles of Triangles

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson. 1. 2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	an extra line or segment drawn in a figure to help analyze geometric relationships
►	one of two angles inside a triangle that is not adjacent to an angle outside the triangle
►	an angle formed by one side of a triangle and the extension of an adjacent side
>	a method of showing statements to be true using boxes and arrows to show the logical progression of an argument
	Vocabulary Link <i>Auxiliary</i> is a word that is used in everyday English. Find the definition of <i>auxiliary</i> using a dictionary. Explain how the English definition can help you remember how <i>auxiliary line</i> is used in mathematics.

NAME	DATE		PERIOD
Lesson 4-2 (continued)			
Main Idea		Details	
Triangle Angle-Sum Theorem pp. 244–245	Fill in each box to com Given: $\angle A \cong \angle D$ $\angle B \cong \angle E$ Prove: $\angle C \cong \angle F$ Proof:	B^{A}	by proof. C = E = F
		iven	Given
	Angle-Sum Theorem		Angle-Sum Theorem
			Substitution
			Substitution
		• •	Subtraction
		De	ef. of congruent angles
Exterior Angle Theorem pp. 246–247	Solve for angles 1 and	2 in the figu	re below.
	$m \angle 1 = _$ $m \angle 2 = _$	4	70° 5° 2 1

4-3 Congruent Triangles

What You'll Learn	Scan the lesson. Write two things you already know about congruent triangles.
	1
	2
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lesson 4-1)
equiangular triangle 🕨	
isosceles triangle \blacktriangleright	
scalene triangle 🕨	
	New Vocabulary Fill in each blank with the correct term or phrase.
	If two geometric figures have exactly the same shape and size, they are
	In two, all of the parts of one
	polygon are congruent to the or
	matching parts of the other polygon.

Lesson 4-3

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Helping You Remember congruence statements for triangles because he thinks he has to match up three pairs of sides and three pairs of angles. How can you help him understand how to write correct congruence statements more easily?

Proving Triangles Congruent – SSS, SAS 4-4

4-5 **Proving Triangles Congruent – ASA, AAS**

Lesson 4-5

NAME		DATE			
Lesson 4-5 (continued)					
Main Idea		Details			
ASA Postulate pp. 273–274	Fill in each k following sta	Fill in each blank with the appropriate terms in th following statements.			
	N 70°	B 50°	70° C		
	In order to app are congruent, and the a second trian	In order to apply the ASA Postulate to prove two triangles are congruent, two pairs of of one triangle must be to the corresponding parts of a second triangle.			
	In the figure a $\angle ___ \cong \angle __$ that $\triangle ___$	bove, because \angle , and \cong	_ ≅ ∠, , you know		
AAS Theorem pp. 274–276	Use the AAS statement fo	Theorem to write r the figure below.	a triangle congruence		
		 	P 75° 1° 71° 71° 71° 71° 71° 75° 8		
Helping You Re	emember _{Sum}	marize what is need	ed to prove triangle		
congruence using the four methods learned so far.					
222	5 A5	ASA	AAS		
Isosceles and Equilateral Triangles 4-6

What You'll Learn	Scan the text in Lesson 4-6. Write two facts you learned about isosceles and equilateral triangles as you scanned the text. 1
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lesson 4-1)
►	a triangle with at least two congruent sides
►	a triangle with three congruent sides
►	a triangle with one angle greater than 90°
	New Vocabulary Label the diagram with the correct terms.
base angle 🕨	
vertex angle 🕨	

NAME	DATE	PERIOD
Lesson 4-6 (continued)		
Main Idea	Details	
Properties of Isosceles Triangles pp. 283–284	Describe the Isosceles Triangle converse in the boxes below. Th statement using the figures to i theorem.	Theorem and its nen write a conditional llustrate each
	Isosceles Triangle Theorem	
	Example:	
	Converse of Isosceles Triangle Theorem	R 2 T
	Example:	
Properties of Equilateral Triangles pp. 284–286	Solve for <i>x</i> in equilateral triang	the QRS. $R \xrightarrow{Q}{(6x-2)^{\circ}} S$
Helping You Reme	If a theorem and its conv	erse are both true, you

can often remember them most easily by combining them into an "if-and-only-if" statement. Write such a statement for the Isosceles Triangle Theorem and its converse.

4-7 Classifying Triangles

What You'll Learn	Skim Lesson 4-7. Predict two things that you expect to learn based on the headings and the Key Concept box.	
	1	
	2.	
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.	
congruence transformation	a transformation in which the position of the image may differ from that of the preimage, but the two figures remain congruent	
image	a type of transformation that is a flip over a line	
isometry	also known as a rigid transformation	
preimage	the end result of a geometric transformation	
reflection	an operation that maps an original geometric figure onto a new figure	
rotation	a type of transformation that is a turn around a fixed point	
transformation	a type of transformation that is a slide of a figure	
translation	the original figure in a geometric transformation	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Main Idea	Det	Details	
Identify Congruence Fransformation pp. 294–295	Write the type of transform preimage) in each box.	hation of triangle ABC (th	
Verify Congruence b. 296	Complete each statement t	o verify the congruence. RS = ST = RT = R'S' = S'T' = R'T' =	
Helping You Rem are also known as <i>flips, st</i> illustrate the correspondi	Geometric reflection lides, and turns. Describe how thes ng transformations.	s, translations, and rotation te terms appropriately	

4-8 Triangles and Coordinate Proof

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.	
	1	
	2	
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lesson 4-7)	
►	an operation that maps an original geometric figure onto a new figure	
>	a type of transformation that is a slide of a figure	
>	also known as a rigid transformation	
>	a type of transformation that is a flip over a line	
>	the end result of a geometric transformation	
►	a type of transformation that is a turn around a fixed point	
►	the original figure in a geometric transformation	
	New Vocabulary Write the definition next to the term.	
$coordinate \ proof$ >		

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Chapter 4

Lesson 4-8

Write Coordinate Proofs pp. 302-303

Complete each statement showing the side lengths of triangle RST. Round to the nearest hundredth if necessary. Classify the triangle.

2 4

Α Step 2 X

6*B*

Helping You Remember

Many students find it easier to remember mathematical formulas if they can put them into words in a compact way. Describe how you can use coordinate proof to help you remember the midpoint formula.

Tie It Together

Complete the graphic organizer with a term or formula from the chapter.

DATE ____

4 Congruent Triangles

Befor<u>e the Test</u>

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 4.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 4 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 4 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Be an active listener in class. Take notes, circle or highlight information that your teacher stresses, and ask questions when ideas are unclear to you.

__ PERIOD _

Relationships in Triangles

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an \boldsymbol{A} if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Relationships in Triangles
	• Concurrent lines do not intersect and stay the same distance apart.
	• To find the incenter of a triangle, draw a circle within the triangle.
	• Every triangle has 3 medians that are concurrent.
	• The largest angle in a triangle is opposite the longest side.
	• The Hinge Theorem is a way of proving triangle relationships.

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

🕖 Note Taking Tips

- When you take notes, include personal experiences that relate to the lesson and ways in which what you have learned will be used in your daily life.
- When you take notes, write questions you have about the lessons in the margin of your notes.

Then include the answers to these questions as you work through the lesson.

Relationships in Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on medians and altitudes of triangles, one fact might be lines containing the altitudes of a triangle are concurrent, intersecting at a point called the orthocenter. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
5-1 Bisectors of Triangles	
5-2 Medians and Altitudes of Triangles	
5-3 Inequalities of One Triangle	
5-4 Indirect Proof	
5-5 The Triangle Inequality	
5-6 Inequalities in Two Triangles	
5-7 Congruence Transformations	
5-8 Triangles and Coordinate Proof	

5-1 Bisectors of Triangles

What You'll Learn	Skim Lesson 5-1. Predict two things that you expect to learn based on the headings and figures in the lesson.		
	1		
	2		
Active Vocabulary	New Vocabulary Write the correct term next to each definition.		
►	the place where three or more intersecting lines meet		
►	a segment, line, or plane that intersects a segment at its midpoint and is perpendicular to the segment		
►	the point of intersection of the perpendicular bisectors of the three sides of a triangle		
►	three or more lines that intersect at a common point		
►	the point of intersection of the angle bisectors of the three angles of a triangle		
	Vocabulary Link Look up the definition of <i>bisect</i> . Use it to write the meaning of an angle <i>bisector</i> .		

Lesson 5-1

NAME	DATE PERIOD
Lesson 5-1 (continued)	
Main Idea	Details
Perpendicular Bisectors pp. 322–324	Describe the Perpendicular Bisector Theorem in the box below. Then write a conditional statement using the figures to illustrate the theorem.
	Perpendicular Bisector Theorem
	Example:
Angle Bisectors	Solve for <i>x</i> in the figure below.
pp. 524–520	$x = \qquad \qquad$

Helping You Remember A good way to remember theorems and postulates in geometry is to explain them to other classmates in your own words. How would you describe the Angle Bisector Theorem to a classmate who is having difficulty understanding the theorem

5-2 Medians and Altitudes of Triangles

What You'll Learn	Skim the Examples for Lesson 5-2. Predict two things you think you will learn about medians and altitudes of triangles.
	1
	2.
Active Vocabulary	Deview Vocabulary I abol the diagram with the correct term
Active vocadulary	(Lesson 5-1)
median 🕨	New Vocabulary Write the definition next to each term.
centroid 🕨	
altitude 🕨	
$orthocenter$ \blacktriangleright	

NAME	DATE	PERIOD
Lesson 5-2 (continued)		
Main Idea	Deta	ails
Medians pp. 333–335	Point <i>O</i> is the centroid of tr Centroid Theorem to compl	iangle VTR. Use the ete each statement.
	T	V O S R
	$TO = _\TW$	WR =
	VS = VO	2 RS =
Attudes pp. 335–337		TT (,)
Helping You Ren it to someone else. Supp	A good way to rement ose that a classmate is having troubl	nber something is to explain le remembering whether the

center of gravity of a triangle is the orthocenter, the centroid, the incenter, or the circumcenter of the triangle. Suggest a way to remember which point it is.

5-3 Inequalities in One Triangle

What You'll Learn	Scar will	n the text under the <i>Now</i> heading. List two things you learn about in the lesson.
	1.	
	2.	

Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lessons 5-1 and 5-2)	
perpendicular bisector	the place where three or more intersecting lines meet	
orthocenter	the point of concurrency of the medians of a triangle	
altitude	a segment of a triangle from a vertex that is perpendicular to the line containing the opposite of the triangle	
incenter	the point of concurrency of the lines containing the altitudes of a triangle	
point of concurrency	a segment with endpoints being a vertex of a triangle and the midpoint of the opposite side	
median	a segment, line, or plane that intersect a segment at its midpoint and is perpendicular to the segment	
circumcenter	three or more lines that intersect at a common point	
concurrent lines	the point of intersection of the perpendicular bisectors of the three sides of a triangle	
centroid	the point of intersection of the angle bisectors of the three angles of a triangle	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
Lesson 5-3 (continued)		
Main Idea	Detai	ls
Angle Inequalities pp. 342–343	Describe the Exterior Angle I your own words. Then use the two inequalities.	nequality Theorem in e figure below to write
	B	
Angle Side Inconclities		
pp. 343–345	List the angles of $\Delta LMIV$ in order from least to greatest.	N 11.6 7.5
		L M
Helping You Reme Theorem is related to the E Inequality Theorem must b	Explain how the Extern xterior Angle Theorem, and why th e true if the Exterior Angle Theorem	ior Angle Inequality e Exterior Angle m is true.

5-4 Indirect Proof

What You'll Learn	Scan Lesson 5-4. List two headings you would use to make an outline of this lesson.
	1
	2.

Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
indirect reasoning >	Indirect reasoning is a method of thinking that assumes that a conclusion is and then showing that this assumption leads to a contradiction.
indirect proof ►	In an indirect proof, you temporarily assume that what you are trying to prove is false. By showing this assumption to be logically impossible, you prove your assumption false and the true.
proof by contradiction >	To construct a proof by contradiction, the first step is to that the conclusion you want to prove is false.
	Vocabulary Link Think of other times you have encountered the word <i>indirect</i> in mathematics. Describe any similarities to an <i>indirect proof</i> .

Lesson 5-4

Indirect Algebraic Proof pp. 351–353	Complete the table below showing the st in constructing an indirect proof. How to Write an Indirect	eps involve
	Step 1	
	Step 2	
	Step 3	
ndirect Proof with eometry p. 353–354	Suppose you want to prove that the sum angles of a triangle is equal to 180°. What would you make to form an indirect pro- statement?	of interior t assumption of of this
	statement:	3

The Triangle Inequality 5-5

DATE	

Main Idea		Details
The Triangle Inequality pp. 360–361	If the measures 4 centimeters ar possible whole r	of two sides of a triangle are nd 9 centimeters, what is the <i>least</i> number measure for the third side?
	Step 1: Use the inequalities for a centimeters.	triangle inequality to write three a triangle with sides 4, 9, and <i>x</i>
	Step	2: Solve each the inequalities.
	Step 3: Use t	he inequalities to solve the problem.
Proofs Using the Triangle Inequality p. 362	Complete the two Given: $\overline{FI} \cong \overline{FJ}$ Prove: $FI + FH >$	wo-column proof. F
	Statements	Reasons
	1 9	H
	<u>لا</u> ه	
	3.	3.
	3 4	_ 3 _ 4

5-6 Inequalities in Two Triangles

What You'll Learn	Skim the lesson. Write two things you already know about inequalities in two triangles.
	1
	2.
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lessons 5-1 and 5-2)
►	a segment of a triangle from a vertex that is perpendicular to the line containing the opposite of the triangle
►	a segment, line, or plane that intersect a segment at its midpoint and is perpendicular to the segment
►	the point of intersection of the perpendicular bisectors of the three sides of a triangle
►	the point of concurrency of the medians of a triangle
	Vocabulary Link Describe how the hinge of a door can be used to illustrate the Hinge Theorem.

Lesson 5-6

Relationships in Triangles

Tie It Together

Complete each graphic organizer with a term, description, diagram, or theorem from the chapter.

Segment	Definition	Point of Concurrency	Property of Point	Diagram
	a segment that bisects the side of a triangle at a right angle			
		incenter		
			center of gravity of the triangle	
altitude				

Triangle Inequalities		
Exterior Angles		
Angle-Side		
Triangle Inequality		
Hinge		

DATE _

Relationships in Triangles

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Relationships in Triangles	After You Read
• Concurrent lines do not intersect and stay the same distance apart.	
• To find the incenter of a triangle, draw a circle within the triangle.	
• Every triangle has 3 medians that are concurrent.	
• The largest angle in a triangle is opposite the shortest side.	
• The Hinge Theorem is a way of proving triangle relationships.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 5.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 5 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 5 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Get a good nights rest before a test. Students that take the time to sleep usually do better than students who stay up late cramming.

NAME

Quadrilaterals

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an \mathbf{A} if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Quadrilaterals
	 The sum of the interior angles of a convex polygon is (<i>n</i> − 1) × 180.
	• A diagonal cuts a parallelogram into 2 congruent triangles.
	• A rhombus is a quadrilateral.
	• If a parallelogram has 1 right angle, then it has 4 right angles.
	• A trapezoid can have 0 or 1 set of parallel sides.

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, look for written real-world examples in your everyday life.

Comment on how writers use statistics to prove or disprove points of view and discuss the ethical responsibilities writers have when using statistics.

• When you take notes, include visuals.

Clearly label the visuals and write captions when needed.

NAME		 DATE	PERIOD
CHAPTER 6	Quadrilaterals		

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on rectangles, one fact might be a parallelogram with four right angles is a rectangle. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
6-1 Angles of Polygons	
6-2 Parallelograms	
6-3 Tests for Parallelograms	
6-4 Rectangles	
6-5 Rhombi and Squares	
6-6 Trapezoids and Kites	

6-1 Angles of Polygons

What You'll Learn	Skim Lesson 6-1. Predict two things that you expect to learn based on the headings and figures in the lesson.
	1
	2
Active vocabulary diagonal >	New Vocabulary Write the definition next to the term.
	Name all of the diagonals in polygon $ABCDE$.
	Vocabulary Link Look up how television screens are measured. What does it mean for a television to have a 32-inch screen?

Lesson 6-1

NAME		DA [:]	TE	PERIOD
Lesson 6-1 (continued)				
Main Idea			Details	
Polygon Interior Angles Sum pp. 389–392	Complete middle col divide the diagonals	the followi umn, find polygon ir from one v	ng table for the number nto by drawin rertex.	convex polygons. For of triangles you can ng all the possible
	polygon	number of sides	number of triangles	sum of interior angle measures
	triangle			
	hexagon			
	octagon			
	nonagon			
	<i>n</i> -gon			
Polygon Exterior Angles Sum pp. 392–393	Find the v	alue of <i>x</i> in	n the figure k	below. $(8x + 5)^{\circ}$ $(6x)^{\circ}$

Helping You Remember

A good way to remember a new mathematical idea or formula is to relate it to something you already know. How can you use your knowledge of the Angle Sum Theorem (for a triangle) to help you remember the Interior Angle Sum Theorem?

6-2 Parallelograms

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	New Vocabulary Write the definition of the term.
parallelogram 🕨	
	Fill in each blank using parallelogram ABCD.
	$\overline{AB} \parallel ___$
	$\overline{BE} \cong $ E
	$\overline{AD} \cong$
	$\overline{BC} \mid\mid$
	$\overline{AE} \simeq $

Lesson 6-2

Lesson 6-2 (continued)

Main Idea

Details

Sides and Angles of Parallelograms pp. 399–400

Complete the table using Theorems 6.3, 6.4, 6.5, and 6.6 in the Student Edition.

DATE _

Properties of Parallelograms	
Theorem	Property
6.3	If a quadrilateral is a parallelogram, then its
	opposite sides are
6.4	If a quadrilateral is a parallelogram, then its
	opposite angles are
6.5	If a quadrilateral is a parallelogram, then its
	opposite sides are
6.6	If a parallelogram has one right angle, then it
	has four

Diagonals of Parallelograms

pp. 401-402

Find the value of z in the parallelogram below.

Helping You Remember

A good way to remember new theorems in geometry is to relate them to theorems you learned earlier. Name a theorem about parallel lines that can be used to remember the theorem that says, "If a parallelogram has one right angle, it has four right angles."

_ PERIOD _

Tests for Parallelograms 6-3

1.	What You'll Learn	Skim the Examples for Lesson 6-3. Predict two things you think you will learn about tests for parallelograms.
2		1
2.		
Active Vocabulary Review Vocabulary Fill in each blank with the correct term of phrase. (Lessons 6-1 and 6-2) diagonal A diagonal is a segment in a polygon that connects any two		2
Active Vocabulary Review Vocabulary Fill in each blank with the correct term of phrase. (Lessons 6-1 and 6-2) diagonal A diagonal is a segment in a polygon that connects any two		
diagonal A diagonal is a segment in a polygon that connects any two	Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lessons 6-1 and 6-2</i>)
parallelogram A parallelogram is a quadrilateral with both pairs of parallel. Fill in each blank to review the properties of parallelograms The sides of a parallelogram are congruent. The opposite angles of a parallelogram are	diagonal 🕨	A diagonal is a segment in a polygon that connects any two
Fill in each blank to review the properties of parallelograms The sides of a parallelogram are congruent. The opposite angles of a parallelogram are	parallelogram 🕨	A parallelogram is a quadrilateral with both pairs of parallel.
The opposite angles of a parallelogram are		Fill in each blank to review the properties of parallelograms. The
		The opposite angles of a parallelogram are
Consecutive angles in a parallelogram are		Consecutive angles in a parallelogram are
If a parallelogram has one angle, then it		If a parallelogram has one angle, then it

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Conditions for

Parallelograms

pp. 409–411

Main Idea

Details

Complete the table using Theorems 6.9, 6.10, 6.11, and 6.12 in the student book for any quadrilateral *ABCD*.

Properties of Parallelograms		
Theorem	Property	
	If both pairs of opposite sides of <i>ABCD</i> are	
6.9	, then <i>ABCD</i> is a parallelogram.	
	If both pairs of opposite angles of <i>ABCD</i> are	
6.10	, then <i>ABCD</i> is a parallelogram.	
0.11	If the diagonals of <i>ABCD</i>	
6.11	each other, then <i>ABCD</i> is a parallelogram.	
	If one pair of opposite sides of <i>ABCD</i> is both	
6.12	, then <i>ABCD</i> is a	
	parallelogram.	

Parallelograms on the Coordinate Plane

pp. 412–413

Find the slope of each line segment to verify that *WXYZ* is a parallelogram.

slope of $\overline{WX} =$ ______ slope of $\overline{XY} =$ _____ slope of $\overline{YZ} =$ _____ slope of $\overline{WZ} =$ _____

Helping You Remember

A good way to remember a large number of mathematical ideas is to think of them in groups. How can you state the conditions as one group about the sides of a quadrilateral that guarantee it is a parallelogram?

Lesson 6-4

NAME	DATE	PERIOD
Lesson 6-4 (continued)		
Main Idea	Det	ails
Properties of Rectangles pp. 419–420	Cross out the incorrect qua Venn diagram and illustrat rectangles and parallelogra definition of the correct qu provided.	adrilateral to complete the te the relationship between ams. Then write the adrilateral in the space
	rectangle parallelogram	rectangle parallelogram
Prove That Parallelograms Are Rectangles	Use the Distance Formula t not parallelogram <i>RSTU</i> is	to determine whether or a rectangle.
pp. 420–421	R R U U V V S T T X	$RT \approx$ $SU \approx$
Helping You Reme geometric relationships and you combine the two theorem	mber It is easier to rement theorems if you are able to com- ms about diagonals that you stud	aber a large number of bine some of them. How can died in this lesson?

6-5 **Rhombi and Squares**

What You'll Learn	Scan the text in Lesson 6-5. Write two facts you learned about rhombi and squares.
	1
	2
Active Vocabulary	New Vocabulary Label the diagrams with the correct terms.
rhombus 🕨	
square 🕨	
	Vocabulary Link A square is a shape that you learn at a very early age. Name some everyday items that are shaped like a

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

rhombus?

square. Can you name any items that are shaped like a

Lesson 6-5 (continued)	
Main Idea	Details
Properties of Rhombi and Squares pp. 426–428	Use the properties of rhombi to solve for x in AD = 8x - 11 DC = 5x + 13 What property of rhombi can you use to help you solve for x? Use the property to write an equation. Check

_____ DATE _____ PERIOD ___

Prove That Quadrilaterals Are Rhombi or Squares pp. 428–430 Describe how you could prove that $RS^2 = RV^2 + SV^2$ in rhombus RSTU.

Lesson 6-6

6-6 Trapezoids and Kites

What You'll Learn	Skim the lesson. Write two things you already know about trapezoids and kites.	
	1	
	2.	
Active Vocabulary	New Vocabulary Match the term with its definition by drawing a line to connect the two.	
base angles	the segment that connects the midpoints of the legs of the trapezoid	
bases	a quadrilateral with exactly two pairs of consecutive congruent sides	
isosceles trapezoid	the nonparallel sides of a trapezoid	
kite	the parallel sides of a trapezoid	
legs of a trapezoid	the angles formed by the base and one of the legs of a trapezoid	
midsegment of a trapezoid	a quadrilateral with exactly one pair of parallel sides	
trapezoid	a trapezoid with congruent legs	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 6-6 (continued)	
Main Idea	Details
Properties of Trapezoids pp. 435–438	Complete the flow proof below. Given: $ABCD$ is an isosceles trapezoid with bases \overline{AB} and \overline{CD} . Prove: $\angle BDC \cong ACD$ D C
	Given
	Reflexive Prop. Diagonals are cong. Def. 1soc. trap.
Properties of Kites op. 438–439	Solve for x if MN is a midsegment of trapezoid RSTU $ \begin{array}{c} R & 14.4 & S \\ \hline M & 16.5 & N \end{array} $
	$x = \underline{\qquad} \qquad $
Helping You Rement theorem is to relate it to one about triangles that is similar trapezoid.	A good way to remember a new geometric you already know. Name and state in words a theorem ar to the theorem in this lesson about the median of a

_____ DATE _____ PERIOD ___

Tie It Together

Complete the graphic organizer with properties of the figure from the chapter.

DATE -

Quadrilaterals

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Quadrilaterals	After You Read
 The sum of the interior angles of a convex polygon is (n - 1) × 180. 	
• A diagonal cuts a parallelogram into 2 congruent triangles.	
• A rhombus is a quadrilateral.	
• If a parallelogram has 1 right angle, then it has 4 right angles.	
• A trapezoid can have 0 or 1 set of parallel sides.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 6.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 6 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 6 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- \Box I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

• When you are preparing to read new material, scan the text first, briefly looking over headings, highlighted text, pictures, and call out boxes. Think of questions that you can search the text for as you read.

Before You Read

Before you read the chapter, think about what you know about proportions and similarity. List three things you already know about proportions and similarity in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When you take notes, write instructions on how to do something presented in each lesson.

Then follow your own instructions to check them for accuracy.

• When you take notes, be sure to describe steps in detail. Include examples of questions you might ask yourself during problem solving.

CHAPTER

Proportions and Similarity

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on similar polygons, one fact might be similar polygons have the same shape but not the same size. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
7-1 Ratios and Proportions	
7-2 Similar Polygons	
7-3 Similar Triangles	
7-4 Parallel Lines and Proportional Parts	
7-5 Parts of Similar Triangles	
7-6 Similarity Transformations	
7-7 Scale Drawings and Models	

7-1 Ratios and Proportions

What You'll Learn	Skim the Examples for Lesson 7-1. Predict two things you think you will learn about ratios and proportions. 1. 2.
Active Vocabulary	New Vocabulary Match the term with its definition by
	drawing a line to connect the two.
cross product	the numbers <i>a</i> and <i>d</i> in the proportion $\frac{a}{b} = \frac{c}{d}$
extended ratio	an equation stating that two ratios are equal
extremes	a ratio that compares three or more numbers
means	the product of the extremes, <i>ad</i> , and the product of the means, <i>bc</i> in the proportion $\frac{a}{b} = \frac{c}{d}$
proportion	a comparison of two quantities using division
ratio	the numbers <i>b</i> and <i>c</i> in the proportion $\frac{a}{b} = \frac{c}{d}$
	Vocabulary Link Look up the meaning of the word <i>proportional</i> . How does this relate to a proportion in mathematics?

Lesson 7-1

Lesson 7-1 (continued)	
Main Idea	Details
Write and Use Ratios pp. 457–458	The ratio of the measures of the angles in <i>DEF</i> is 4:5:9. Find the measures of the angles.
	Step 1: Multiply the ratio by x to represent the unknown angle measures.
	Step 2: Write an equation using the extended ratio and the Triangle Sum Theorem.
	Step 3: Solve for <i>x</i> .
	Step 4: Find the angle measures.
Use Properties of Proportions pp. 458–459	A quality control engineer randomly samples 120 car stereos coming off an assembly line. He finds that 3 of them have cosmetic blemishes. How many car stereos would you expect to have cosmetic blemishes in a production run of 8000 car stereos?
	Write a proportion.
	Solve the proportion.
Helping You Reme mathematical idea if you pu How can you use this appro	Sometimes it is easier to remember a at it into words without using any mathematical symbols. each to remember the concept of equality of cross products?

_____ DATE _____ PERIOD ___

7-2 Similar Polygons

What You'll Learn	Skim Lesson 7-2. Predict two things that you expect to learn based on the headings and figures in the lesson.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Write the definition next to each term. (Lesson 7-1)	
proportion >		
extended ratio 🕨		
extremes >		
ratio 🕨		
	New Vocabulary Write the correct term next to each definition.	
►	the scale factor between two similar polygons	
►	polygons that have the same shape but not necessarily the same size	
►	the ratio of the lengths of the corresponding sides of two similar polygons	

Lesson 7-2

NAME	DATE PERIOD
Lesson 7-2 (continued)	
Main Idea Identify Similar Polygons pp. 465–466	Details Model two similar triangles by writing the side lengths of $\triangle XYZ$. Then tell the scale factor from $\triangle HIJ$ to $\triangle XYZ$.
Use Similar Figures pp. 467–468	scale factor: Solve for y in the similar trapezoids below. $\underbrace{27}_{9}$
Helping You Reme vocabulary term is to relate meanings in English. Give related to proportions.	<pre>y =</pre> ember A good way to remember a new mathematical e it to words used in everyday life. The word <i>scale</i> has many three phrases that include the word <i>scale</i> in a way that is

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

7-3 Similar Triangles

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.
	1
	2
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lessons 7-1, 7-2</i>)
<i>extremes</i> ►	The extremes are the numbers and in the proportion $\frac{a}{b} = \frac{c}{d}$.
means 🕨	The means are the numbers and in the proportion $\frac{a}{b} = \frac{c}{d}$.
proportion ightarrow	A proportion is an equation stating thatare equal.
scale factor ▶	The scale factor is the ratio of the lengths of the
	sides of two similar polygons.
ratio 🕨	A ratio is a comparison of two quantities using
similar polygons 🕨	Similar polygons have the same but not
	necessarily the same

	DATE	PERIOD
Lesson 7-3 (continued)		
Main Idea	Detai	ls
Identify Similar Triangles	Determine whether the trian write a similarity statement.	gles are similar. If so, Explain your reasoning.
	$R \xrightarrow{0} S$	77° 65° Y
Use Similar Triangles pp. 477–478	Complete the table to show the similarity in Theorem 7.5.	he properties of n 7.5
	Deponenties of	
	ropercies of	Similarity
	Reflexive Property	Similarity
	Reflexive Property Symmetric Property	Similarity
	Reflexive Property Symmetric Property Transitive Property	

(

7-4 **Parallel Lines and Proportional Parts**

What You'll Learn	Scan Lesson 7-4. List two headings you would use to make an outline of this lesson. 1 2
Active Vocabulary	Review Vocabulary Label the diagrams with the correct terms. (<i>Lesson 7-1</i>)
extreme 🕨	
mean 🕨	
extended ratio \blacktriangleright	

New Vocabulary Label the diagram with the correct terms.

М В С

	Deta	ails
Proportional Parts Within Triangles	Use the Triangle Proportion	nality Theorem to find R
op. 484–486	Step 1: Use the Triangle Proportionality Theorem to write a proportion.	3.6 Q 6.3 S 8.4 S
	Step 2: Substitute the known values into the proportion.	Step 3: Solve the proportion for <i>RT</i> .
Proportional Parts with Parallel Lines p. 486–488	Model Corollary 7.1 by drav the parallel lines below and	ving two transversals on writing a proportion.
	$\begin{array}{cccc} l & & & \\ & & & \\ k & & & \end{array} $	
	$m \longleftarrow$	
Helping You Reme	A good way to remen	nber a new mathematical u already know. What is ar

Parts of Similar Triangles 7-5

What You'll Learn	Scan the text in Lesson 7-5. Write two facts you learned about parts of similar triangles.		
	1		
	2		
Active Vecebulary			
Active vocadulary	terms. (Lessons 5-1 and 5-2)		
angle bisector >			
altitude ►			
altitude ► median ►			
altitude ► median ►			

NAME	DATE	PERIOD	
Lesson 7-5 (continued)			
Main Idea	Deta	ils	
Special Segments of Similar Triangles pp. 495–497	Use Theorem 7.8 in the student book to solve for <i>BD</i> in the similar triangles below.		
	A B C	R U T	
	Step 1: Use Theorem 7.8 to write a proportion.]	
	Step 2: Substitute the known values into the proportion.]	
	Step 3: Solve the proportion for <i>BD</i> .]	
Triangle Angle Bisector Theorem p. 498	Model the Triangle Angle Bi drawing an angle bisector a	sector Theorem by nd writing a proportion.	
	R		

Helping You Remember

A good way to remember a large amount of information is to remember key words. What key words will help you remember the features of similar triangles that are proportional to the lengths of the corresponding sides?

Similarity Transformations 7-6

What You'll Learn	Skim the lesson. Write two things you already know about similarity transformations.		
	1		
	2.		
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.		
center of dilation \blacktriangleright	Dilations are performed with respect to a called the center of dilation.		
dilation >	A dilation is a transformation that or		
	the original figure proportionally.		
enlargement 🕨	A dilation with a scale factor produces an enlargement.		
scale factor of a dilation \blacktriangleright	The scale factor of a dilation describes the of the dilation.		
similarity transformation \blacktriangleright	A similarity transformation is a transformation that maps a		
	figure onto a figure.		
reduction >	A dilation with a scale factor produces a reduction.		

NAME	DATE	PERIOD
Lesson 7-6 (continued)		
Main Idea	Def	tails
Identify Similarity Transformations pp. 505–506	Model a reduction and an estimilar triangle on each co scale factor of each dilation Reduction	Enlargement by drawing a ordinate grid. Write the n. Enlargement $A = B$
	scale factor:	scale factor:
Verify Similarity p. 507	Graph the original figure a sheet of graph paper. Verif similarity transformation.	and its dilated image on a y that the dilation is a

Preimage: *A*(0, 0), *B*(2, 3), *C*(4, 1)

Image: *A*′(0, 0), *B*′(4, 6), *C*′(8, 2)

Helping You Remember

A good way to develop a higher understanding of a concept is to compare and contrast it with other similar topics. Compare and contrast similarity transformations with the congruency transformations that you learned about in chapter 6.

7-7 **Scale Drawings and Models**

What You'll Learn	Scan the text in Lesson 7-7. Write two facts you learned about scale drawings and models.				
	1				
	2				
Active Vocabulary	New Vocabulary Write the definition next to each term.				
scale 🕨					
scale drawing 🕨					
scale model 🕨					
	New Vershulary, Scole drawings and models have a				
	range of applications. For instance, a roadmap is a real world example of a scale drawing. Can you think of other				

real world examples of scale drawings and scale models?

Lesson 7-7


```
Tie It Together
```

Complete the graphic organizer with a phrase or formula from the chapter.

Proportions and Similarity

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 7.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 7 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 7 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Complete reading assignments before class. Write down or circle any questions you may have about what was in the text.

NAME

Before You Read

Before you read the chapter, think about what you know about right triangles and trigonometry. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDA BLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

- When searching for the main idea of a lesson, ask yourself, "What is this paragraph or lesson telling me?"
- When you take notes, include definitions of new terms, explanations of new concepts, and examples of problems.

Right Triangles and Trigonometry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on geometric mean, one fact might be the geometric mean between two numbers is the positive square root of their product. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
8-1 Geometric Mean	
8-2 The Pythagorean Theorem and Its Converse	
8-3 Special Right Triangles	
8-4 Trigonometry	
8-5 Angles of Elevation	
8-6 The Law of Sines and Law of Cosines	
8-7 Vectors	

8-1 Geometric Mean

What You'll Learn	Skim Lesson 8-1. Predict two things that you expect to learn based on the headings and the Key Concept box. 1.		
Active Vocabulary	Review Vocabulary Write the correct term next to each		
	definition. (Lesson 7-1)		
►	an equation stating that two ratios are equal		
►	the numbers <i>a</i> and <i>d</i> in the proportion $\frac{a}{b} = \frac{c}{d}$		
►	the numbers <i>b</i> and <i>c</i> in the proportion $\frac{a}{b} = \frac{c}{d}$		
	New Vocabulary Complete each statement by filling in the blank with the correct term or phrase or writing the correct formula.		
geometric mean 🕨	The geometric mean of two positive numbers a and b is the		
	number <i>x</i> such that		
	The measure of the altitude drawn from the vertex of a right		
	triangle to its hypotenuse is the geometric mean between		
	the measures of the two segments of the		
	The geometric mean of two positive numbers a and b can be		
	calculated using the expression		

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

		в.		-
IN.	A	IV	1	E

DATE	PERIOD
De	etails
Find the geometric mean	between 8 and 18.
de	efinition of geometric mean
St	ubstitute for <i>a</i> and <i>b</i> .
M	ultiply.
Si	mplify.
Model Theorem 8.2, the Ge Theorem, by drawing a se and writing a proportion.	eometric Mean (Altitude) gment on right triangle <i>DEF</i>
D 90° F	
	DATE DEE Find the geometric mean f defined of the second of the seco

Helping You Remember

A good way to remember a new mathematical concept is to relate it to something you already know. How can the meaning of *mean* in a proportion help you to remember how to find the geometric mean between two numbers?

8-2 The Pythagorean Theorem and Its Converse

What You'll Learn	Scan the text in Lesson 8-2. Write two facts you learned about the Pythagorean Theorem and its converse as you scanned the text. 1.
	2.
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or
Active vocadulary	phrase. (Lesson 1-5)
geometric mean 🕨	The geometric mean of two numbers <i>a</i>
	and <i>b</i> can be calculated using the expression $x = \sqrt{ab}$.
	The measure of the drawn from the
	vertex of the right triangle to its hypotenuse is the
	geometric mean between the measures of the two
	segments of the hypotenuse.
Pythagorean triple 🕨	New Vocabulary Write the definition next to the term.

Lesson 8-2

Main Idea		Details	
The Pythagorean Theorem	Circle each set o triple.	of numbers that is a	Pythagorean
pp. 541–544	1. 6, 8, 10	2. 7, 21, 25	3. 5, 12, 13
	4. 24, 45, 51	5. 14, 48, 50	6. 10, 15, 17
	7. 21, 72, 75	8. 16, 30, 36	9. 15, 36, 39
Converse of the Pythagorean Theorem pp. 544–545	Fill in each blar Pythagorean Th	nk to complete the co neorem. B	onverse of the

a C

DATE -

_____ PERIOD .

Con	verse of the Pythagorean Theorem
Words	If the sum of the of the lengths of the shortest sides of a triangle is equal to the
	square of the length of the side,
	then the triangle is a right triangle.
Symbols	If $a^2 + b^2 = c^2$, then

Helping You Remember

Many students who studied geometry long ago remember the Pythagorean Theorem as the equation $a^2 + b^2 = c^2$, but cannot tell you what this equation means. A formula is useless if you don't know what it means and how to use it. How could you help someone who has forgotten the Pythagorean Theorem remember the meaning of the equation $a^2 + b^2 = c^2$?

8-3 Special Right Triangles

What You'll Learn	Scan the text under the <i>Now</i> heading List two things you
	will learn about in the lesson.
	1
	2
Active Vecebulers	New Vershulawy Quedriletonel ADCD is a servere with side
Active vocadulary	lengths s. Fill in each blank to show what you know about the figure.
	AB =
	$m \angle ADC = $
	$m \angle ACD = \ C$
	AC =
	Triangle <i>LMN</i> is equilateral with side lengths 2 <i>s</i> . Fill in each blank to show what you know about the figure.
	<i>ON</i> =
	$m \angle OLN = $ 2s
	$m \angle LNO = $ $M \xrightarrow[]{O} N$
	<i>LO</i> =

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 8-3

Properties of 30°-60°-90° **Triangles**

pp. 553–555

Helping You Remember

Some students find it easier to remember mathematical concepts in terms of specific numbers rather than variables. How can you use specific numbers to help you remember the relationship between the lengths of the three sides in a 30°-60°-90° triangle?

8-4 Trigonometry

What You'll Learn	Skim the Examples for Lesson 8-4. Predict two things you think you will learn about trigonometry. 1. 2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	the ratio of the opposite leg to the hypotenuse of a right triangle
►	the measure of $\angle A$ if sin A is known
►	the study of triangle measurement
>	the measure of $\angle A$ if tan A is known
►	the ratio of the adjacent leg to the hypotenuse of a right triangle
►	the measure of $\angle A$ if $\cos A$ is known
►	a ratio of the lengths of two sides of a right triangle
►	the ratio of the opposite leg to the adjacent leg of a right triangle

Lesson 8-4

NI	Λ.	ΝЛ	
IN	A	IVI	
		•••	_

NAME	DATE	PERIOD
Lesson 8-4 (continued)		
Main Idea	Det	ails
Trigonometric Ratios pp. 562–564	Complete the statements to ratios for angles <i>H</i> and <i>K</i> .	show the trigonometric
	$\sin H = $	
	$\sin K = $	
	$\cos H =$	
	$\cos K = $	
	$\tan H =$	
	tan <i>K</i> =	
Use Inverse Trigonometric Ratios	Use a calculator to find $m \angle$	F to the nearest tenth.
pp. 001 000	F16	
	$E \xrightarrow{9} G$	$m \angle F \approx$
Helping You Remo relationship between the s triangle?	How can the <i>co</i> in <i>co</i> in co in so and the cosines of the two ac	<i>osine</i> help you remember the ute angles of a right
[

8-5 Angles of Elevation and Depression

What You'll Learn	Skim the lesson. Write two things you already know about angles of elevation and depression.
	1
	2
Active Vocabulary	New Vocabulary Write the definition next to each term.
angle of elevation \blacktriangleright	
angle of depression \blacktriangleright	
	Vocabulary Link What are some real-world examples of angles of elevation and depression?

	DATE	
Lesson 8-5 (continued)		
Main Idea	Det	ails
Angles of Elevation and Depression pp. 574–575	A plane takes off and climb of 35°. How high above the traveling 250 yards? Model diagram and solve.	os at an angle of elevation ground is the plane after the situation with a
Two Angles of Elevation or Depression pp. 575–576	Solve for x in the figure between 20 m	low. ∽ x ≈
Helping You Remember A good way to remember something is to explain it to someone else. Suppose a classmate finds it difficult to distinguish between angles of elevation and angles of depression. What are some hints you can give her to get it right every time?		

8-6 The Law of Sines and Law of Cosines

What You'll Learn	Scan Lesson 8-6. List two headings you would use to make an outline of this lesson. 1 2
Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lesson 1-5)
tangent	the angle formed by a horizontal line and an observer's line of sight to an object above the horizontal line
angle of depression	the ratio of the opposite leg to the adjacent leg of a right triangle
cosine	the angle formed by a horizontal line and an observer's line of sight to an object above the horizontal line
angle of elevation	the ratio of the adjacent leg to the hypotenuse of a right triangle
	New Vocabulary Fill in each blank with the correct term or phrase.
Law of Sines \blacktriangleright	You can use the Law of Sines to solve a if
	you know the measures of and
	(AAS). If given ASA, use the Triangle
	Angle Sum Theorem to find the measure of the
Law of Cosines ►	You can use the Law of Cosines to solve a triangle if you
	know the measures of two and the
	(SAS).

DATE ____

_____ PERIOD _

Helping You Remember

equations and formulas better if they can state them in words. State the Law of Sines in your own words without using variables or mathematical symbols.
NAME	DATE PERIOD
8-7 Vectors	
What You'll Learn	Skim the Examples for Lesson 8-7. Predict two things you think you will learn about vectors. 1
	2
Active Vocabulary	New Vocabulary Write the correct term next to each definition.
►	a description of a vector in terms of its horizontal change x and vertical change y from its initial point to its terminal point
►	the angle that is formed with the <i>x</i> -axis or any other horizontal line
>	the length of the vector from its initial point to its terminal point
►	a way to find the sum of two vectors using a parallelogram
>	the sum of two vectors
►	a vector that is placed in the coordinate plane with its initial point at the origin
►	a way to find the sum of two vectors using a triangle
►	a quantity that has both magnitude and direction

Lesson 8-7

Describe Vectors p. 593–594	Write the component form	of \overline{ST} .
Vector Addition pp. 594–596	Model the parallelogram m method below by drawing t the resultant.	ethod and the triangle wo vectors and showing
	Parallelogram Method	Triangle Method
Helping You Remo term is to relate it to a term studied similarity and dilat	A good way to remen n you already know. You learned tions. How is the idea of a <i>scalar</i>	mber a new mathematical about <i>scale factors</i> when you related to <i>scale factors</i> ?

Right Triangles and Trigonometry

Tie It Together

Complete the graphic organizer with a term or formula from the chapter.

Right Triangles		
	Notation	Diagram/Examples
Similar Right Triangles		
Geometric Mean		
Right Triangle Geometric Mean Theorem		a h b x y c x y
Pythagoras		
Pythagorean Theorem		
Pythagorean Inequality Theorems		
Special Right Triangles		
45°-45°-90°		$\ell = \frac{45^{\circ}}{45^{\circ}} \frac{\ell\sqrt{2}}{\ell}$
30°-60°-90°		s 60° 2s 30° s√3
Trigonometry		
Ratios		A adj C opp B
Law of Sines		A
Law of Cosines		

8 Right Triangles and Trigonometry

Befor<u>e the Test</u>

NAME

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 8.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 8 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 8 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• While note-taking use abbreviations to use less time and room. Write neatly and place a question mark by any information that you do not understand.

Transformations and Symmetry

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a ${\bf D}$ if you disagree with the statement.

Before You Read	Transformations and Symmetry
	• The orientation of an image that undergoes a reflection stays the same.
	• The image after a 180° rotation is equal to the original image.
	• An image after 2 reflections in parallel lines is equal to a translation.
	• Vectors can be used to define translations.
	• Dilations can have positive or negative scale factors.

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- At the end of each lesson, write a summary of the lesson, or write in your own words what the lesson was about.
- As you read each lesson, list examples of ways the new knowledge has been or will be in your daily life.

Transformations and Symmetry

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on symmetry, one fact might be the number of times a figure maps onto itself as it rotates from 0° to 360° is called the order of symmetry. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
9-1 Reflections	
0.2 Translations	
9-3 Rotations	
9-4 Compositions of Transformations	
9-5 Symmetry	
9-6 Dilations	

NAME	DATE	PERIOD
9-1 Reflection	S	
What You'll Learn	Scan the text in Lesson 9-1. Writ about reflections as you scanned 1.	te two facts you learned the text.
	2.	
Active Vocabulary	Review Vocabulary Write the definition (Lesson 7-2)	nition next to the term.
	New Vocabulary Label the diagra	m with the correct term.
		>

Vocabulary Link When you look into a mirror, you see your reflection. Explain how this relates to reflections in geometry.

Lesson 9-1

Details
Reflect $\triangle ABC$ in the line shown.
Describe the similarities and differences between reflecting a point in the <i>x</i> -axis and reflecting a point in the <i>y</i> -axis.
Similarities
Differences
Sometimes it is helpful to put a geometric is to help you remember it. Explain in your own words how i) in the line $y = x$.

9-2

Translations

What You'll Learn	Skim the Examples for Lesson 9-2. Predict two things you think you will learn about translations.
	1
	2
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lesson 8-7)
>	a quantity that has both magnitude and direction
►	the length of the vector from its initial point to its terminal point
►	a description of a vector in terms of its horizontal change x and vertical change y from its initial point to its terminal point
►	a vector that is placed in the coordinate plane with its initial point at the origin
	New Vocabulary Fill in each blank with the correct term or phrase.
$translation \ vector$ >	A translation maps each point to its image along a, called the translation vector, such that
	• each joining a point and its image has the same as the vector, and
	• this segment is also to the vector.

Lesson 9-2

Main Iuea		Details	
Draw Reflections pp. 615–616	Draw the tr vector.	anslation of $ riangle RST$ along the translation	
Ducu Doffoctions in the	Correction of the	$S \xrightarrow{R}_{T}$	
Coordinate Plane	Complete the following table to demonstrate how to translate a point in the coordinate plane.		
pp. 010-010	Words	To translate a point along vector (<i>a</i> , <i>b</i>),	
	Symbols	$(x, y) \rightarrow _$	
	Example	The image of point $R(2, 9)$ translated along vector $(1, -4)$ is	
Helping You Rem	ember Ag	ood way to remember a new mathematical of the same word. How is the meaning of	

9-3

Rotations

What You'll Learn	Skim Lesson 9-3. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	2
Active Vocabulary	New Vocabulary Fill in each blank with the correct term or phrase.
center of rotation ► angle of rotation ►	A rotation about a, called the center of rotation, through an angle of x° maps a point to its image such that
	• if the point is the center of rotation, then the image and preimage are the, or
	• if the point is not the center of rotation than the image and preimage are the same from the center of rotation. The measure of the angle of rotation formed by the preimage, center of rotation, and image points is <i>x</i> .
	Vocabulary Link Describe some real-world examples of rotations that you have encountered.

Lesson 9-3

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

DATE ____ _____ PERIOD _ **Lesson 9-3** (continued) **Main Idea** Details **Draw Rotations** Draw a 90° counterclockwise rotation of $\triangle ABC$ about point D. pp. 632–633

Draw Rotations in the Coordinate Plane pp. 633-634

Fill in the boxes to describe the rotation of $\triangle DEF$ about the origin. Include the angle of rotation and the direction.

Helping You Remember

A good way to help you remember a concept in geometry is to explain it to someone else. Suppose a classmate is having difficulty remembering how to find the coordinates of a point after a 180° rotation about the origin. How would you explain it to him?

Compositions of Transformations 9-4

What You'll Learn	Scan Lesson 9-4. List two headings you would use to make an outline of this lesson.
	1
	0
	Ζ

Active Vocabulary	Review Vocabulary Match the term with its definition by drawing a line to connect the two. (Lesson 1-5)
center of rotation	a line such that the points of a preimage and its image are the same distance from the line
line of reflection	the object that determines the distance and direction that a preimage is slid to create its image
angle of rotation	the point about which a preimage is turned to create its image
translation vector	the amount a preimage is turned to create its image
	New Vocabulary Write the correct term next to each definition.
▶	the result when a transformation is applied to a figure and then another transformation is applied to its image
	the composition of a translation followed by a reflection in a line parallel to the translation vector

Lesson 9-4

NAME		DATE PE	RIOD
Lesson 9-4 (continued)			
Main Idea		Details	
Glide Reflections op. 641–642	Describe the composition of transformations that le to $\triangle A''B''C''$.		
Compositions of Two	$C' = \frac{C'}{A'} = \frac{A'}{B'} = \frac{A'}{B'}$		is achieved by
Compositions of Two Reflections	State the type of transformation that is achieved by each of the following compositions.		
pp. 642–644	Compositions of Transformations		
	the composition of a reflection and a translation	the composition of two reflections in parallel lines	the composition of two reflections in intersecting lines
Helping You Reme composition of two or more your own words, and state	isometries is also an is a property of congruen	9.1 in the student tex sometry. Describe what ce that leads to this t	t states that the at this means in heorem.

NAME		DATE	PERIOD
9-5 Symmetry			
What You'll Learn	Scan the text under will learn about in the first second s	the <i>Now</i> heading ne lesson.	. List two things you
	2		
Active Vocabulary	New Vocabulary Writ definition.	e the correct terr	n next to each
►	also called the axis o	f symmetry	
►	also called the point	of symmetry	
►	the number of times from 0° to 360°	a figure maps on	to itself as it rotates
►	the characteristic of that maps the figure	a figure if there e onto itself	exists a rigid motion
►	the smallest angle th that it maps onto its	rough which a fi	gure can be rotated so
►	the characteristic of onto itself by a reflec	a figure if the fig tion in a line	ure can be mapped
►	the characteristic of onto itself by a rotati	a figure if the fig ion between 0° ar	ure can be mapped ad 360°
	Vocabulary Link Symmetric Symmetri	metry is a word t finition of symme finition of symme ematical definition	hat is used in everyday try using a dictionary. try can help you n of symmetry.

Lesson 9-5

Symmetry in Three-**Dimensional Figures** p. 655

State whether the figure below has *plane symmetry*, axis symmetry, both, or neither.

Step 1: Can the figure be mapped onto itself by a reflection in a plane? Step 2: Can the figure be mapped onto itself by a rotation between 0° and 360° in a line?

Step 3: What kind of symmetry does the figure have?

Helping You Remember

What is an easy way to remember the order and magnitude of the rotational symmetry of a regular polygon?

9-6

Dilations

dilations.

1.

2.

What You'll Learn

Skim the lesson. Write two things you already know about

Lesson 9-6

Active Vocabulary

New Vocabulary State whether the dilation from figure *B* to B' is an enlargement or a reduction. Then find the scale factor of the dilation.

type of dilation: _____

scale factor: _____

Vocabulary Link Describe how the pupils of your eyes serve as a real-world example of dilation in different lighting conditions.

NAME	DATE	PERIOD
Lesson 9-6 (continued)		
Main Idea	Details	5
Draw Dilations pp. 660–662	Draw the image of $\triangle ABC$ under D and scale factor 2.5.	er a dilation with center
	А	

Dilations in the Coordinate Plane

p. 662

Model a reduction by giving the coordinates of segment R'S' and plotting it on the coordinate grid. Tell what scale factor you used in your reduction.

C

В Đ

Helping You Remember

A good way to remember a new concept in geometry is to explain it to someone else in your own words. How would you describe the process of dilating a point (x, y) about the origin by a scale factor k?

Tie It Together

Complete the graphic organizer with a term or formula from the chapter.

CHAPTE

0

Transformations and Symmetry

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

DATE _

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Transformation and Symmetry	After You Read
• The orientation of an image that undergoes a reflection stays the same.	
• The image after a 180° rotation is equal to the original image.	
• An image after 2 reflections in parallel lines is equal to a translation.	
• Vectors can be used to define translations.	
• Dilations can have positive or negative scale factors.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 9.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- \Box I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 9 Study Guide and Review in the textbook.
- \Box I took the Chapter 9 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• On test day, look over the entire test to get an idea of its length and scope so that you can pace yourself. Answer what you know first, skipping over material you do not know. When finished, go back and check for errors. Don't change an answer unless you are certain you are correct.

NAME	DATE	PERIOD
10 Circles		
Before You Read		

Before you read the chapter, think about what you know about circles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDA BLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, record real-life examples of how you can use fractions, decimals, and percents, such as telling time and making change.
- When you take notes, listen or read for main ideas. Then record those ideas for future reference.

NAME		DATE	PERIOD
CHAPTER C	ircles		

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on measuring angles and arcs, one fact might be a central angle is an angle with a vertex in the center of the circle. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
10-1 Circles and Circumference	
10-2 Measuring Angles and Arcs	
10-3 Arcs and Chords	
10-4 Inscribed Angles	
10-5 Tangents	
10-6 Secants, Tangents, and Angle Measures	
10-7 Special Segments in a Circle	
10-8 Equations of a Circle	

Circles and Circumference 10-1

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in the lesson.	
	1	
	2	
Active Vocabulary	New Vocabulary Write the correct term next to each definition.	
►	the distance around the circle	
>	a segment with endpoints at the center and on the circle	
►	the locus or set of all points in a plane equidistant from a given point	
►	two coplanar circles that have the same center	
►	a chord which passes though the center of a circle and is made up of collinear radii	
►	an irrational number which by definition is the ratio of the circumference of a circle to the diameter of the circle	
►	descriptor give to a polygon which is drawn inside a circle such that all of its vertices lie on the circle	
►	the name used to describe the given point in the definition of a circle	
>	a segment with endpoints on the circle	
>	descriptor given to a circle which is drawn about a polygon such that the circle contains all of the vertices of the polygon	
►	two circles with congruent radii	

NAME	DATE	PERIOD
Lesson 10-1 (continued)		
Main Idea	Deta	ils
Segments in a circle pp. 683–685	Compare and contrast the pa a circle in the diagram below	airs of special segments of w.
	Chord	
	Radius	Diameter
Circumference pp. 685–686	The circumference of a circl the radius and the diameter nearest hundredth inch.	e is 234 inches. Determine of the circle to the
	Start with $C = \pi d$, and fill in what you know.	Determine the radius.
Helping You Rem diameter in your dictionar already know that shares	ember Look up the origins of y. Explain the meaning of each par the origin of that part.	f the two parts of the word t and give a term you

Measuring Angles and Arcs 10-2

NAME		DATE	PERIOD
Lesson 10-2 (continued	d)		
Main Idea		Detai	ls
Angles and Arcs pp. 692–694	Given the <i>m∠E</i> the order speci	JD = 15, find e fied. Justify ye	each measure in $\odot J$ in our answer.
	$m\widehat{EFG} = $		$\widehat{mED} = $
		F	Е
	$m\widehat{GH} = $	G	M_{H} $m\widehat{EDH} = $
Arc Length p. 695	Find the length 5 centimeters. two arc lengths	of \widehat{BC} and \widehat{BL} What is the rels?	C. The radius of ⊙A is ationship between the
	A 100° D C		$m\widehat{BC} = \underline{\qquad}$ $m\widehat{BDC} = \underline{\qquad}$
	Relationship:		

Arcs and Chords 10 - 3

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

AME	DA ⁻	ΓE	PERIOD
esson 10-3 (continued)			
Main Idea		Details	
Bisecting Arcs and Chords op. 702–704	Use the diagram belo 10.4, from the studen	ow to sta t book, i	te Theorems 10.3 and in your own words.
	B	P	
	Theorem 10.3		
	Theorem 10.4		
Helping You Ren words can help you bett student book, in your ov	writing a ma er remember the concept. Des vn words.	thematic scribe Th	al concept in your own eorem 10.5, from the

Inscribed Angles 10-4 What You'll Learn Skim Lesson 10-4. Predict two things that you expect to learn based on the headings and figures. 1. 2. **Active Vocabulary Review Vocabulary** Complete the chart below. (Lesson 6-1) **Regular Polygons** 3-sides 4-sides 5-sides 6-sides sum of interior sum of interior sum of interior sum of interior angles angles angles angles measure of measure of measure of measure of each angle each angle each angle each angle New Vocabulary Write the definition next to each term. inscribed angle \blacktriangleright intercepted arc \blacktriangleright

	DATE	PERIOD
10-5 Tangents		
What You'll Learn	Skim the Examples for Less think you will learn about ta	on 10-5. Predict two things you angents.
	1	
	2	
Active Vocabulary	Review Vocabulary Use the P	vthagorean Theorem to
	determine if the triangles with triangles. (Lesson 8-2)	th the specified sides are right
	a = 6, b = 8, c = 10 $a = 4, b =$	= 5, c = 41 a = 9, b = 40, c = 4
	New Vocabulary Fill in each phrase.	blank with the correct term or
tangent 🕨	a in the	same plane as a
	that	the circle in
point of tangency >	the point where a	line intersects a
	Vocabulary Link Use a diction	nary to look up the origin of the
	word <i>tangent</i> . How can the or remember the definition of a	origin of this word help you tangent line?

NAME	DATE PERIOD	
Lesson 10-5 (continued)		
Main Idea	Details	
Tangents pp. 718–720	Find the value of x . Assume that segments that appear to be tangent are tangent. Show your work each box as indicated.	
	$ \begin{array}{c} A \\ x \end{array} \qquad \qquad$	
	$Leg 1 = \underline{\qquad} Leg 2 = \underline{\qquad}$	
	Hyp =	
	Use the Pythagorean Theorem to write an equation, then solve for x .	
Circumscribed Polygons p. 721	Fill in the missing measurements in the diagram below in the order specified. Justify each measurement.	
1	. 3.	
2	. 4 11 4.	

Secants, Tangents, and Angle Measures 10-6

10-7 Special Segments in a Circle

What You'll Learn	Seen the text under the New heading. List two things you	
	will learn about in the lesson.	
	1.	
	2	
Active Vecchulers	Berden Wasshaller III 1 C 11 1 C	
Active vocadulary	(Lessons 10-1, 10-5, and 10-6)	
chord		
secant >		
tangent 🕨		
	New Vocabulary Match each term with its definition by drawing a line to connect the two.	
tangent segment	a segment formed when two chords intersect inside a circle	
secant segment	a segment of a secant line that has exactly one endpoint on the circle	
external secant segment	a segment of a tangent line that has exactly one endpoint on the circle	
chord segment	a segment of a secant line that has an endpoint which lies in the exterior of the circle	

Lesson 10-7 (continued)			
Main Idea	Details		
Segments Intersecting Inside a Circle pp. 736–737	Use Theorem 10.15 from the student book to RP = 12, PS = 3x + 5, QP = 15, PT = $\begin{array}{c} & & \\ $		
Segments Intersecting Outside a Circle pp. 738–739	Compare and contrast Theo Theorem 10.15 from the stu How are they the same?	orem 10.16 with dent book. How are they different?	
10-8 Equations of Circles

What You'll Learn	Skim the lesson. Write two things you already know about equations of circles.
	1
	2
Active Vocabulary	Review Vocabulary Use the Distance Formula to find the distance between the given pairs of points on the coordinate plane. (Lesson 1-5)
	(1, 2) and (9, 11) (1, 2) and (-7, -7) (9, 11) and (-7, -7)
	New Vocabulary Fill in the blank with the correct term or phrase.
compound locus \blacktriangleright	
	Vocabulary Link Previously, you wrote the equation of a line when given the graph of the line. Compare and contrast this process with writing the equation of a circle given the graph of the circle.

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Lesson 10-8

Lesson 10-8 (continued)	
Main Idea	Details
Equation of a Circle pp. 744–745	Write the equation of a circle that has a center at $(1, 3)$ and passes though $(6, -3)$.
	Find the length of the radius using the center and the point of the circle.
	Determine h, k , and r^2 .
	$h = \underline{\qquad} \qquad k = \underline{\qquad} \qquad r^2 = \underline{\qquad}$
	Write the equation of the circle
	$(x - \underline{\qquad})^2 + (y - \underline{\qquad})^2 = \underline{\qquad}$
Graph Circles pp. 745–746	Graph the circle given by the equation $(x + 4)^2 + (y - 2)^2 = 16.$
	Rewrite the equation in standard form.
	Identify the center.
	Identify the radius
	Use the center and radius to identify four points on the circle.

_____ DATE _____ PERIOD _

DATE _____ PERIOD _

Name each part of the circle shown below.

Circles

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 10.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- \Box I completed the Chapter 10 Study Guide and Review in the textbook.
- $\hfill\square$ I took the Chapter 10 Practice Test in the textbook.
- $\hfill\square$ I used the online resources for additional review options.
- $\hfill\square$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

• To prepare to take lecture notes, make a column to the left about 2 inches wide. Use this column to write additional information from your text, place question marks, and to summarize information.

HAPTI

Before You Read

Before you read the chapter, think about what you know about areas of parallelograms and triangles. List three things you already know about them in the first column. Then list three things you would like to learn about them in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- Write down questions that you have about what you are reading in the lesson. Then record the answer to each question as you study the lesson.
- A visual (graph, diagram, picture, chart) can present information in a concise, easy-to-study format.

Clearly label your visuals and write captions when needed.

11 Areas of Parallelograms and Triangles

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on areas of circles and sectors, one fact might be a sector of a circle is a region of a circle bounded by a central angle and its intercepted arc. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
11-1 Areas of Parallelograms and Triangles	
11-2 Areas of Trapezoids, Rhombi, and Kites	
11-3 Areas of Circles and Sectors	
11-4 Areas of Regular Polygons and Composite Figures	
11-5 Areas of Similar Figures	

11-1 Areas of Parallelograms and Triangles

What You'll Learn	Skim Lesson 11-1. Predict two things you expect to learn based on the headings and the Key Concept box. 1
	2
Active Vocabulary	Review Vocabulary Define <i>parallelogram</i> in your own words. (Lesson 6-2)

New Vocabulary Match each term with its definition.

base of a parallelogramthe perpendicular distance between any two parallel basesheight of a parallelogramany side of a trianglebase of a triangleany side of a parallelogramheight of a trianglethe length of an altitude drawn to a given base

Vocabulary Link *Formula* is a word that is used in everyday English. This lesson introduces two new *formulas*. Find the definition of *formula* using a dictionary. Explain how its English definition can help you understand the meaning of *formula* in mathematics.

	DATE	PERIOD
Lesson 11-1 (continued)		
Main Idea	Details	
Areas of Parallelograms pp. 763–764	Find the perimeter and area of th below. Round to the nearest tenth	e parallelogram 1 if necessary.
	10 cm	
	The perimeter measures	cm.
	The height of the parallelogram meas	ures cm.
	The area of the parallelogram measur	$ces _ cm^2.$
Areas of Triangles pp. 765–766	Use the organizer below to determ a triangle is related to the area of	nine how the area of a rectangle.
	$\begin{array}{ c c } \hline & & \\ Area of a & \\ rectangle? \end{array} \end{array} \land A = b$	bh
	Draw a diagonal.	Now you have two 🗠 's.
	Conclusion:	
	How do these triangles relate to the rectangle? Area of Triangle =	
Helping You Reme geometry is to relate it to a the area of a rectangle to he parallelogram?	A good way to remember a formula you already know. How can you elp you remember the formula for the ar	new formula in u use the formula for rea of a

11-2 Areas of Trapezoids, Rhombi, and Kites

What You'll Learn	Scan the text in Lesson 11-2. Write two facts you learned about trapezoids, rhombi, and kites as you scanned the text.
	1
	2.
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lessons 6-2, 6-6, and 11-1</i>)
parallelogram 🕨	The is any side of a triangle.
trapezoid 🕨	A quadrilateral with both pairs of opposites sides is known as a(n)
base of a triangle \blacktriangleright	A(n) is a quadrilateral with exactly one pair of parallel sides.
	New Vocabulary Define <i>height of a trapezoid</i> in your own words.
	Vocabulary Link <i>Area</i> is a word that is used in everyday English. Find the definition of <i>area</i> using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.

Areas of Circles and Sectors 11-3

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about areas of circles and sectors. 1. 2.
Active Vocabulary	Review Vocabulary Write the correct term next to each definition. (Lessons 10-2, 11-1, and 11-2) any side of a triangle
►	an angle with a vertex in the center of a circle and with sides that contain two radii of the circle
►	the length of an altitude drawn to a given base of a triangle
►	the distance between the two bases of a trapezoid
►	a portion of a circle defined by two endpoints
►	any side of a parallelogram
	New Vocabulary Define the <i>sector of a circle</i> in your own words.

Lesson 11-3

Main Idea	Details
Areas of Circles	Find the area of each circle. Round to the nearest tenth.
pp. 782–783	1. 2. $\sqrt[7]{18 \text{ cm}}$
Areas of Sectors	Use the organizer below and fill in the parts of the proportion that can be used to find the area of a sector.
pp. 783–784	The ratio of the area A of a sector to the area of the whole circle, πr^2 , is equal to the ratio of the degree measure of the intercepted arc x to 360.
	Use the completed proportion to find the area of the shade sector. Round to the nearest tenth. $A \approx \underline{\qquad}$
Helping You Re	A good way to remember something is to explain
it to someone else. Sup	pose your classmate Joelle is having trouble remembering which
formula is for circumfer	rence and which is for area. How can you help her?

_____ DATE _____ PERIOD ___

11-4 Areas of Pequilar Delygons and Composite		
Figures	egulai ruiygulis allu cullipusite	
What You'll Learn	Skim the Examples for Lesson 11-4. Predict two things you think you will learn about areas of regular polygons and composite figures.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Answer the questions about the elements	
	of the diagram below. (Lesson 10-2) A	
	1. Angle <i>A</i> is what type of angle?	
	2. The portion of the circle that is defined by endpoints B and C is known as $a(n)$	
	New Vocabulary Match each term with its definition.	
a pothem	the radius of the circle that is circumscribed about the regular polygon	
radius of a regular polygon	the center of the circle in which the regular polygon is inscribed	
center of a regular polygon	has its vertex at the center of the polygon and its sides pass through consecutive vertices of the polygon	
central angle of a polygon	a segment drawn perpendicular to a side of a regular polygon	

Helping You Remember Rolando is having trouble remembering when to subtract an area when finding the area of a composite figure. How can you help him

remember?

11-5 Areas of Similar Figures

What You'll Learn	Scan Lesson 11-5. List two headings you would use to make an outline of this lesson. 1.
	2
Active Vocabulary	Review Vocabulary Define <i>similar polygons</i> in your own words. (<i>Lesson 7-2</i>)
	Fill in each blank with the correct term or phrase. (Lessons 10-1 and 11-3)
segment of a circle \blacktriangleright	A slice of pie would be an example of a(n)
sector of a circle >	A figure or shape enclosed by another geometric shape or figure is
inscribed \blacktriangleright	A(n) is the part of the interior of a circle bound by a chord and an arc.
	Vocabulary Link <i>Similar</i> is a word that is used in everyday English. Find the definition of <i>similar</i> using a dictionary. Explain how its English definition can help you understand its meaning in mathematics.

Lesson 11-5 (continued)	
Main Idea	Details
Areas of Similar Figures op. 802–803	For the pair of similar triangles below, find the area of $\triangle DEF$.
	9 yd
	A 6 yd F $A =$
	$C \qquad A = 3 \text{ yd}^2 B$
Scale Factors and	Complete the missing parts of the proportion below.
Missing Measures in Similar Figures	If you know the areas of two similar geometric shapes, you
pp. 803–804	can use them to find the scale factor between them.
	XY
Area of $\bigvee ABCD = 20$	0 cm^2
	$Area of \bigvee WAYZ = 45 \text{ cm}$
	\mathbf{Y} \mathbf{Y} Use k as the scale factor
	area of $\nabla ABCD$ 12
	area of $\bigvee WXYZ = R^2$
	$-b^2$ $\frac{4}{4}$ The scale factor,
Helping You Reme	ember
figures. How can you expla	in to him that similar and equal are not the same?
	-

Areas of Polygons and Circles

Tie It Together

Complete the graphic organizer with a formula from the chapter and identify the variables in the diagram.

Figure	Formula	Diagram
Parallelogram		
Triangle		
Trapezoid		
Rhombus Kite		
Circle		
Sector		
Regular Polygon		

DATE _

Areas of Polygons and Circles

Before the Test

NAME

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 11.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- \Box I used my Foldable to complete the review of all or most lessons.
- □ I completed the Chapter 11 Study Guide and Review in the textbook.
- \Box I took the Chapter 11 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- $\Box\,$ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• If possible, rewrite your notes. Not only can you make them clearer and neater, rewriting them will help you remember the information.

Before You Read

Before you read the chapter, think about what you know about surface area and volume. List three things you already know about extending surface area and volume in the first column. Then list three things you would like to learn about in the second column.

К	W
What I know	What I want to find out

FOLDABLES Study Organizer Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

- When you take notes, listen or read for main ideas. Then record those ideas for future reference.
- To help you organize data, create study cards when taking notes, recording and defining vocabulary words, and explaining concepts.

Extending Surface Area and Volume

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on volumes of pyramids and cones, one fact might be pyramids use $\frac{1}{3}$ of the area of base in the formula for volume. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
12-1 Representations of Three-Dimensional Figures	
12-2 Surface Areas of Prisms and Cylinders	
12-3 Surface Areas of Pyramids and Cones	
12-4 Volumes of Prisms and Cylinders	
12-5 Volumes of Pyramids and Cones	
12-6 Surface Areas and Volumes of Spheres	
12-7 Spherical Geometry	
12-8 Congruent and Similar Solids	

12-1 Representations of Three-Dimensional Figures

What You'll Learn	Skim the Examples for Lesson 12-1. Predict two things you think you will learn about representations of three-dimensional figures. 1
Active Vocabulary	Review Vocabulary Define <i>arc of a circle</i> in your own words. (<i>Lesson 11-3</i>)
►	New Vocabulary Write the correct term next to each definition. the intersection of a solid and a plane a corner view of a three-dimensional geometric solid on two-
	dimensional paper Vocabulary Link <i>Cross section</i> is an expression that is used in everyday English. Either find the definition of <i>cross section</i> using a dictionary or think of how you have heard it used outside of geometry. Explain any similarities between its everyday use and its use in mathematics.

		DAIE	PERIOD
esson 12-1 (continued)			
Main Idea		Deta	ils
Draw Isometric Views op. 823–824	Complete t	he graphic organi	izer below.
pp. 020 021	two	different ways to dr of a s	aw an isometric sketch olid.
	Draw an infrom the	sometric view	Draw an isometric view from
Investigate Cross Sections p. 824	Name the o how the pl get that pa	lifferent cross sec ane would have to rticular cross sec	tions of a cylinder. State o intersect the cylinder to tion.
	1		
	2.		
	3		

Compare its definition with the definition of corner view and perspective view. Why are corner views considered isometric views, but three-dimensional views not considered isometric views?

12-2 Surface Areas of Prisms and Cylinders

What You'll Learn	Scan Lesson 12-2. List two headings you would use to make an outline of this lesson.
	1
	2
Active Vocabulary	New Vocabulary Label the elements of this oblique pentagonal prism with the correct terms.
altitude >	1. Arrow "A" is pointing to a(n)
lateral edge 🕨	2. Arrow " <i>B</i> " is pointing to
lateral face 🕨	3. Arrow " <i>C</i> " is pointing to a(n)
base edge 🕨	4. Arrow " <i>D</i> " is pointing to a(n)
bases 🕨	5. Arrow " <i>E</i> " is pointing to a(n)
	Fill in each blank with the correct term or phrase
lateral area 🕨	A(n) of a cylinder is the segment with endpoints that are centers of the circular bases.
axis 🕨	The of a prism is the sum of the areas of the lateral faces.

Lesson 12-2

Helping You Remember

A good way to remember a new mathematical term is to relate it to an everyday use of the same word. How can the way the word lateral is used in sports help you remember the meaning of the lateral area of a solid?

12-3 Surface Areas of Pyramids and Cones

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about surface areas of pyramids and cones.	
	1	
	2	
Active Vocabulary	Review Vocabulary Label the following solids as <i>right or oblique</i> . (Lesson 12-1)	
	1.	
	1 \//	
	2	
	ð	
	New Vocabulary Match each term with its definition.	
regular pyramid	the height of each lateral face of a regular pyramid	
slant height	a figure where the axis of a cone is also its altitude	
right cone	a figure with a base that is a regular polygon and the altitude has an endpoint at the center of the base	
oblique cone	a figure where the axis of a cone is not its altitude	

Lateral Area and **Surface Area of Cones** pp. 840–842

Follow the steps to find the surface area of a cone.

- 1. Use the Pythagorean Theorem to find the slant height of the cone. Round your answer to the nearest tenth.
- **2.** Use the formula above to find the cone's surface area. Round to the nearest centimeter.

Helping You Remember

One way to remember a new formula is to relate it to a formula you already know. Explain how the formulas for the lateral areas of a pyramid and cone are similar.

12-4 /Volumes of Prisms and Cylinders

What You'll Learn	Skim Lesson 12-4. Predict two things that you expect to learn based on the headings and the Key Concept box.
	1
	9
	۷
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or
isometric 🕨	What shape describes the cross section of this sphere?
circle >	A(n) of a cylinder is the segment with endpoints that are centers of the circular bases.
axis 🕨	When the axis of a cone is not its altitude this represents $a(n)$ cone.
lateral area 🕨	The of a prism is the sum of the areas of the lateral faces.
oblique 🕨	This type of paper is used to draw $a(n)$ view of a solid.

Lesson 12-4

Lesson 12-4 (continued)	
Main Idea	Details
Volume of Prisms p. 847	Complete the steps to finding the volume of the prism below.
	Use the Theorem to find the area of the triangular base, B . Round to the nearest cubic inch. $B = _$
	To find the volume, <i>V</i> of the prism, multiply the base, <i>B</i> by the of the prism.
	V =
Volume of Cylinders pp. 848–849	Use the formula $V = \pi r^2 h$ to find the volume of the cylinder shown.
	V = 4 cm
Helping You Reme is to explain it to someone of grade, is having trouble un cubic units are needed to m that will make it easy for h	A good way to remember a mathematical concept else. Suppose that your younger sister, who is in eighth derstanding why square units are used to measure area, but heasure volume. How can you explain this to her in a way er to understand and remember the correct units to use?

_____ DATE _____ PERIOD ____

12-5 Volumes of Pyramids and Cones

What You'll Learn	Skim the lesson. Write two things you already know about volumes of pyramids and cones.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (Lessons 11-1 through 11-5) A. B.	
	C. D.	
area of a trapezoid \blacktriangleright	Polygon A represents a(n)	
height of a triangle 🕨	Polygon B represents a(n)	
cubic unit 🕨	The arrow in C is pointing to the	
area of a circle \blacktriangleright	Figure D represents an example of a(n)	
trapezoid 🕨	πr^2 is the formula for the	
parallelogram 🕨	$\frac{1}{2}(b_1 + b_2)h$ is the formula for the	

Lesson 12-5

NAME	DATE	PERIOD
Lesson 12-5 (continued)		
Main Idea	Deta	nils
Volume of Pyramids p. 857	Use the pyramid shown to a questions.	nswer the following
F	1. What is the height of the pyranic for finding the of a pyramid, $V = \frac{1}{3}Bh$, what the <i>B</i> represent?	camid? e volume
	3. Given that $B = 17.5$ ft ² , find to the nearest tenth of a cubic	the volume of this pyramid ic foot.
Volume of Cones p. 858	Use the diagram of a cone to fill in the missing measurements in the chart. Round your answer to the nearest tenth, as needed.	
	Volume $V = \frac{1}{3}\pi r^2 h$ $h =$ $r =$ $r =$ $V =$	he height 19 cm as 5.6 cm
Helping You Reme mathematical formulas if to sentence how to find the ve	ember Many students find i they can put them in words. Use w olume of any pyramid or cone.	t easier to remember ords to describe in one

Surface Areas and Volumes of Spheres 12-6

What You'll Learn	Scan the text in Lesson 12-6. Write two facts you learned about surface areas and volumes of spheres.
	1.
	2
Active Vershuler	
Active vocadulary	New Vocabulary Label the parts of the sphere pictured below.
	Fill in each blank with the correct term or phrase.
great circle 🕨	One of the two congruent halves of a sphere separated by
	the great circle is known as a(n)
nole 🕨	When a plane intersects a sphere to form a circle which
pore •	contains the center of the sphere, this forms
	a(n)
homienhoro 🕨	A(n) is one of the order integers
nemusphere 🕨	diameter of a great circle.

Lesson 12-6

NAME	DATE	PERIOD
Lesson 12-6 (continued)		
Main Idea	Details	
Surface Area of Spheres pp. 864–865	Follow the steps of the flowcha area of the hemisphere.	rt to find the surface
	The hemisphere's surface area is comprised of of the surface area of the sphere, plus the area of the great	f $r = 5 cm$
	Numerically, that is $S = \frac{1}{2} (4\pi r^2) + \$	
	Using $r = 5$ cm, find the value, S , the surface area of this hemispher $S = _$	of re.
Volume of Spheres pp. 866–867	Use the formula $V = \frac{4}{3} \pi r^3$ (the formula $V = \frac{4}{3} \pi r^3$ (the formula volume of a sphere) to answer of your answers to the nearest term.	formula for finding the each question. Round hth.
	1. Find the volume of a sphere with	n a diameter of 1.6 feet.
	2. Find the volume of a sphere with circumference of 19 inches.	n a great circle
	3. Find the volume of a hemisphere 7 centimeters.	e with a radius of
Helping You Rem the formulas they have lea formula for the surface are	ember Many students have trou arned in this chapter. What is an easy ea of a sphere?	able remembering all of way to remember the

12-7 Spherical Geometry

What You'll Learn	Scan Lesson 12-7. List two headings you would use to make an outline of this lesson.
	1
	2.

Active Vocabulary	Review Vocabulary Match each term with its definition. (Lessons 12-1 and 12-3)
oblique cone	the intersection of a solid and a plane
right cone	a figure with a base that is a regular polygon and the altitude has an endpoint at the center of the base
cross section	The axis of a cone is also its altitude.
isometric view	a corner view of a three-dimensional geometric solid on two- dimensional paper
regular pyramid	the height of each lateral face of a regular pyramid
slant height	The axis of a cone is not its altitude.

New Vocabulary Fill in each blank with the correct term or phrase.

_____ is geometry where a plane is the surface of a sphere.

A geometry where a plane is a flat surface made up of points that extend infinitely in all directions is known as

A type of geometry in which at least one of the postulates is from Euclidean geometry is known as

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
Lesson 12-7 (continued)		
Main Idea	De	tails
Geometry on a Sphere pp. 873–874	Use the diagram of the sph question.	nere below to answer each
	1. Name two lines containing	point \boldsymbol{P} .
	2. Name a segment containin	g point \boldsymbol{Q} .
	3. Name a triangle.	E
Compare Plane Euclidean and Spherical Geometries	Complete the table below facts about Euclidean geor geometry.	which compares different netry and Spherical
h. 01-1	Euclidean	Spherical

Euclidean	Spherical
A <i>plane</i> is a flat surface.	A <i>plane</i> is a surface.
The shortest distance between two points is a line 	The shortest distance between two points is a(n) of a great circle.
A line is infinite.	A line is
Through any two given points, there is exactly one passing through them.	Through any two given points, there is one great passing through them.
A unit used to measure length is a(n)	<i>Degrees</i> are the unit used to measure length.
Two points can be any distance apart. There is no greatest distance.	The greatest distance between two points is

Congruent and Similar Solids 12-8

Scan the text under the Now heading. List two things you will learn about in this lesson.	
e the following terms in your own	
hat is meant by <i>scale factor</i> ?	

Lesson 12-8

Main Idea	Details Fill in the missing parts to the organizer below.	
Identify Congruent or Similar Solids		
pp. 880–881	How do you know if solids are similar?	They have the same Ratios of corresponding linear measures are
	$\begin{array}{c} \text{Corresponding} \\ \text{are} \cong. \end{array}$	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$
	How to Identify Congruent Solids	
	Corresponding are ≌.	Volumes are
Properties of Congruent and Similar Solids pp. 881–882	Apply what you learned Student Edition to ans Two similar pyramids hav 64 cubic inches. What is t large pyramid to the sland	d with Theorem 12.1 in the wer the following: we volumes of 125 cubic inches ar he ratio of the slant height of the t height of the small pyramid?
Helping You Reme concept is to relate it to som units used to measure lengt about the ratios of surface a	A good way to r nething you already know. H ths, areas, and volumes help areas and volumes of similar	remember a new mathematical Iow can what you know about the 9 you to remember the theorem 5 solids?

_____ DATE _____ PERIOD ___

Extending Surface Area and Volume

Tie It Together

Complete the graphic organizer with a formula from the chapter.

Shape	Lateral Area	Surface Area	Volume
Prism			
Cylinder			
Pyramid			
Cone			
Sphere			

Extending Surface Area and Volume

Before the Test

NAME

Review the ideas you listed in the table at the beginning of the chapter. Cross out any incorrect information in the first column. Then complete the table by filling in the third column.

К	W	L
What I know	What I want to find out	What I learned

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 12.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- $\hfill\square$ I used my Foldable to complete the review of all or most lessons.
- $\hfill\square$ I completed the Chapter 12 Study Guide and Review in the textbook.
- \Box I took the Chapter 12 Practice Test in the textbook.
- \Box I used the online resources for additional review options.
- □ I reviewed my homework assignments and made corrections to incorrect problems.
- $\hfill\square$ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

• Use flash cards to study for tests by writing the concept on one side of the card and its definition on the other.

Before You Read

Before you read the chapter, respond to these statements.

- 1. Write an A if you agree with the statement.
- **2.** Write a \mathbf{D} if you disagree with the statement.

Before You Read	Probability and Measurement
	• There are many different ways to represent the sample space of an experiment.
	• The Fundamental Counting Principle uses addition to count the total number of outcomes.
	• In a permutation, the order is not important.
	• Compound events can be independent or dependent.
	• When one event affects another event, the events are mutually exclusive.

OLDABLES Study Organizer

Construct the Foldable as directed at the beginning of this chapter.

Note Taking Tips

• When taking notes, use a table to make comparisons about the new material.

Determine what will be compared, decide what standards will be used, and then use what is known to find similarities and differences.

• When taking notes on statistics, include your own statistical examples as you write down concepts and definitions.

This will help you to better understand statistics.

CHAPTER 13

Probability and Measurement

Key Points

Scan the pages in the chapter and write at least one specific fact concerning each lesson. For example, in the lesson on geometric probability, one fact might be probability that involves a geometric measure such as length or area is called geometric probability. After completing the chapter, you can use this table to review for your chapter test.

Lesson	Fact
13-1 Representing Sample Spaces	
13-2 Probabilities with Permutations and Combinations	
13-3 Geometric Probability	
13-4 Simulations	
13-5 Probabilities of Independent and Dependent Events	
13-6 Probabilities of Mutually Exclusive Events	

13-1 Representing Sample Spaces

What You'll Learn	Scan the text under the <i>Now</i> heading. List two things you will learn about in this lesson.	
	1	
	2.	
Active Vocabulary	New Vocabulary Match each term with its definition.	
sample space	one way of representing a sample space, using line segments known as <i>branches,</i> to display possible outcomes	
tree diagram	experiments with more than two stages	
two-stage experiment	the set of all possible outcomes of an experiment	
multi-stage experiment	a means used to find the entire sample space from an experiment that does not require listing all the possible outcomes	
Fundamental Counting Principle	an experiment with two stages or events	
	Vocabulary Link <i>Experiment</i> is a word that is used in everyday English. Find the definition of <i>experiment</i> using a dictionary. Explain how its English definition can help you understand the meaning of <i>experiment</i> in mathematics.	

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE F	PERIOD
Lesson 13-1 (continued)		
Main Idea	Details	
Represent a Sample Space pp. 899–900	A number cube is rolled twice. Com space for this experiment.	plete the sample
	Outcomes	
First roll		
		6
	How many possible outcomes are there?)
Fundamental Counting Principle p. 901	Sara takes orders at a restaurant w sandwich is customized. Sara's man to ask the following series of questi the orders.	here each ager requires her ons when placing
	Sandwich Shop)
	1. Would you like your chick or grilled?	en fried
	2. Would you like bbq, honey mayo, or no sauce?	v mustard,
	3. Would you like your sandy deluxe or regular?	wich

Use the Fundamental Counting Principle to find the number of different types of sandwiches that represent the sample space for chicken sandwich orders?

Probability with Permutations and 13-2 **Combinations**

What You'll Learn	Scan Lesson 13-2. List two headings you would use to make an outline of this lesson.	
	1	
	2.	
Active Vocabulary	Review Vocabulary Define each term in your own words. (Lesson 12-7)	
Non-Euclidean geometry 🕨		
Euclidean geometry 🕨		
Spherical geometry 🕨		
	New Vocabulary Write the correct term next to each definition.	
►	given a positive integer n , it is the product of the integers less than or equal to n	
►	an arrangement of objects in which order is important	
►	an arrangement of objects in which order is <i>not</i> important	
►	an arrangement of objects in the form of a circle or loop	

NAME	DATE PERIOD
Lesson 13-2 (continued)	
Main Idea	Details
Probability Using Permutations pp. 906–909	Follow and complete the steps in the flowchart below. A marching band is divided into squads of 8 musicians. Each squad is required to select leaders: a head squad leader and an assistant squad leader. Anders and Matthew are in one of the squads. If the positions are decided at random, what is the probability that Anders and Matthew are selected as leaders?
	Step 1 The number of possible outcomes in the number of permutations of 8 people taken 2 at a time, ${}_{8}P_{2}$. ${}_{8}P_{2} = \frac{8!}{(8 - _)!} = \frac{8 \cdot 7 \cdot 6!}{_!} = _$
	Step 2 The number of favorable outcomes in the number of permutations of these 2 students in each of the 2-leader positions is $2!$, which is $2 \cdot 1$ or 2 .
	Step 3 So, the probability of Anders and Matthew being selected as the 2 squad leaders is $\frac{-56}{56}$ or $\frac{-56}{56}$.
Probability Using Combinations pp. 909–910	Leah is packing for a trip to Florida. She decides to pack 3 of her 8 travel games to take on the trip. If she chooses to select games at random, what is the probability that the games chosen are Leah's 3 favorites?
	have <i>n</i> objects taken <i>r</i> at a time.

13-3 Geometric Probability

What You'll Learn	Scan the text in Lesson 13-3. Write two facts you learned about geometric probability as you scanned the text.
	1
	2
Active Vocabulary	Review Vocabulary Fill in each blank with the correct term or phrase. (<i>Lesson 11-1</i>)
base of a parallelogram \blacktriangleright	The is the length of an altitude drawn to a given base.
base of a triangle \blacktriangleright	Any side of a triangle is known as the
height of a parallelogram 🕨	Any side of a parallelogram is known as the
height of a triangle 🕨	The is the perpendicular distance between any two parallel bases.
	New Vocabulary Define <i>geometric probability</i> in your own words.

NAME		DATE	PERIOD
Lesson 13-3 (continued)			
Main Idea	r	Detail	S
Probability with Length pp. 915–916	The schedu number lin randomly l the fire dri	ule for Meghan's sc ne. The local fire de have a fire drill tod ill will be during M	hool is shown on the partment is going to ay. Find the probability eghan's lunch.
	Homeroom 7:00-7:15	2 nd bell 4 ^t 8:15-9:05 10:0 t bell 3 rd bell 0-8:10 9:10-10:00	^h bell 5 th bell 5-10:55 11:35-1:30 lunch dismissal 10:55-11:30 1:30
		probability of fire dr	ill during lunch
	Find the to the school o time betwe	tal time of day. (Include en classes.)	Find the total time of the lunch period.
		Find the probability be during lunch. ≈	y the drill will
Probability with Area pp. 916–917	Darcy has is the prob magnetic d circle?	a magnetic dartboa ability that Darcy's larts will land in th	ard. What see central

Simulations 13-4

What You'll Learn	Skim Lesson 13-4. Predict two things that you expect to learn based on the headings and the Key Concept box.	
	1	
	2.	
Active Vocabulary	New Vocabulary Match each term with its definition.	
probability model	the average value of a random variable that one anticipates after repeating an experiment or simulation a theoretically infinite number of times	
simulation	a variable that can assume a set of values, each with fixed probabilities	
random variable	a mathematical model used to match a random phenomenon	
expected value	as the number of trials of a random process increases, the average will approach the expected value	
Law of Large Numbers	the use of a probability model to recreate a situation again and again so that the likelihood of various outcomes can be estimated	
	Vocabulary Link <i>Simulation</i> is a word that is used in everyday English. Explain how the English definition can help you remember how <i>simulation</i> is used in mathematics.	

number of strikes number of non-strikes

13-5 Probabilities of Independent and Dependent Events

What You'll Learn	Skim the Examples in Lesson 13-5. Predict two things you think you will learn about this lesson. 1. 2.
Active Vocabulary	New Vocabulary Write the correct term next to each definition. a specific type of tree diagram that includes probabilities events where the probability of one event occurring does not affect the probability of the other event occurring consists of two or more simple events a probability that uses the notation P(B A) events where the probability of one event occurring in some way changes the probability that the other event occurs Vocabulary Link Independent and dependent are words used in everyday English. How do their English definitions apply to their definitions in probability?

Copyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NAME	DATE	PERIOD
Lesson 13-5 (continued)		
Main Idea	Details	
Independent and Dependent Events pp. 931–933	The probability that two inde the multiplication rule for pr $P(A) \cdot P(B)$. Extend the use of for probability by creating a independent events that can this rule.	ependents occur follows robability: <i>P</i> (<i>A</i> and <i>B</i>) = f this multiplication rule model of another set of be used to demonstrate
Conditional Probabilities	Ms. Alexander's class of 16 st	udents sits at four
Probabilities p. 934	Ms. Alexander chose tables A while those students at table seated. If Carly has to go to t probability that she sits at Table	and B to go to the lab, s C and D remained he lab, then what is the able A?

Probabilities of Mutually Exclusive Events 13-6

DATE __ _____ PERIOD _ **Lesson 13-6** (continued) **Main Idea** Details **Mutually Exclusive** Model the following *mutually exclusive events* by **Events** representing their relationship in a Venn diagram below. pp. 938-940 When a die is rolled, find the probability of rolling a 1 or 6. Is the following event *mutually exclusive* or *not mutually* exclusive? when a die is rolled, the probability of rolling a number

less than 5 or an odd number ____

Probabilities of Complements pp. 941–942

At the local carnival, the probability of a dart to land on one of the playing cards on the board is 33%.

Name the *complement* of landing on one of the cards and the probability of the *complement* occurring.

Tie It Together

Complete each graphic organizer with a definition or formula from the chapter.

Sample Space		
Experiment		
Outcome		
Event		

Calculating Probability		
Fundamental Counting Principle		
Permutations		
Combinations		
Circular Permutations		
Simulations		
Complement		

Types of Probability		
Geometric Probability		
Independent Events		
Dependent Events		
Conditional Probability		
Mutually Exclusive Events		

DATE _

Before the Test

Now that you have read and worked through the chapter, think about what you have learned and complete the table below. Compare your previous answers with these.

- 1. Write an **A** if you agree with the statement.
- 2. Write a **D** if you disagree with the statement.

Probability and Measurement	After You Read
• There are many different ways to represent the sample space of an experiment.	
• The Fundamental Counting Principle uses addition to count the total number of outcomes.	
• In a permutation, the order is not important.	
• Compound events can be independent or dependent.	
• When one event affects another event the events are mutually exclusive.	

Math Online Visit *glencoe.com* to access your textbook, more examples, self-check quizzes, personal tutors, and practice tests to help you study for concepts in Chapter 13.

Are You Ready for the Chapter Test?

Use this checklist to help you study.

- □ I used my Foldable to complete the review of all or most lessons.
- □ I completed the Chapter 13 Study Guide and Review in the textbook.
- □ I took the Chapter 13 Practice Test in the textbook.
- □ I used the online resources for additional review options.
- □ I reviewed my homework assignments and made corrections to incorrect problems.
- □ I reviewed all vocabulary from the chapter and their definitions.

Study Tips

You will do better on a test if you are relaxed. If you feel anxious, try some deep breathing exercises. Don't worry about how quickly others are finishing; do your best and use all the time that is available to you.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc