Contributing Author

Dinah Zike

FOLDABLES

Consultant

Douglas Fisher, Ph.D.
Professor of Language and Literacy Education
San Diego State University
San Diego, CA

Glencoe

The McGraw-Hill Companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
The McGraw-Hill Companies
8787 Orion Place
Columbus, OH 43240-4027
Printed in the United States of America.

ISBN: 978-0-07-890236-9
MHID: 0-07-890236-3

Math Connects: Concepts, Skills, and Problem Solving, Course 1 Noteables ${ }^{\text {TM: }}$ Interactive Study Notebook with Foldables ${ }^{\circledR}$

Gontents

CHAPTER 1
Foldables 1
Vocabulary Builder 2
1-1 A Plan for Problem Solving 4
1-2 Prime Factors 6
1-3 Powers and Exponents 8
1-4 Order of Operations 10
1-5 Algebra: Variables and Expressions 13
1-6 Algebra: Functions 15
1-7 Problem-Solving Investigation: Guess and Check 17
1-8 Algebra: Equations 18
1-9 Algebra: Area Formulas 20
Study Guide 22
CHAPTER 2 26
Vocabulary Builder 27
2-1 Problem-Solving Investigation: Make a Table 29
2-2 Bar Graphs and Line Graphs 30
2-3 Interpret Line Graphs 34
2-4 Stem-and-Leaf Plots 36
2-5 Line Plots 39
2-6 Mean 41
2-7 Median, Mode, and Range 43
2-8 Selecting an Appropriate Display 46
2-9 Integers and Graphing 48
Study Guide 50
CHAPTER 3 55
Vocabulary Builder 56
3-1 Representing Decimals 57
3-2 Comparing and Ordering Decimals. 59
3-3 Rounding Decimals 61
3-4 Estimating Sums and Differences 63
3-5 Adding and Subtracting Decimals 66
3-6 Multiplying Decimals by Whole Numbers 69
3-7 Multiplying Decimals 71
3-8 Dividing Decimals by Whole Numbers 73
3-9 Dividing by Decimals 75
3-10 Problem-Solving Investigation: Reasonable Answers 78
Study Guide 79
CHAPTER 4 Foldables 85
Vocabulary Builder. 86
4-1 Greatest Common Factor 88
4-2 Simplifying Fractions 91
4-3 Mixed Numbers and Improper Fractions 94
4-4 Problem-Solving Investigation: Make an Organized List 96
4-5 Least Common Multiple 97
4-6 Comparing and Ordering Fractions 99
4-7 Writing Decimals as Fractions 102
4-8 Writing Fractions as Decimals 104
4-9 Algebra: Ordered Pairs and Functions 106
Study Guide 109
CHAPTER 5 Foldables 114
Vocabulary Builder. 115
5-1 Rounding Fractions and Mixed Numbers 116
5-2 Problem-Solving Investigation: Act It Out 118
5-3 Adding and Subtracting Fractions with Like Denominators 119
5-4 Adding and Subtracting Fractions with Unlike Denominators 121
5-5 Adding and Subtracting Mixed Numbers 124
5-6 Estimating Products of Fractions 127
5-7 Multiplying Fractions 129
5-8 Multiplying Mixed Numbers. 131
5-9 Dividing Fractions 133
5-10 Dividing Mixed Numbers 135
Study Guide 137
CHAPTER 6 Foldables 143
Vocabulary Builder 144
6-1 Ratios and Rates 146
6-2 Ratio Tables 148
6-3 Proportions 151
6-4 Algebra: Solving Proportions 154
6-5 Problem-Solving Investigation: Look for a Pattern 157
6-6 Sequences and Expressions. 158
6-7 Proportions and Equations 161
Study Guide 164
CHAPTER 7 Foldables 168
Vocabulary Builder. 169
7-1 Percents and Fractions 171
7-2 Circle Graphs 174
7-3 Percents and Decimals 177
7-4 Probability 179
7-5 Sample Spaces 182
7-6 Making Predictions 185
7-7 Problem-Solving Investigation: Solve a Simpler Problem 187
7-8 Estimating with Percents 188
Study Guide 191
CHAPTER I 196
Vocabulary Builder 197
8-1 Length in the Customary System 199
8-2 Capacity and Weight in the Customary System 201
8-3 Length in the Metric System 203
8-4 Mass and Capacity in the Metric System 205
8-5 Problem-Solving Investigation: Use Benchmarks 207
8-6 Changing Metric Units 208
8-7 Measures of Time 210
8-8 Measures of Temperature 212
Study Guide 214
CHAPTER 9 218
Vocabulary Builder 219
9-1 Measuring Angles 221
9-2 Estimating and Drawing Angles 223
9-3 Angle Relationships 225
9-4 Triangles 227
9-5 Quadrilaterals 230
9-6 Problem-Solving Investigation: Draw a Diagram 232
9-7 Similar and Congruent Figures. 233
Study Guide 236
CHAPTER 10 Foldables 240
Vocabulary Builder 241
10-1 Perimeter 243
10-2 Circles and Circumference. 245
10-3 Area of Parallelograms 248
10-4 Area of Triangles 250
10-5 Problem-Solving Investigation: Make a Model 252
10-6 Volume of Rectangular Prisms 253
10-7 Surface of Rectangular Prisms 255
Study Guide 257
CHAPTER 11 Foldables 261
Vocabulary Builder 262
11-1 Ordering Integers 263
11-2 Adding Integers 265
11-3 Subtracting Integers 268
11-4 Multiplying Integers 271
11-5 Problem-Solving Investigation: Work Backward 272
11-6 Dividing Integers 273
11-7 The Coordinate Plane 276
11-8 Translations 278
11-9 Reflections 281
11-10 Rotations 283
Study Guide 285
CHAPTER 12 Foldables 291
Vocabulary Builder 292
12-1 The Distributive Property 293
12-2 Simplifying Algebraic Expressions 295
12-3 Solving Addition Equations 297
12-4 Solving Subtraction Equations 300
12-5 Solving Multiplication Equations 302
12-6 Problem-Solving Investigation: Choose the Best Method of Computation 304
Study Guide 305

Organizing Your Foldables

FOLDABLES

Make this Foldable to help you organize and store your chapter Foldables. Begin with one sheet of 11 " $\times 17$ " paper.

5TEP 1 Fold

Fold the paper in half lengthwise. Then unfold.

STEP 2. Fold and Glue

Fold the paper in half widthwise and glue all of the edges.

5TEP 3 Glue and Label

Glue the left, right, and bottom edges of the Foldable to the inside back cover of your Noteables notebook.

Reading and Taking Notes As you read and study each chapter, record notes in your chapter Foldable. Then store your chapter Foldables inside this Foldable organizer.

Using Your Noteables"

 Interactive Study NotebookThis note-taking guide is designed to help you succeed in Math Connects, Course 1. Each chapter includes:

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

NOTE-TAKING TIPS

Your notes are a reminder of what you learned in class. Taking good notes can help you succeed in mathematics. The following tips will help you take better classroom notes.

- Before class, ask what your teacher will be discussing in class. Review mentally what you already know about the concept.
- Be an active listener. Focus on what your teacher is saying. Listen for important concepts. Pay attention to words, examples, and/or diagrams your teacher emphasizes.
- Write your notes as clear and concise as possible. The following symbols and abbreviations may be helpful in your note-taking.

Word or Phrase	Symbol or Abbreviation	Word or Phrase	Symbol or Abbreviation
for example	e.g.	not equal	\neq
such as	i.e.	approximately	\approx
with	w/	therefore	\therefore
without	w/o	versus	vs
and	+	angle	\angle

- Use a symbol such as a star (\star) or an asterisk (*) to emphasize important concepts. Place a question mark (?) next to anything that you do not understand.
- Ask questions and participate in class discussion.
- Draw and label pictures or diagrams to help clarify a concept.
- When working out an example, write what you are doing to solve the problem next to each step. Be sure to use your own words.
- Review your notes as soon as possible after class. During this time, organize and summarize new concepts and clarify misunderstandings.

Note-Taking Don'ts

- Don't write every word. Concentrate on the main ideas and concepts.
- Don't use someone else's notes as they may not make sense.
- Don't doodle. It distracts you from listening actively.
- Don't lose focus or you will become lost in your note-taking.

1
 Number Patterns and Functions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 . Stack the pages, placing the sheets of paper $\frac{3}{4}$ inch apart.

STEP 1 Roll up bottom edges. All tabs should be the same size.

Begin with five sheets of $8 \frac{1}{2} " \times 11$ paper.
Stack the pages,
placing the sheets
of paper $\frac{3}{4}$ inch apart.
STEP 3 3 1
Roll up bottom
edges. All tabs should
be the same size.
Crease and staple
along the fold.

NOTE-TAKING TIP: When you take notes, listen or read for main ideas. Then record those ideas in a simplified form for future reference.

1

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 1.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
algebra [AL-juh-bruh]			
algebraic [AL-juh-BRAY-ihk] expression			
area			
base			
composite [com-PAH-zit] number			
cubed			
defining the variable			
equals sign			
equation [ih-KWAY-zhuhn]			

Vocabulary Term	Found on Page	Definition	Description or Example
exponent [ex-SPOH-nuhnt]			
factor			
formula [FOR-myuh-luh]			
function			
function rule			
function table			
numerical expression			
order of operations			
power			
prime factorization			
prime number			
solution			
solve			
squared			
variable [VAIR-ee-uh-buhl]			

1-1 A Plan for Problem Solving

EXAMPLES Use the Problem-Solving Plan

Main Idea

- Solve problems using the four-step plan.
(1)

MONEY After shopping at the mall, you came home with $\$ 3$. You spent $\$ 4$ on candy, $\$ 8$ on a movie, and $\$ 5$ on arcade games. How much money did you start with?

UNDERSTAND You know the amount of money that was spent on each item at the mall as well as the amount of money left over. You need to find how much money you started with.

PLAN To find the total amount of money that was started with, \square the amount spent on each item at the mall along with the amount left over.

SOLVE

You started with \square

CHECK
 mall and confirm that $\$ 3$ is left over.
\square

Check Your Progress
HOCKEY During the regular season, David scored 18 more goals than Bobby. Bobby scored 14 goals. How many goals did David score during the regular season?

(2) COOKING Based on

 the the information in the table, how many cups of cooked rice and how many servings will 4 cups of dry rice provide?| Dry Rice
 (cups) | Cooked
 Rice (cups) | Servings |
| :---: | :---: | :---: |
| 1 | 2 | 8 |
| 2 | 4 | 16 |
| 3 | 6 | 24 |
| 4 | $?$ | $?$ |

Foldables

Organize It

On the Lesson 1-1 tab, list the steps of the four-step plan for problem solving. Then explain each step in your own words.

Homework ASSIGNMENT

Page(s):
Exercises:

Exercises:
number of servings for 1,2 , and 3 cups of dry rice. You need to find the cups of cooked rice and the number of servings for 4 cups of dry rice.
PLAN

SOLVE

CHECK Since $8-2=6$ and $32-8=24$, the answer is correct.

Check Your Progress EXERCISE Based on the

 information in the table, determine how many minutes per day will be spent working out during week 5 .| Week | Minutes Per Day |
| :---: | :---: |
| 1 | 10 |
| 2 | 15 |
| 3 | 21 |
| 4 | 28 |
| 5 | $?$ |

1-2 Prime Factors

MAIN IDEA

- Find the prime factorization of a composite number.

Write It

Explain why zero is neither prime nor composite. Give examples that show why.
\qquad
\qquad
\qquad
\qquad
\qquad
(1) 13

The factors of 13 are

Since there are \square two factors, 1 and the number itself, 13 is a \square number.

220
The factors of 20 are

Since 20 has \square two factors, it is a
\square

Check Your Progress Tell whether each number is prime, composite, or neither.

BUILD YoUR Vocabulary (pages 2-3)

EXAMPLE Find Prime Factorization

FOLDABLES
ORGANIZE IT
On the Lesson 1-2 tab, list examples of prime and composite numbers. Then show how to find the prime factorization of a few of the composite numbers.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

3 Find the prime factorization of 96.

Check Your Progress
Find the prime factorization of 72.

1-3 Powers and Exponents

MAIN IDEA

- Use powers and exponents in expressions.

BUILD YOUR VOGABULARY (pages 2-3)

A product of \square factors can be written using an exponent and a base.

Numbers expressed using \square are called powers. Three to the second power or three squared is 3×3, or \square Ten to the third power or ten cubed is $10 \times 10 \times 10$, or \qquad

EXAMPLES Write Powers and Products

FOLDABLES

ORGANIZE IT

On the Lesson 1-3 tab, write a power. Then write the power as a product of primes. Label all the parts.

Write It

Explain what 3^{1} means.
\qquad
\qquad
\qquad
\qquad (1) Write $5 \times 5 \times 5 \times 5$ using an exponent.

\square exponent is $5 \times 5 \times 5 \times 5=$

2 Write 8^{3} as a product of the same factor. Then find the value.
The base is \square. The exponent is \square. So, \square is a factor
\square

Check Your Progress

a. Write $4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4$ using an exponent.

b. Write 6^{4} as a product of the same factor. Then find the value.
\square

EXAMPL:

3 ELEVATIONS The highest point in Utah is King's Peak. It stands just a bit higher than 4^{6} meters. What is this elevation?

Write 4^{6} as a \square. Then find the \square of the product.
$4^{6}=\square$
$=\square$
So, the elevation of King's Peak is about \square

Check Your Progress SWIMMING POOL The length of a new swimming pool being built at the community recreation center is listed as 2^{6} feet. What is the length of the new pool?

EXAMPLES Prime Factorization Using Exponents

Write the prime factorization of each number using exponents.
4) 108

$$
\begin{aligned}
& 108=\square \quad \text { Write the prime factorization. } \\
&=\square \quad \begin{array}{l}
\text { Write products of identical }
\end{array} \\
& \text { factors usinc exnonents }
\end{aligned}
$$

80

$$
\begin{aligned}
80 & =\square \quad \text { Write the prime factorization. } \\
& =\square \begin{array}{l}
\text { Write products of identical } \\
\text { factors using exponents. }
\end{array}
\end{aligned}
$$

Check Your Progress

 Write the prime factorization of each number using exponents.a. 144
b. 162
\square

1-4 Order of Operations

BUILD YOUR VOCABULARY (pages 2-3)

MAIN IDEA

- Find the value of expressions using the order of operations.

EXAMPLES Use Order of Operations

Find the value of each expression.

Key Concept

Order of Operations

1. Simplify the expressions inside grouping symbols, like parentheses.
2. Find the value of all powers.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

1
$30-10+9$
$30-10+9=20+\square$

$$
=\square
$$

Add \square and \square
2) $4+(10-3)$

$$
\begin{array}{rlrl}
4+(10-3) & =\square \quad \text { Subtract } 3 \text { from } 10 . \\
& =\square & \text { Add } \square \text { and } \square .
\end{array}
$$

Check Your Progress

 expression.b. $6+(8-4)$

a. $21-6+9$

Find the value of each

WRITE IT

Why is it important to have an order of operations when evaluating expressions?
\qquad
\qquad
\qquad
\qquad

EXAMPLES Parentheses and Exponents

Find the value of each expression.
(3) $90 \div 3+(3-2)-20$
$90 \div 3+(3-2)-20$
$=90 \div 3+\square-20$

$=\square-20$
Divide

$=$

$$
=\square
$$

(4) $4^{3}+5 \times 2-1$
$4^{3}+5 \times 2-1$
$=\square+5 \times 2-1$
Find

$=\square$

Check Your Progress

Find the value of each expression.
a. $85 \div 5+14 \times(12-8)$

b. $4 \times 2^{4}+7$

EXAMPL:

FOLDABLES

Organize It

On the Lesson 1-4 tab, write the order of operations for evaluating expressions. Use your own examples to show how the rules are applied.

Homework Assignment

MONEY Trina, her two parents, and her grandmother eat lunch at a diner. Each person orders a soda, a sandwich, fries, and dessert. Write an expression for the total cost of the meal. Then find the total cost.

Cost of Lunch at a Diner				
Item	soda	sandwich	fries	desserts
Cost	$\$ 1$	$\$ 5$	$\$ 2$	$\$ 3$

To find the total cost, write an expression and then find its value using the order of operations.

$4 \times \$ 1+4 \times \$ 5+4 \times \$ 2+4 \times \$ 3$
$=\square 4 \times \$ 5+4 \times \$ 2+4 \times \$ 3$

$=\square$
The total cost of the meal is \square

Check Your Progress
CLOTHING Maris is shopping at a new clothing store. T-shirts are priced at $\$ 9$ each, jeans are priced at $\$ 17$ per pair, and sweaters are priced at $\$ 14$. Maris buys 4 T-shirts, 2 pairs of jeans, and 3 sweaters. Write an expression for the total cost of her purchases. Then find the total cost.

1-5 Algebra: Variables and Expressions

MAIN IdeA

- Evaluate algebraic expressions.

BUILD YOUR VOCABULARY (pages 2-3)

Algebra is a language of \square

A variable is a \square usually a letter, used to represent a number.

Algebraic expressions are combinations of \square ,
\square , and at least one \square
To evaluate an algebraic expression means to find the
\square of the expression. You can find the value after you replace the variables with \square

EXAMPLES Evaluate Algebraic Expressions

FOLDABLES

Organize It

On the Lesson 1-5 tab, explain variable and algebraic expression. Then explain what steps you take before evaluating an algebraic expression.

(1) Evaluate $20+c$ if $c=5$.

2) Evaluate $p-q$ if $p=14$ and $q=13$.

$$
\begin{array}{rlrl}
p-q & =\square-\square \quad \text { Replace } p \text { with } \square \text { and } q \text { with } \square . \\
& =\square & \square .
\end{array}
$$

3 Evaluate $2 x+3$ if $x=4$.

Remember It

In algebra, the symbol • can be used to represent multiplication.
$3 \cdot 4=3 \times 4$

A number and a letter, or two letters can be written together without a multiplication symbol.
$2 t=2 \times t \quad s t=s \times t$

Homework

 Assignment
Check Your Progress

a. Evaluate $m+9$ if $m=25$.
\square
b. Evaluate $x-y$ if $x=22$ and $y=17$.
\square
c. Evaluate $7+3 w$ if $w=6$.
\square

EXAMPL

4 TEST EXAMPLE The amount of money Sabrina will

 need to pay for 5 binders using a $\$ 2$ coupon can be represented by the expression $5 x-2$, where x is the cost of each binder. Find the amount of her purchase if each binder is $\$ 4$.A $\$ 2$
B $\$ 18$
C $\$ 20$
D $\$ 40$

Read the Item

You need to find the value of the expression given $x=\$ 4$.

Solve the Item

The amount of Sabrina's purchase is \square The answer is \square

Check Your Progress

MULTIPLE CHOICE Find the value of the expression $5 \cdot 3+4 g$ if $g=2$.
F 11
G 19
H 23
J 38
\square

1-6 Algebra: Functions

Main IdeA

- Complete function tables and find function rules.

Remember It

Parentheses can be used to show multiplication. For example, another way to write 3×4 is $3(4)$.

BUILD YOUR VOCABULARY (pages 2-3)

A function is a relation in which each element of the input is paired with \square element of the output according to a rule.

A function table organizes the input, \square and output of a function.

A function rule describes the relationship between each \square and \square of a function.

EXAMPLE Complete a Function Table

(1) Complete the function table.

The function rule is $x+6$.
Add

to each input.

Input (x)	Output $(x+6)$
0	\square
1	\square
2	\square

Check Your Progress
Complete the function table below.

Input (x)	Output $(x+2)$
0	\square
1	\square
2	\square

EXAMPLE Find the Rule for a Function Table

2 Find the rule for the function table.

The output is \square less than the input.

The function rule is \square

Check Your Progress

 Find the rule for the function table.

Input (x)	Output (■)
10	7
8	5
5	2

Input (x)	Output (■)
9	36
10	40
11	44

BUILD YOUR VOGABULARY (pages 2-3)

When you choose a variable to represent the input, it is called defining the variable.

EXAMPLE

3 MONEY Nina has a new job. She spends $\$ 2$ every day on coffee. Define a variable. Then write a function rule that relates the total amount of money Nina spends on coffee to the number of days at work.

Check Your Progress MOVIE RENTAL A video store rents movies for $\$ 4$ each. Define a variable. Then write a function rule that relates the total charge to the number of

1-7 Problem-Solving Investigation: Guess and Check

Main Idea

Solve problems by using the guess and check strategy.

EXAMPLE

Hal is younger than Randi. Each of their ages is a different prime number. The total of their ages is 91 . How old are Hal and Randi?

UNDERSTAND You know that \square is younger than
 Each of their ages is a different

\square . You need to find what their ages are.
PLAN Make a guess until you find an answer that makes sense for the problem.

SOLVE

Hal	Prime Number?	Randi	Prime Number?	Total (Hal + Randi)
11	yes	80		91
7		84	no	91
5	yes	\square	no	91
2	yes	89	yes	\square

\square years old.

CHECK Hal's age is less than Randi's age. Both 2 and 89 are prime numbers, and $2+89=91$. So, the answer is correct.

Check Your Progress
MONEY Leah has 5 bills and 3 coins in her pocket. If she has a total of $\$ 27.31$ in her pocket, what kinds of bills and coins does she have?

1-8 Algebra: Equations

MAIN IDEA

- Solve equations by using mental math and the guess and check strategy.

BUILD YOUR VOGABULARY (pages 2-3)

An equation is a sentence that contains an equals sign, $=$.

When you replace a variable with a value that results in a \square sentence, you solve the equation.

The value for the \square is the solution of the equation.

EXAMPLE Find the Solution of an Equation

(1) Is 5,6 , or 7 the solution of the equation $4+b=10$?

Value of b	$4+b \stackrel{?}{=} 10$	Are Both Sides Equal?
	$\begin{aligned} 4+\square & =10 \\ \square & \neq 10 \end{aligned}$	
	$\begin{aligned} 4+\square & =10 \\ \square & =10 \end{aligned}$	
	$\begin{aligned} 4+\square & =10 \\ \square & \neq 10 \end{aligned}$	

The solution of $4+b=10$ is \square

Check Your Progress

Is 9,10 , or 11 the solution of the

EXAMPL: Solve an Equation Mentally

(2) Solve $16=4 s$ mentally.
$16=4 s$
$16=4 \cdot \square$
$16=\square$

THINK 16 equals 4 times what number?

You know that $16=4$ • \square
The solution is \square

Check Your Progress
Solve $5 p=30$ mentally.

EXAMPLE

FOLDABLES

ORGANIZE IT

On the Lesson 1-8 tab, write an example of an algebraic equation that can be solved using mental math and an example of an algebraic equation that can be solved using guess and check.

Homework Assignment

Page(s):

Exercises:

1-9 Algebra: Area Formulas

MAIN IDEA

- Find the areas of rectangles and squares.

BUILD YoUR VocABULARY (pages 2-3)

The area of a figure is the number of \square needed to cover a \square A formula is an \square that shows a
\square among certain quantities.

EXAMPLE Find the Area of a Rectangle

Key Concept

Area of a Rectangle
The area A of a rectangle is the product of the length ℓ and width w.
(1) Find the area of a rectangle with length 15 feet and width 10 feet.

The area is \square square feet.

Check Your Progress

Find the area of a rectangle with length 9 meters and width 13 meters.

EXAMPLE Find the Area of a Square

2 Find the area of a square with side length 7 inches.
$A=s^{2}$
Area of a square
$A=\square$
Replace s with \qquad
$A=\square \quad$ Multiply.

The area is \square square inches.

Check Your Progress
Find the area of a square with side length 11 inches.

EXAMPL:

FOLDABLES

ORGANIZE IT

Write the formula for the area of a rectangle on the Lesson 1-8 tab. Then draw a diagram to describe area.

3 SPORTS The outdoor Olympic swimming pool in Volos, Greece, measures 50 meters long and 25 meters wide. What is the area of the pool?

The length is 50 meters, and the width is 25 meters.
$A=\ell w \quad$ Area of a rectangle
$A=\square$ \square and w with \square
\square Multiply.

The area of the pool is \square

Check Your Progress

GARDENS Bill's garden is 18 feet long and 12 feet wide. What is the area of his garden?

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 1 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 1, go to
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 2-3) to help you solve the puzzle.

1-1

A Plan for Problem Solving

1. Amy has 10 round beads to use for a necklace. She is also going to use 3 cubes, 2 ovals, and 5 cylinders. How many beads will she use in the necklace?

2. Complete the pattern.
$3,7,11,15$, \square

1-2

Prime Factors

Complete each sentence. Write prime, composite, or neither and then tell why.
3. 9 is \square because \square
4. 1 is \square because \square
5. 13 is \square because \square
6. Find the prime factorization of 20 . \square

1-3

Powers and Exponents

7. Find the value of 2^{5}.
$2^{5}=\square$
Write 2^{5} as a product.
$=\square$
Find the value.
8. Write the prime factorization of 36 using exponents.
\square

1-4

Order of Operations
9. The steps for finding the value of a numerical expression are listed below. Number the steps in the correct order.
\square Find the value of all powers.
\square Add and subtract in order from left to right.
\square Simplify the expressions inside grouping symbols.
\square Multiply and divide in order from left to right.
10. Using the order of operations, explain how you would find the value of $(7+5) \div 2^{2}+8$.

1-5

Algebra: Variables and Expressions

11. Describe in words each step for evaluating $2 r^{2}+3 \cdot 5$ if $r=4$.

$$
2 r^{2}+3 \cdot 5=2 \cdot 4^{2}+3 \cdot 5
$$

$$
=2 \cdot 16+3 \cdot 5
$$

$$
=32-3 \cdot 5
$$

$$
=32-15
$$

$$
=17
$$

\square

1-6

Algebra: Functions

12. Find the function rule for the function table.

Input (x)	Output (■)
0	0
5	45
10	90

The function rule is \square

1-7

Problem-Solving Investigation: Guess and Check

Solve. Use the guess and check strategy.
13. NUMBERS The sum of two numbers is 23 and their product is 120 . Find the numbers.

1-8

Algebra: Equations

14. Use guess and check to solve the equation $t+62=83$.

Since $\square+60=80$, the solution should be about \square.
Try 20.

The solution is \square

1-9

Algebra: Area Formulas
15. Find the area of a rectangle that is 14 inches long and 6 inches wide.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 1.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 1 Practice Test on page 73 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 1 Study Guide and Review on pages 68-72 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 73.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 1 Foldable.
- Then complete the Chapter 1 Study Guide and Review on pages 68-72 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 1 Practice Test on page 73.

Statistics and Graphs

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with five sheets of graph paper.

STEP 1 Fold each sheet of graph paper in half along the width.

STEP 1. Unfold each sheet and tape to form one long piece.

STEP 3) Label the pages with the lesson numbers as shown.

STEP 4 Refold the pages to form a journal.

NOTE-TAKING TIP: As you learn different methods of displaying statistics, use the notes you have taken on each method to help you compare and contrast the different methods.

2

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 2. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
average			
bar graph			
data			
frequency			
graph			
horizontal axis			
integers			
interval			
key			
leaves			
line graph			

Vocabulary Term	Found on Page	Definition	Description or Example
mean			
measures of central tendency			
median			
mode			
negative numbers			
opposites			
outlier			
positive numbers			
stem-and-leaf plot			
stem			
sertical axis			

2-1 Problem-Solving Investigation: Make a Table

EXAMPLE

MAIN IDEA

- Solve problems by making a table.

EYE COLOR Make a frequency table of the data. How many more students have brown eyes than green eyes?

blue	gray	brown	green	brown
brown	gray	blue	gray	

UNDERSTAND You need to find the number of students who have brown eyes and the number of students who have green eyes. Then find the difference.

PLAN Make a frequency table of the data.

SOLVE Draw a table with three columns as shown. In the first column, list each eye color. Then complete the table by indicating the frequency or number of times each color occurs.

Eye Color				
Color	Tally	Frequency		
blue	$\\|$	2		
gray	$\\|\\|$	3		
brown	III	3		
green	$\\|$	1		

\square students have brown eyes and \square has green eyes. So, 3-1 or \square more students have brown eyes than green eyes.

CHECK Go back to the data. There should be 3 students who have brown eyes and 1 student who has green eyes. So, an answer of \qquad students is correct.

Check Your Progress

MARKETING Make a frequency table of the data. How many more people responded yes than no?

Opinion				
Y	Y	N	Y	Y
N	N	Y	Y	N
Y	N	N	Y	Y
N	N	Y	Y	Y

2-2 Bar Graphs and Line Graphs

MAIN IDEA

- Display and analyze data using bar graphs and line graphs.

BUILD YOUR VOGABULARY (pages 27-28)

A graph is a visual way to display data.
A bar graph uses bars to \square quantities.
The scale of a graph is written on the vertical axis of a bar or line graph.

The scale is separated into equal parts called intervals.
The \square are written on the horizontal axis of a bar or line graph.

The frequency is the number of times an item occurs.

A line graph is used to show how a set of data

EXAMPLE Analyze a Bar Graph

(1) ANIMALS Make a bar graph of the data. Compare the time it takes for a rabbit to be born to the time it takes for a camel to be born.

Gestation of Selected Animals	
Animal	Gestation Period (days)
squirrel	44
rabbit	31
puma	90
moose	240
kangaroo	36
camel	406

Source: The World Almanac

Step 1 Decide on a scale and \square The data include numbers from 31 to 406 . So, a scale from \square to \square and an interval of \square is reasonable.

Step 2 Label the horizontal and vertical axes.

Step 3 Draw bars for each animal. The height of each bar shows the gestation period for each animal.

Step 4 Label the graph with a

Gestation of Selected Animals

It takes about \square times as many days for a camel to be born as it does for a rabbit to be born.

Check Your Progress

RESTAURANT Make a bar graph of the data. Compare the number of customers at the restaurant on Monday to the number of customers on Saturday.

Customers at Sam's Chili	
Day	Number of Customers
Sunday	120
Monday	50
Tuesday	62
Wednesday	71
Thursday	84
Friday	112
Saturday	150

EXAMPL: Analyze a Line Graph

FOLDABLES

ORGANIZE IT
Under Lesson 2-2 of your journal, write some ways bar and line graphs are alike and ways they are different. Think about how each kind of graph is constructed.

2 WATER USE Make a line graph of the data at the right. Then describe the change from 1960 to 1995.

U.S. Water Consumption	
Year	Daily Usage (billion gallons)
1960	61
1965	77
1970	87
1975	96
1980	100
1985	92
1990	94
1995	100

Source: U.S. Census Bureau

Step 1 Decide on the
The data include numbers from 61 to 100 . The scale is

Step 2 Label the horizontal and vertical axes.

Step 3 Draw and \square the points for each year.

Each point shows the billions of gallons of water consumed per day.

Step 4 Label the graph with a \square
Water consumption increased from 1960 to 1995, with a slight dip in use between 1980 and 1995.

Check Your Progress
SNOWFALL Make a line graph of the data below. Then describe the change from 1997 to 2002.

Yearly Snowfall	
Year	Total Snowfall (inches)
1997	23
1998	20
1999	18
2000	18
2001	17
2002	24

2-3 Interpret Line Graphs

EXAMPLES Make Predictions

Main IDEA

- Interpret line graphs.

FOLDABLES

Organize IT

Under Lesson 2-3 of your journal, write a paragraph explaining how line graphs can be used to make predictions.

1 FOOD PRICES The average retail price for a loaf of white bread for the years 1996-2004 is shown in the graph below. Predict the price of a loaf of white bread in 2010.

Price per Loaf of

White Bread, 1996-2004

Source: U.S. Bureau of Labor Statistics

Continue the graph with a dotted line in the same direction until you reach a vertical position of \square
Price per Loaf of White Bread, 1996-2004

Source: U.S. Bureau of Labor Statistics
Notice that the increase has been fairly steady all along.

the price of a loaf of white bread in 2010 will be about
\square

Check Your Progress
INCOME The average income for full-time employees of a large corporation for the years 1995-2004 is shown in the graph below. Predict the average income in 2008.

Average Income of Full-Time Employees

2 BOWLING The graph shows the number of participants in bowling from 1975 to 2000. What does the graph tell you about the popularity of bowling?
The popularity of bowling
\square \square in the mid-nineteen eighties, but it has since
\square \square in popularity.

Check Your Progress

COUNTY FAIR The graph shows the attendance at a county fair from 1985 to 2005. What does the graph tell you about the popularity of the fair?

Bowling Participants, 1975-2000

Source: U.S. Census Bureau

Homework AssignMent

Page(s):

Exercises:

2-4 Stem-and-Leaf Plots

MAIN IDEA

- Display and analyze data using a stem-andleaf plot.

Write It

When is a stem-and-leaf plot an especially useful way to display data?
\qquad
\qquad
\qquad
\qquad

BUILD YOUR VOCABULARY (pages 27-28)

In a stem-and-leaf plot, the data is ordered from
 and is organized by place value.

The stems of the plot are the \square written to the left of the vertical line.
 to the \square of the vertical line.

The key explains the stems and \square

EXAMPLE Construct a Stem-and-Leaf Plot

(1) WEATHER Make a stem-and-leaf plot for the data in the table.

Step 1
Order the data from \square to \square

Step 2 Draw a vertical line and write the tens digits from least to greatest to the left of the line. These digits

Step 3 \square digits in order to the \square of the line with the corresponding stem. The units digits form the \square

FOLDABLES

ORGANIZE IT

Under Lesson 2-4 in your journal, explain how to construct a stem-and-leaf plot. Include an example using your own data. Label the parts of the plot.

Step 4 Include a \square that explains the stems and leaves.

Average July Highs

Stem	Leaf											
6	6	7	9									
7	0	1	2	3	3	4	4	5	6	7	8	9
8	1	8	9		718	78						

Check Your Progress

DRIVING Make a stem-and-leaf plot for the data in the table.

Speeds of Cars Driving on the Highway								
(miles per hour)								
65	72	69	58	81	66	61	74	78
70	66	59	74	78	71	68	65	66

EXAMPLE Analyze Plots

2 FOOTBALL The following stem-and-leaf plot shows the total points scored in 39 recent Super Bowls. Write a few sentences analyzing the data.

Total points									
Stem	Leaf								
2	1	2	3	7	9				
3	0	1	3	7	7	7	8	9	9
4	1	3	4	4	5	6	7	7	7
5	0	2	3	4	5	6	6	9	
6	1	5	6	9					
7	5						$513=53$		

Homework Assignment
Page(s):
Exercises:

2-5 Line Plots

EXAMPLE Display Data in a Line Plot

MAIN IDEA

Display, analyze, and interpret data using line plots.

(1) BOOKS Make a line plot of the data below.

Number of Books Read in a Month				
1	3	2	1	3
10	1	7	3	10
5	7	2	8	3

Step 1

Step 2 Put an \times above the number that represents each number of books read. Add a \square
Number of Books Read in a Month

EXAMPLES Analyze a Line Plot

2 How many students read 10 books?
Locate 10 on the number line and count the number of \times 's above it. There are \square students who read \square books.

3 What is the difference between the greatest and least number of books represented in the line plot?
The least number of books read is \square. The greatest number of books read is \square
$10-1=9$
The difference is \square books.
4) If the line plot shows the number of books that members of a book club read in one month, write one or two sentences to analyze the data.
Sample answer: Most book club members read between \square and books.

Check Your Progress

a. Make a line plot of the data below.

Number of Raffle Tickets Sold			
15	8	10	12
6	12	9	15
8	10	12	13
10	15	6	10

Homework ASSIGNMENT

Page(s):
Exercises:
b. How many students sold 10 raffle tickets?

c. What is the difference between the greatest and least number of raffle tickets represented in the line plot?
\square
d. If the line plot shows the number of raffle tickets that students in Miss Ferguson's class sold in one week, write one or two sentences that analyze the data.

MAIN IDEA

- Find the mean of a data set.

BUILD YOUR VOGABULARY (pages 27-28)

The mean, or average, of a set of data is the \square of the data \square the number of pieces of data.

EXAMPLES Find Mean

(1) VOTES The picture graph shows the current number of electoral votes for selected states. Find the mean number of electoral votes for these four states.

Electoral Votes $\quad \checkmark=1$ vote	
TN	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$
KY	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$
VA	$\checkmark \checkmark \checkmark$
SC	$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$

Source: FEC

Write and simplify an expression.

$$
\begin{aligned}
\text { mean } & =\frac{11+8+13+8}{4} \\
& =\square \text { or } \square
\end{aligned}
$$

Each state has a mean or \square of \square electoral votes.

Check Your Progress

PRACTICE The number of days per week that members of the middle school band practice their instrument is shown in the table. Find the mean.

Days of Practice					
6	7	5	5	3	6
5	1	4	6	7	5

\square

BUILD YOUR YOGABULARY (pages 27-28)

An outlier is a value that is much \square or much than the other values in a set of data.

EXAMPLE Determine How Outliers Affect Mean

2 BASKETBALL Identify the outlier in the data. Then find the mean with and without the outlier. Describe how the outlier affects the mean of the data.

Points per Game			
92	102	88	76
78	44	98	101
100	77	108	86

Compared to the other values, 44 is extremely \square So, it is an outlier.
mean with outlier
$=\frac{92+102+88+76+78+44+98+101+100+77+108+86}{12}$
$=\frac{1,050}{12}$ or \square
mean without outlier
$=\frac{92+102+88+76+78+98+101+100+77+108+86}{11}$
$=\frac{1,006}{11}$ or about 91.5
The outlier lowers the mean of the data by \square points.

Check Your Progress

EXAM SCORES Identify the outlier in the data. Then find the mean of the exam scores with and without the outlier. Describe how the outlier affects the mean of the data.

Exam Scores			
84	75	93	82
84	36	79	91

Homework Assignment

Page(s):

Exercises:

2-7 Median, Mode, and Range

Main Idea

- Find and interpret the median, mode, and range of a set of data.

BUILD YOUR VOGABULARY (pages 27-28)

The mean, median, and mode are called measures of central tendancy.

The median is the middle number of ordered data. The mode is the number that occurs most often.

EXAMPLE Find the Median and the Mode

(1) NUTRITION The table shows the Calorie content of various vegetables. Find the median and the mode of the data.

Number of Calories in Selected Vegetables (per serving)		
15	35	50
31	5	25
85	25	20
55	15	40

Source: The World Almanac
To find the median, order the data from \square median: $5,15,15,20,25,25,31,35,40,50,55,85$

mode: 5, 15, 15. 20, 25, 25, 31, 35, 40, 50, 55, 85
The median is \square There are two modes, \square and \square

Check Your Progress

COLLEGE The table shows the ages of students at a local college. Find the median and the mode of the data.

Student Age			
20	21	19	35
19	20	19	18
24	19	18	23

\square

BUILD YOUR VOCABULARY (pages 27-28)

The range of a set of data is the \square between the \square and the \square values of the set.

EXAMPLE Find the Range

2 TEMPERATURE The high temperatures for Las Vegas last week were $65^{\circ}, 68^{\circ}, 72^{\circ}, 65^{\circ}, 80^{\circ}, 55^{\circ}$, and 65°. Find the range of the data. Then write a sentence that describes how the data vary.
The highest temperature is \square The lowest temperature is \square. So, the range is $\square-\square$ or 25°. The range is relatively small, so the data are fairly close in value.

Check Your Progress

GYMS The number of people attending a gym class Monday through Saturday were 25, 74, $48,32,61$, and 54 . Find the range of the data. Then write a sentence that describes how the data vary.

EXAMPLE

3 TEST EXAMPLE The table shows the number of hot dogs eaten by each contestant at a hot dog eating contest. Which statement is supported by the data in the table?
A If the number of hot dogs

Number of Hot Dogs Eaten				
22	19	29	32	20
49	23	37	22	22
15	29	18	10	25

Source: Nathan's Famous eaten were distributed equally among all the contestants, each player would have eaten 39 hot dogs.

B Half the contestants ate more than 20 hot dogs and half ate less than 20 hot dogs.
C Most of the contestants ate 22 hot dogs.
D The range of the numbers of hot dogs eaten is not very spread out.

FOLDABLES

Organize IT

Under Lesson 2-7 in your Foldable, explain median, mode, and range are and how to find them.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework ASSIGNMENT

Page(s):
Exercises:

Read the Item

The answer choices refer to the mean, median, mode, and range.

Solve the Item Find the mean, median, mode, and range. mean:
$\frac{22+19+29+32+20+49+23+37+22+22+15+29+18+10+25}{15}$

median:
$10,15,18,19,20,22,22,22,23,25,29,29,32,37,49=$ \square
mode: \square
range:

\square

Determine which measure is referred to in each answer choice.
Choice A refers to the mean, but the correct mean is \square not 39 .

Choice \mathbf{B} refers to the median, but the correct median is \square not 20 .

Choice C refers to the mode, which is \square
Choice D refers to the range, but the range of
 spread out.

The correct answer is \square

Check Your Progress

MULTIPLE CHOICE Which
statement is supported by the data in the table?

Average Annual Precipitation (days) in Selected Southwestern U.s. Cities			
59	32	72	26
36	36	52	52
90	43	63	

F Half the cities have more than 50 days of precipitation and half have less than 50 days of precipitation.
G If the number of days of precipitation were distributed equally among all the cities, each city would have 51 days of precipitation.
H The range of the numbers of days of precipitation is not very spread out.
J Most of the cities have 36 days of precipitation.

2-8 Selecting an Appropriate Display

EXAMPLE Find the Range

MAIN IDEA

Select an appropriate display for a set of data.

1) FOOTBALL Which display allows you to see whether or not the number of injuries has steadily declined since 1999?

Number of Injuries on the Football Team

Football Team Injuries, 1999-2005

The

injuries from year to year, with some decline in the number of injuries.

Check Your Progress VOLUNTEERS Which display allows you to see whether the number of parent volunteers has increased since 2000 ?

EXAMPLES

2 Select an appropriate type of display to compare the number of students over the years.
Since the table shows change over a period of
time, a

would be best.

Students in School Orchestra	
Year	Number
2005	15
2006	22
2007	20
2008	23
2009	28

(3) Make the appropriate display of the data.

Step 1 Draw and label

Step 2
Draw a
 to

represent the number of students for each year. Connect the points.

Check Your Progress

PETS The table shows the number of students who chose each animal as their favorite pet. Select and make an appropriate type of display to compare the number of responses for each animal.

Favorite Pets	
Animal	Number of Students
dog	38
cat	36
fish	12
bird	8
other	20

2-9 Integers and Graphing

Main Idea

- Use integers to represent real-world data.

BUILD YOUR VOGABULARY (pages 27-28)

Data that are less than zero are represented by negative numbers. Data that are greater than zero are represented by positive numbers.
Opposites are numbers that are the \square distance from zero in opposite directions.
Positive whole numbers, their opposites, and \square are called integers.

EXAMPLES Use Integers to Represent Data

Write an integer to represent each piece of data.
GROWTH A height increase of 3 inches.
An increase represents a \square number.

The integer is \square
2 GOLF A golfer is seven shots below par.

Write It

Write a sentence about another real-life situation when you would use a negative number.
\qquad
\qquad
\qquad
3 Graph -2 on a number line.
Draw a number line. Then draw a dot at the location that
\square

EXAMPL

4 WEATHER The table shows the lowest temperatures in some cities and towns. Make a line plot of the data.
Draw a number line.
\square would be plotted
farthest to the left and
\square farthest to the right.

Lowest Temperatures (${ }^{\circ} \mathrm{F}$)				
-1	0	9	-5	13
15	12	-8	7	-10
5	0	7	-6	5
-10	-5	0	10	12
4	-2	-2	8	12
0	7	4	-5	9

So you can use a scale
\square
\square . Put an \times above the number that represents each temperature in the table.

Lowest Temperatures (${ }^{\circ} \mathrm{F}$)

Check Your Progress
VIDEO GAMES The table shows Carter's score each time he played a video game.
Make a line plot of the data.

Video Game Scores			
-4	-1	10	5
8	2	-2	4
10	-4	2	10
-2	10	8	-2

Homework

 AssignmentPage(s):
Exercises: \qquad

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 2 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 2, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 27-28) to help you solve the puzzle.

2-1
Problem-Solving Investigation: Make a Table

1. Complete the frequency table.

Length of Park Trails			
Miles	Tally	Frequency	
$1-3$	$\mathrm{HH} \\|$	\square	
\square	HH	\square	
\square	\square	3	

2-2

Bar Graphs and Line Graphs
Complete each sentence.
2. A bar graph is used to \square
3. A line graph is used to show how a set of data
\square

2-3

Interpret Line Graphs

4. Extend the graph to show how to predict the number of miles a day Sam likely will be able to run in the eighth month.
5. How many miles do you predict Sam will run in the eighth month?

2-4

Stem-and-Leaf Plots

6. In a stem-and-leaf plot, the data are ordered from
\square
7. Make a stem-and-leaf plot of the set of data on the number of pages read: $23,42,28,45,42,30$.

2-5
Line Plots
8. MONEY The table below shows the amount of money Jessica saved each week for the past several weeks. Make a line plot of the data.

Amount Saved (\$)				
15	10	25	18	25
10	15	10	15	10

2-6

Mean

9. The mean of a set of data is the \square of the data
\square the number of \square

Use the following data to find the means: 11, 12, 31, 9, 12.

11. mean $=$

2-7

Median, Mode, and Range
Use the following data on the number of miles ran to complete the sentences below: $6,8,9,10,14,14,15$.
12.
 number of the ordered data.
13. \square is the mode because it is the number that occurs
14. \square is the range because it is the difference between the \square and the \square values of the set.

2-8

Selecting an Appropriate Display

15. SALES Which display allows you to see whether or not the number of houses sold has steadily increased from Week 1 to Week 6?

Graph A House Sales

Number of Houses Sold

\square

Write the type of display described below.
16. shows how many times each number occurs in the data

17. shows the number of items in specific categories \square
18. shows change over a period of time \square
19. lists all individual numerical data in a condensed form
\square

2-9

Integers and Graphing
Write an integer to represent each piece of data.
20. Marcos withdrew $\$ 40$ from his savings account. \square
21. The temperature increased 5 degrees. \square
Graph each integer on a number line.
22. 0
23. 6
24. -3

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 2.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 2 Practice Test on page 131 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 2 Study Guide and Review on pages 126-130 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 2 Practice Test on page 131 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 2 Foldables.
- Then complete the Chapter 2 Study Guide and Review on pages 126-130 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 2 Practice Test on page 131.

Operations with Decimals

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with two sheets of notebook paper.

STEP 1
Fold one sheet in half. Cut along fold from edges to margin.

NOTE-TAKING TIP: When you take notes, define new terms and write about the new concepts you are learning in your own words. Write your own examples that use the new terms and concepts. 3

BUILD YOUR VOCABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 3.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
clustering			
decimal			
equivalent [ih-KWIHV-uh-luhnt] decimals			
expanded form			
front-end estimation			
standard form			

3-1 Representing Decimals

Main Idea

Represent decimals in word form, standard form, and expanded form.

BUILD YOUR VocABULARY (page 56)

Numbers that have digits in the \square place and beyond are called decimals.

Standard form is the usual way to write a \square Expanded form is a \square of the products of each digit and its \square

EXAMPLE Write a Decimal in Word Form

(1) Write $\mathbf{1 0 2 . 0 5 6}$ in word form.

Check Your Progress
Write 230.108 in word form.

EXAMPLE Standard Form and Expanded Form

Remember It

When you read aloud a decimal, use the word and for the decimal point. For example, read 62.043 as sixty-two and forty-three thousandths.

Homework Assignment

Page(s):
Exercises:

2 Write seventy-six and one hundred three thousandths in standard form and in expanded form.

Place-Value Chart							
1000	100	10	1	0.1	0.01	10.001	10.0001
	$\begin{aligned} & \text { n } \\ & \text { Di } \\ & \text { ㄹ } \\ & \text { ㄹ } \end{aligned}$	¢	¢				
\bigcirc	O	7	6	1	\bigcirc	13	\bigcirc

Standard form: 76.103
Expanded form: $(\square \times 10)+(\square \times 1)+(\square \times 0.1)$

$$
+(\square \times 0.01)+(\square \times 0.001)
$$

Check Your Progress
Write fifty-nine and sixty-two thousandths in standard form and in expanded form.
\square

3-2 Comparing and Ordering Decimals

Main Idea

- Compare and order decimals.

BUILD YOUR VOGABULARY (page 56)

An inequality is a mathematical sentence indicating that two quantities are not \square

EXAMPLE Compare Decimals

(1) BASEBALL The table below lists the final winning percents for several American League baseball teams in a recent year. Use >or < to compare New York's percent with Cleveland's percent.

Team	Percent Standing
New York	0.594
Boston	0.509
Cleveland	0.562
Detroit	0.407

METHOD 1 Use place value.

First, line up the decimal points.

New York: 0.594
Cleveland:
0.562

Then, starting at the left, find the first place the digits differ. Compare the digits.
Since $9>$ \square , $0.594>$ \square
METHOD 2 Use a number line.

Numbers to the right are greater than numbers to the left.
Since 0.594 is to the \square of $0.562,0.594>\square$.
\square

Check Your Progress EXAMS In Mr. Smith's math class, 29.65% of the students earned a grade of "A" at the end of the semester. In Mrs. Dempsey's class, 29.85\% of the students earned a grade of "A" at the end of the semester. Use $>$ or $<$ to compare the percent in Mr. Smith's class with the percent in Mrs. Dempsey's class.

BUILD YOUR VOGABULARY (page 56)

Decimals that name \square are called equivalent decimals.

EXAMPLE Order Decimals

Remember It

To check the reasonableness of the order of the numbers, you can use a number line.

Homework ASSIGNMENT

Order 25, 25.1, 24.36, and 25.03 from least to greatest.

The order from least to greatest is 24.36 , \square 25.03, and \square

Check Your Progress
Order 71, 71.04, 70.89, and 71.4 from least to greatest.
\square

3-3 Rounding Decimals

EXAMPLE Round Decimals

Main IdeA

Round decimals.

Key Concept

Rounding Decimals To round a decimal, first underline the digit to be rounded. Then look at the digit to the right of the place being rounded.

- If the digit is 4 or less, the underlined digit remains the same.
- If the digit is 5 or greater, add 1 to the underlined digit.
- After rounding, drop all digits after the underlined digit.

1 Round $\mathbf{7 . 6 0 1}$ to the nearest whole number.

On the number line, 7.601 is closer to 8.0 than \square
To the nearest whole number, 7.601 rounds to \square

Check Your Progress
Round 4.321 to the nearest whole number.

2 Round 68.94 to the nearest tenth.

| Underline the digit to
 be rounded. In this
 case, the digit is in
 the tenths place. | $68 . \underline{9} 4$ |
| :--- | :--- | | Then look at the digit |
| :--- |
| to the right. Since 4 is |
| less than 5, the digit |
| 9 stays the same. |

On the number line, 68.94 is closer to \square than 69.0.

To the nearest tenth, 68.94 rounds to \square

EXAMPLE

FOLDABLES

ORGANIZE IT
Under Lesson 3-3 of your Foldable, explain how to round $\$ 125.657$ to the nearest cent.

Homework Assignment

Exercises:

3-4 Estimating Sums and Differences

EXAMPLES Use Estimation to Solve Problems

Main Idea

- Estimate sums and differences of decimals.

POPULATION The table below shows the population of the American colonies in 1770.

Colony	Population (thousands)	Colony	Population (thousands)	
Connecticut	183.9	New York	162.9	
Delaware	35.5	North Carolina	197.2	
Georgia	23.4	Pennsylvania	240.1	
Maryland	202.6	Rhode Island	58.2	
Massachusetts	235.3	South Carolina	124.2	
New Hampshire	62.4	Virginia	447.0	
New Jersey	117.4			

Source: The World Almanac
(1) Estimate the total population of North Carolina and South Carolina.

Round each number to the nearest hundred for easier adding.

There were about \square thousand people in North Carolina and South Carolina.

2 Estimate how many more people lived in Rhode Island than in Georgia in 1770.

Round each number to the nearest ten for easier subtracting.

There were about 40 thousand more people.

ORGANIZE IT

Under Lesson 3-4 of your Foldable, describe a situation in which you estimated a decimal sum or difference.

Check Your Progress
Refer to the table that shows the population of the American colonies in 1770.
a. Estimate the total number of people in Pennsylvania and New Jersey in 1770.

b. Estimate how many more people were in Massachusetts than in Connecticut.

BUILD YOUR VOGABULARY (page 56)

Clustering is an estimation method in which a group of numbers that are \square in value are \square to the same number.

EXAMPLE

3 TEST EXAMPLE Sid feeds a vitamin-water solution to his guinea pigs. The table shows the amount of solution the guinea pigs drank over a period of four days this week. Which is the closest to the amount of solution the guinea pigs drank?

Amount of Vitamin-Water Solution Guinea Pigs Drink Each Day	
Day	Amount (ounces)
Monday	21.8
Tuesday	19.1
Wednesday	18.9
Thursday	22.0

A 40 ounces
B 60 ounces
C 80 ounces
D 100 ounces

Read the Item

The addends are clustered around \square Round each decimal
to \square
$21.8 \longrightarrow 20$
$19.1 \longrightarrow 20$
$18.9 \longrightarrow 20$
$22.0 \longrightarrow 20$

Solve the Item

Multiplication is repeated addition. So, a good estimate is

Write It

When should you use clustering to estimate?
\qquad

Check Your Progress

MULTIPLE CHOICE During the month of February, Jonathon spent $\$ 14.78$ on gasoline the first week, $\$ 15.35$ on gasoline during the second week, $\$ 15.94$ on gasoline during the third week, and $\$ 14.07$ on gasoline during the fourth week. Which is closest to the total amount Jonathon spent on gasoline during February?
F $\$ 35$
G $\$ 50$
H $\$ 60$
J \$100
\square

BUILD YOUR VOGABULARY (page 56)
When you use front-end estimation, you \square the values of the digits in the front place.

EXAMPLE Use Front-End Estimation

4. Estimate $14.8+55.9$ using front-end estimation.

Using front-end estimation, $14.8+55.9$ is about

Check Your Progress
Estimate $32.7+65.1$ using front-end estimation.

3-5 Adding and Subtracting Decimals

EXAMPLES Add and Subtract Decimals

Main IDEA

- Add and subtract decimals.

Review It

Explain how to estimate the sum of two decimals using rounding. (Lesson 3-4)
\qquad
\qquad
\qquad
\qquad
(1) Find the sum of $\mathbf{7 5 . 6}$ and 21.3.

Estimate $75.6+21.3 \approx 76+\square$ or $\square \longleftarrow$
75.6 Line up the decimal points.
$+21.3$
\square

Compare the answer to the estimate. The answer is reasonable.

The sum of 75.6 and 21.3 is

2 Find $10.756-6.238$.
Estimate $10.756-6.238 \approx \square-6$ or \square
10.756 Line up the decimal points.
-6.238

So, $10.756-6.238=$ \square
Check for Reasonableness: $4.518 \approx 5$

Check Your Progress

a. Find the sum of 34.6 and 53.2.

b. Find 24.758 - 18.315.

EXAMPIE Annex Zeros

WRITE IT

Explain in your own words how to find the difference between a whole number and a decimal.
\qquad
\qquad
\qquad
\qquad

FOLDABLES

ORGANIZE IT

Under Lesson 3-5 of your Foldable, write a few sentences explaining how adding and subtracting decimals is like adding and subtracting whole numbers.

Check Your Progress
Find $9-3.28$.

EXAMPL $=$

3 Find $8-1.74$.

Estimate 8-1.74 \square - \square or \square
8.00 Annex zeros so that both numbers have the -1.74 same place value.

So, $8-1.74=\square$. Check for Reasonableness: $6.26 \approx 6$
\square
4) WORLD RECORDS The table shows the diameters of three of the largest food items ever created. What is the difference, in meters, between the world's largest pizza and the largest pancake?

Largest Food Items		
Food	Country	Diameter (meters)
pizza	South Africa	37.4
pecan pie	United States	15.24
pancake	United Kingdom	15.01

Source: Guinness World Records

Estimate 37.4-15.01 \approx \square
\square or \square 37.40 Line up the decimal points. Annex a zero. -15.01
\square Subtract as with whole numbers.

The largest pizza is \square meters larger than the largest pancake.
Check for Reasonableness: $22.39 \approx 22$

Check Your Progress
MOVIES The local movie theater sells an average of 65.8 tickets on Thursdays and an average of 288.9 tickets on Saturdays. How many more tickets are sold on Saturdays?

EXAMPLE Evaluate an Expression

Review It

What is an algebraic expression? How do you evaluate an algebraic expression? (Lesson 1-5)
\qquad

Homework Assignment

Page(s):

Exercises:

ALGEBRA Evaluate $a-b$ if $a=10.75$ and $b=4.8$.
$a-b=10.75-4.8$ Replace a with 10.75 and b with 4.8.
Estimate $10.75-4.8 \approx \square-\square$ or \square
10.75

-4.80

Annex a

Subtract as with \square numbers.

The value is \square Check for Reasonableness: $5.95 \approx 6$

Check Your Progress

ALGEBRA Evaluate $m+n$ if $m=40.62$ and $n=29.51$.

3-6 Multiplying Decimals by Whole Numbers

EXAMPLES Multiply Decimals

Main Idea

- Estimate and find the product of decimals and whole numbers.
(1) Find 18.9×4.

METHOD 1 Use estimation.
Round 18.9 to \square.

33
18.9
$\times 4$

2 Find 0.56×7.

METHOD 2 Count decimal places.

EXAMPLES Annex Zeros in the Product

Foldables

ORGANIZE IT
Under Lesson 3-6 of your Foldable, write how to estimate the product of a whole number and a decimal. Include at least one example in which you must annex a zero in the product.

3 Find 3×0.016.

4) ALGEBRA Evaluate $\mathbf{5 g}$ if $\boldsymbol{g}=\mathbf{0 . 0 0 9 1}$.

Check Your Progress
a. Find 12.6×8.

c. Find 4×0.023.
d. Evaluate $3 x$ if

b. Find 0.83×4.

$$
x=0.0062
$$

EXAMPLE Multiply by $\mathbf{1 0 , 1 0 0}$, or 1,000

(5) MENTAL MATH Find $\mathbf{3 . 2 5} \times \mathbf{1 0 0}$.

Move the decimal point to the right the same number of zeros that are in 100 , or \square places.
$3.25 \times 100=3.25$ or
Homework Assignment

Page(s):
Exercises:

3-7 Multiplying Decimals

EXAMPLES Multiply Decimals

Main Idea

Multiply decimals by decimals.
(1) Find 8.3×2.9.

Estimate $8.3 \times 2.9 \longrightarrow$
 \times \square or \square
 166

The product is
 Compared to the estimate, the product is reasonable.

2 Find 0.12×5.3.
FOLDABLES

ORGANIZE IT

Under Lesson 3-7 of your Foldable, outline the steps for multiplying decimals.

The product is \square Compared to the estimate, the product is reasonable.

EXAMPLE Evaluate an Expression

(3) ALGEBRA Evaluate 6.8r if $\boldsymbol{r}=\mathbf{0 . 9 2}$.

Remember It

There are several ways to show multiplication. The expression $6.8 r$ means $6.8 \times r$.

552

Write It

How would you find the number of decimal places for the product of a number with two decimal places and a number with three decimal places?
\qquad
\qquad
\qquad
\qquad

Check Your Progress

Multiply.

a. 3.8×2.3
b. 0.31×2.9

c. Evaluate $2.9 w$ if $w=0.046$.

EXAMPLE

4. MONEY Carmen earns $\$ 4.60$ an hour working part-time as a painter's assistant. She worked a total of $\mathbf{1 5 . 7 5}$ hours one week. How much money did Carmen earn?
Estimate $15.75 \times 4.6 \longrightarrow \square \times \square$ or \square

15.75 $\times 4.60$	\longleftarrow	two decimal places
$\frac{94500}{}$	two decimal places	
$\frac{6300}{72.4500}$	\longleftarrow	The product has four decimal places. You can drop the two zeros at the end because $72.4500=72.45$.

Carmen earned \square

Check Your Progress

MONEY Susan earns $\$ 5.80$ an hour working at a local video store. She worked a total of 28.25 hours one week. How much money did she earn?

Homework Assignment

3-8 Dividing Decimals by Whole Numbers

EXAMPLE Divide a Decimal by a 1-Digit Number

Main Idea

Divide decimals by whole numbers.
(1) Find $45.9 \div 3$.

$-\frac{3}{15}$
$-\frac{15}{09}$
$-\frac{-9}{0}$
$45.9 \div 3=\square$. Compared to the estimate, the quotient is reasonable.

EXAMPLE Divide a Decimal by a 2-Digit Number

Organize IT

Under Lesson 3-7 of your Foldable, describe where to place the decimal point when dividing a decimal by a whole number.

2 Find $8.69 \div 22$.
Estimate $10 \div 20=0.5$

$2 2 \longdiv { 8 . 6 9 0 }$

$8.69 \div 22=\square$. Compared to the estimate, the quotient is reasonable.

Check Your Progress
Divide.
a. $50.8 \div 4$
b. $8.64 \div 24$
\square

EXAMPLE

3 TEST EXAMPLE During a science experiment, Nita measured the mass of four unknown samples. Her data table is shown below.

Sample 1	6.23 g
Sample 2	5.81 g
Sample 3	5.93 g
Sample 4	6.47 g

What is the mean mass in grams of the four samples?

Read the Item

To find the mean mass of the four samples, add to find the total mass then divide the sum by 4 .

Solve the Item
$6.23+5.81+5.93+6.47=\square$

$4 \longdiv { 2 4 . 4 4 }$
-24
-04
$-\frac{04}{0}$
Place the decimal point.

Homework

 AssignmentPage(s):
Exercises:
The mean mass of the four samples is

Check Your Progress

 is $\$ 45.60$, find the cost each person will pay in dollars.| | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \bigcirc | \bigcirc | \bigcirc | \bigcirc | | \bigcirc | \bigcirc |
| (1) | (1) | (1) | (1) | | © | (1) |
| (2) | (2) | (2) | (2) | | (2) | (2) |
| (3) | (3) | (3) | (3) | | (3) | (3) |
| (1) | (1) | (1) | (1) | | (1) | (1) |
| © | (5) | (5) | (5) | | © | © |
| © | © | © | © | | \bigcirc | ® |
| - | - | (1) | - | | - | - |
| (8) | (8) | (8) | ® | | © | © |
| © | (| (-) | (-) | | (-) | (-) |

Fill in the Grid

			6	1	1
\bigcirc	©	-	\bigcirc	\bigcirc	\bigcirc
(1)	(1)	(1)	©	\bigcirc	\bigcirc
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(1)	(1)	(1)	(1)	(4)	(1)
(3)	(5)	(3)	(3)	(3)	(5)
©	©	©	-	©	©
(1)	(1)	(1)	(1)	(1)	(2)
(8)	(8)	(8)	(8)	(8)	(8)
(\bigcirc	(0	(\bigcirc	((\bigcirc	(

\square grams.

GRIDDED RESPONSE

Mrs. Lindley's class is having a pizza party. The total cost of the pizzas is to be divided equally among 15 people. If the cost

3-9 Dividing by Decimals

EXAMPLE Divide by Decimals

Main Idea

Divide decimals by decimals.

(1) Find $59.4 \div 3.6$.

$3 6 \longdiv { 5 9 4 . 0 }$ Divide as with whole numbers.

Annex a zero to continue.

59.4 divided by 3.6 is \square. Compare to the estimate.

Remember It

You can check the solution to a division problem by multiplying the quotient by the divisor.

EXAMPLES Zeros in the Quotient and Dividend

(2) Find $8.1 \div \mathbf{0 . 0 5 4}$.

Place the decimal point.
$5 4 \longdiv { 8 1 0 0 }$.

Write a zero in the ones place of the quotient because $0 \div 54=$ \square
So, $8.1 \div 0.054=$ \square
Check $\square \times 0.054=8.1$

3 Find $0.052 \div 1.3$.

FOLDABLES

Organize IT

Under Lesson 3-9 of your Foldable, compare and contrast dividing a decimal by a decimal and dividing a decimal by a whole number.

$1 . 3 \longdiv { 0 . 0 5 2 }$

$1 3 \longdiv { 0 . 5 2 }$
$-{ }_{-05}$
$-\frac{00}{52}$
$-\frac{52}{0}$
So, $0.052 \div 1.3$ is \square.
Check \square $\times 1.3=0.052$
a. $81.9 \div 0.63$
b. $0.072 \div 1.2$

Remember It
 When you are rounding to the nearest tenth, you can stop dividing when there is a digit in the hundredths place.

Homework

 AssignmentPage(s):
Exercises:

3-10 Problem-Solving Investigation: Reasonable Answers

EXAMPLE Determine a Reasonable Answer

MAIN IDEA

Determine reasonable answers to solve problems.

Homework
 Assicnment

BIRDS The table below shows the wingspans of some North American birds of prey. What is the wingspan of the Peregrine falcon in feet?

Birds of Prey	Wingspan (in.)
Bald Eagle	54
Peregrine Falcon	40
Great Horned Owl	55
Barn Owl	44

UNDERSTAND You know the length in inches. You need to find a reasonable length in \square

PLAN
12 inches equals \square foot. So, estimate the quotient of 40 and 12 to find a reasonable length.

SOLVE

A reasonable length is

CHECK

$$
\text { Since } 40 \div 12 \text { or } \frac{40}{12}=\frac{10}{3} \text { and } \frac{10}{3}=3 \frac{1}{3}
$$

the answer of \square is reasonable.

Check Your Progress

FISH A sailfish can swim 68 miles per hour. Which is a more reasonable estimate for the number of miles a sailfish could travel in 15 minutes: 17 or 25? Explain your reasoning.

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 3 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 3, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 56) to help you solve the puzzle.

3-1

Representing Decimals

1. Three hundred fifty-two and two tenths is a number written
in \square
2. Write forty-six and nine hundredths in standard form and in expanded form.

Standard Form: \square
Expanded Form: $(\square \times 10)+(\square \times 1)+(\square \times 0.1)$

$$
+(\square \times 0.01)
$$

3-2

Comparing and Ordering Decimals

3. Describe each step to compare 63.41 and 63.4 . Then write $>$ or $<$.

the digits differ. Compare the \square
So, 63.41 \square 63.4.

3-3

Rounding Decimals
Complete each sentence describing how to round a decimal.
4. First, underline \square to be rounded.
5. Then, look at the digit to the \square of the place being rounded.
6. If the digit is 4 or less, the underlined digit
\square
7. If the digit is 5 or greater, add \square to the underlined digit.

Round each decimal to the indicated place-value position.
8. 0.3045 ; thousandths

9. 26.1345 ; hundredths

3-4

Estimating Sums and Differences
10. Below is a difference estimated by rounding to the nearest tens.

Describe in words each step shown.

11. Below is a difference estimated by using front-end estimation.

Describe in words the step shown.

$$
\begin{array}{r}
68.5 \longrightarrow \begin{array}{r}
60.0 \\
-34.9
\end{array} \longrightarrow \frac{-30.0}{30.0}
\end{array}
$$

12. Below is a sum estimated by using clustering. Describe in words each step shown.

3-5

Adding and Subtracting Decimals

13. Explain how to find $35.6-4.2$.

Add or subtract.

14. $57.1+21.89$
15. $48-12.36$

16. $75-0.104$

17. Evaluate $a+b$ if $a=3.968$ and $b=56.47$.

3-6

Multiplying Decimals by Whole Numbers

Multiply.

18. 9×4.3

19. 14×25.01

20. 7×0.004

21. What does it mean to annex zeros in the product? Why is it sometimes necessary to do this?
\square

3-7

Multiplying Decimals
Match each product with an answer on the right. An answer may be used more than once.
22. 50.4×0.6 \square a. 302.4
23. 5.04×60 \square b. 30.24
24. 0.504×0.6 \square c. 0.3024
25. JELLYBEANS What is the cost of 1.2 pounds of jellybeans if each pound costs $\$ 2.05$ per pound? \square

3-8

Dividing Decimals by Whole Numbers

Complete each division problem.
26.

27. \square
$2 5 \longdiv { 8 . 7 5 }$

-125
28. HAMSTERS Find the mean of the following weights of hamsters, rounded to the nearest tenth: $20.3 \mathrm{oz} ., 21.2 \mathrm{oz} ., 24.6 \mathrm{oz} ., 0.9 \mathrm{oz}$., 22.7 oz.
\square

3-9

Dividing by Decimals

Divide.

29. $1 . 2 \longdiv { 8 4 . 5 4 }$

30. $5 8 . 3 6 \longdiv { 1 4 5 . 9 }$

31. $7 . 2 \longdiv { 4 8 . 9 6 }$
\square

3-10

Problem-Solving Investigation: Reasonable Answers

Determine a reasonable answer.

32. BOOKS Katie has three books in her backpack. Which is a reasonable estimate for the mass of the three books in Katie's backpack: 60 grams or 6 kilograms? Explain your reasoning.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 3.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 3 Practice Test on page 191 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 3 Study Guide and Review on pages 186-190 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 3 Practice Test on page 191.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 3 Foldables.
- Then complete the Chapter 3 Study Guide and Review on pages 186-190 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 3 Practice Test on page 191.

Fractions and Decimals

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with one sheet of $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ paper.

STEP 1 Fold top of paper down and bottom of paper up as shown.

STEP 2 Label the top fold Fractions and the bottom fold Decimals.

STEP 3

Unfold the paper and draw a number line in the middle of the paper.

STEP 9 Label the fractions and decimals as shown.

NOTE-TAKING TIP: As you read the chapter, take notes about specific examples in your daily life involving fractions and decimals. For example, you might write about how decimals help you keep track of money.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 4.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
common factor			
common multiples			
coordinate plane			
equivalent fractions			
graph			
greatest common factor (GFC)			
improper fraction			
least common denominator (LCD) (LCM)			

Vocabulary Term	Found on Page	Definition	Description or Example
mixed numbers			
multiple			
ordered pair			
origin			
proper fraction			
rational number			
simplest form			
Venn diagram			
x-axis			
x-coordinate			
y-axis			
y-coordinate			

4-1 A Plan for Problem Solving

MAIN IDEA

- Find the greatest common factor of two or more numbers.

BUILD YOUR YOCABULARY (pages 86-87)

Venn diagrams use overlapping circles to show \square elements. Factors that are shared by
\square or more numbers are called common factors.

The \square of the common factors of two or more numbers is the greatest common factor (GCF) of the numbers.

EXAMPLE Find the GCF by Listing Factors

(1) Find the GCF of 36 and 48.

First make an organized list of the factors for each number.
$36: 1 \times 36,2 \times 18,3 \times 12,4 \times 9,6 \times 6$
$\rightarrow \quad 1,2,3,4,6,9,12,18,36$
$48: 1 \times 48,2 \times 24,3 \times 16,4 \times 12,6 \times 8$
$\rightarrow \quad 1,2,3,4,6,8,12,16,24,48$
The common factors are \square and the
greatest of these is \square
So, the greatest common factor or GCF of 36 and 48 is \square

Check Your Progress Find the GCF of 45 and 75.

EXAMPLE Find the GCF by Using Prime Factors

2 Find the GCF of 52 and 78.
METHOD 1 Write the prime factorization.

Remember It

Prime factorization is writing a composite number as a product of prime numbers.
 So, the GCF of 52 and 78 is
\square
\square
\square

Check Your Progress

Find the GCF of 64 and 80.

Write IT

Why is the greatest common factor of two prime numbers always 1 ?
\qquad
\qquad
\qquad

Homework

Assignment

EXAMPLES

SALES Anna sells bags of different kinds of cookies. She made $\$ 27$ selling bags of peanut butter cookies, $\$ 18$ from chocolate chip cookies, and $\$ 45$ selling bags of oatmeal cookies. Each bag of cookies costs the same amount. What is the most that Anna could charge for each bag of cookies?

factors of 45 : \square
The GCF of 18,27 , and 45 is \square So, the most she could charge for each bag is \square

How many bags could Anna have sold if each bag costs $\$ 9$?
Anna has a total of $\$ 27+\$ 18+\$ 45$ or \square. So, the number of bags sold is $\$ 90 \div \$ 9$ or \square bags.

Check Your Progress

CANDY Sarah made boxes of different kinds of candy for a school fund raiser. She made $\$ 24$ selling boxes of hard candy, $\$ 40$ from taffy, and $\$ 64$ from chocolates. Each box of candy costs the same amount.
a. What is the most that Sarah could charge for each box of candy?
\square
b. How many boxes could Sarah have sold if each box costs $\$ 8$?
\square

4-2 Simplifying Fractions

MAIN IdeA

- Express fractions in simplest form.

BUILD YOUR VOGABULARY (pages 86-87)

Equivalent fractions are fractions that have the
\square

EXAMPLES Write Equivalent Fractions

Replace each \quad with a number so the fractions are equivalent.
(1) $\frac{6}{13}=\frac{\square}{52}$

Since $13 \times 4=52$, multiply the numerator and denominator by 4 .
$\frac{6}{13}=\frac{\underbrace{4}_{5}}{52}$, so $\frac{6}{13}=\frac{\square}{52}$.
(2) $\frac{24}{40}=\frac{3}{\square}$

WRITE IT

Is it possible to simplify a fraction if the numerator is a prime number? Explain.
\qquad
\qquad b. $\frac{48}{60}=\frac{4}{\square}$

BUILD YOUR YOGABULARY (pages 86-87)

A fraction is in simplest form when the GCF of the numerator and denominator is 1.

EXAMPLE Write Fractions in Simplest Form

3 Write $\frac{14}{42}$ in simplest form.

KEy Concept

Simplest Form To write a fraction in simplest form, you can either:

- divide the numerator and denominator by common factors until the only common factor is 1 , or
- divide the numerator and denominator by the GCF.

FOLDABLES

Organize it

Under the fractions tab of your Foldable, summarize how to express fractions in their simplest forms.

METHOD 1 Divide by common factors.
A common factor of 14 and 42 is 2 . A common factor of 7 and 21 is 7 .

Since 1 and 3 have no common factor greater than 1, the fraction \square is in simplest form.

METHOD 2 Divide by the GCF.
factors of 14: \square
factors of 42: \square
The GCF of 14 and 42 is \square

Divide the numerator and
denominator by the GCF, \square

Since the GCF of 1 and 3 is 1 , the fraction \square is in simplest form.

Check Your Progress Write $\frac{21}{35}$ in simplest form.
\square
4) GYMNASTICS Lin practices gymnastics 16 hours each week. There are 168 hours in a week. Express the fraction $\frac{16}{168}$ in simplest form.

The GCF of 16 and 168 is \square

So, Lin practices gymnastics for or 2 out of every 21 hours of the week.

Check Your Progress

TRANSPORTATION There are 244 students at Longfellow Elementary School. Of those students, 168 ride a school bus to get to school. Express the fraction $\frac{168}{244}$ in simplest form.

4-3 Mixed Numbers and Improper Fractions

MAIN IDEA

- Write mixed numbers as improper fractions and vice versa.

FOLDABLES

ORGANIZE IT

Summarize how mixed numbers can be written as improper fractions and improper fractions can be written as mixed numbers under the fraction tab of your Foldable.

BUILD YOUR VOGABULARY (pages 86-87)

A mixed number indicates the sum of a

A proper fraction is a fraction in which the numerator is
\square the denominator.

An improper fraction is a fraction in which the numerator is
\square or equal to the denominator.

EXAMPLE Mixed Numbers as Improper Fractions

ASTRONOMY If a spaceship lifts off the Moon, it must travel at a speed of $2 \frac{2}{5}$ kilometers per second in order to escape the pull of the Moon's gravity. Write this speed as an improper fraction.

Remember It

Improper fractions that are equal to 1 , such as $\frac{1}{1}$ and $\frac{9}{9}$, cannot be written as mixed numbers.

Check Your Progress
EXERCISE As part of a regular exercise program, Max walks $2 \frac{3}{8}$ miles each morning. Write this distance as an improper fraction.

EXAMPLE Improper Fractions as Mixed Numbers

2 Write $\frac{23}{4}$ as a mixed number.
Divide 23 by 4 .

-20
3

So, $\frac{23}{4}=\square$

Check Your Progress Write $\frac{23}{3}$ as a mixed number.

4-4 Problem-Solving Investigation: Make an Organized List

EXAMPLE

MAIN IDEA

- Solve problems by making an organized list.

Homework
 Assignment

BOTANY Marcus is planning an experiment to determine the best growing conditions for a certain type of plant. The plants will be kept in high, medium, or low sunlight. They will be given either a large, medium, or small amount of water. How many plants should Marcus buy in order to test each possible combination of growing conditions?

UNDERSTAND
You know there are \square different amounts of sunlight and
 different amounts of water. You need to know the number of possible combinations of these growing conditions.

PLAN Make a list of all the different possible combinations. Use HS for high sun, MS for medium sun, LS for low sun, LW for large water, MW for medium water, and SW for small water.

SOLVE

There are \square different combinations of growing conditions.

CHECK Check the answer by seeing if each condition is accounted for three times in the list of combinations.

Check Your Progress GYM BAGS The basketball

 cheerleaders are ordering new gym bags. They can choose from two styles in either blue or black with white, yellow, or gold lettering. How many different bags are there?

4-5 Least Common Multiple

Main Idea

- Find the least common multiple of two or more numbers.

BUILD YOUR VOGABULARY (pages 86-87)

A multiple of a number is the \square of the number and any \square

Multiples of two or more \square are common multiples.

The \square number other than 0 that is a multiple of two or more whole numbers is the least common multiple (LCM) of the numbers.

EXAMPLE Identify Common Multiples

(1) Identify the first three common multiples of 3 and 9.

First, list the multiples of each number. multiples of 3 :
\square
multiples of 9 :
\square
Notice that 9,18 , and 27 are multiples common to both 3 and 9 . So, the first 3 common multiples of 3 and 9 are

Check Your Progress

Identify the first three common multiples of 2 and 7.

EXAMPLE Find the LCM

2 Find the LCM of 8 and 18.

Review It

Why is the number 1 neither prime nor composite? (Lesson 1-2)
\qquad
\qquad

Homework
 Assignment

EXAMPLE

3 MONEY Liam, Eva, and Brady each have the same amount of money. Liam has only nickels, Eva has only dimes, and Brady has only quarters. What is the least amount of money that each of them could have?
Find the LCM using prime factors.

The least amount of money that each of them could have is
\square

Check Your Progress CANDY Michael, Logan, and Diego each have bags of candy that have the same total weight. Michael's bag has candy bars that each weigh 4 ounces, Logan's bag has candy bars that each weigh 6 ounces, and Diego's bag has candy bars that each weigh 9 ounces. What is the least total weight that each of them could have?

4-6 Comparing and Ordering Fractions

Main IdeA

- Compare and order fractions.

BUILD YOUR VOGABULARY (pages 86-87)

The least common denominator (LCD) of two

the denominators.

EXAMPLES Compare Fractions and Mixed Numbers

Replace each \bigcirc with $<,>$, or $=$ to make a true sentence.
(1) $\frac{8}{21} \bigcirc \frac{3}{7}$

Step 1 Find the LCD; that is, the LCM of the denominators. multiples of 7 :
\square
multiples of 21 :

The LCM of 21 and 7 is \square So, the LCD is \square

Step 2 Write an equivalent fraction with a denominator of
\square for each fraction.

Step $3 \frac{8}{21} \square \frac{9}{21}$ since $8<9$. So, $\frac{8}{21} \square \frac{3}{7}$.

ORGANIZE IT

Summarize ways you can order fractions under the fractions tab of your Foldable. Include some examples.

2) $2 \frac{1}{3} \bigcirc 2 \frac{2}{6}$

Since the whole numbers are the same, compare $\frac{1}{3}$ and $\frac{2}{6}$.
Step 1 The LCM of the denominators, 3 and 6, is 6. So, the LCD is \square
Step 2 Write an equivalent fraction with a denominator of 6 for each fraction.

Step $3 \frac{2}{6} \square \frac{2}{6}$, since $2=2$. So, $2 \frac{1}{3} \square 2 \frac{2}{6}$.

Check Your Progress
Replace each \bigcirc with $<,>$, or $=$ to make a true sentence.
a. $\frac{13}{18} \bigcirc \frac{5}{6}$
b. $4 \frac{3}{4} \bigcirc 4 \frac{2}{5}$

EXAMPLE Order Fractions

3 Order the fractions $\frac{2}{3}, \frac{4}{5}, \frac{8}{15}$, and $\frac{3}{5}$ from least to greatest. The LCD of the fractions is \square So, rewrite each fraction with a denominator of \square

Since $\frac{8}{15}<\frac{9}{15}<\frac{10}{15}<\frac{12}{15}$, the order of the original fractions from least to greatest is \square
from least to greatest.

EXAMPLE

4 TEST EXAMPLE According to the table, how is most land in the United States used?

A as arable land
B as permanent pastures
\mathbf{C} as forests and woodlands
D B and C are equal

Read the Item You need to compare the fractions.

Solve the Item Rewrite the fractions with the LCD, 100.

So,

Check Your Progress

MULTIPLE CHOICE According to the survey data, what did most people say should be done with the length of the school year?
\mathbf{F} lengthen the school year
G shorten the school year
H keep the length the same
J cannot tell from the data

How long should the school year be?	
lengthen the school year	$\frac{9}{25}$
shorten the school year	$\frac{7}{20}$
keep the length the same	$\frac{29}{100}$

Homework Assignment

Page(s):
Exercises:

4-7 Writing Decimals as Fractions

Main IdeA

- Write decimals as fractions or mixed numbers in simplest form.

KEy Concept

Write Decimals as

Fractions To write a decimal as a fraction, you can follow these steps.

- Identify the place value of the last decimal place.
- Write the decimal as a fraction using the place value as the denominator. If necessary, simplify the fraction.

BUILD YOUR VOGABULARY (pages 86-87)

Any number that can be written as a \square is a rational number.

EXAMPLES Write Decimals as Fractions

Write each decimal as a fraction in simplest form.

(1) 0.4

The place-value chart shows that the place value of the last decimal place is

\square So, 0.4 means \square

Say four tenths.

Simplify. Divide the numerator and denominator by the GCF,

20.38

Place-Value Chart							
1,000	100	10	1	0.1	0.01	10.001	0.0001
		$\underset{\Phi}{\mathscr{D}}$	$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$				
O	O	O	O	3	8	O	O

$0.38=\square$
Say thirty-eight hundredths.

Simplify. Divide by the GCF, \square
30.264

FOLDABLES

Organize It
Use the space under the Decimals tab of your Foldable to summarize how to write a decimal as a fraction.

Remember It

In a decimal, the digits to the left of the decimal point represent whole numbers. The digits to the right of the decimal point represent fractions.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Write Decimals as Mixed Numbers

4 RAINFALL In 1955, Hurricane Diane moved through New England and produced one of the region's heaviest rainfalls in history. In a 24 -hour period, 18.15 inches of rain were recorded in one area. Express this amount as a mixed number in simplest form.

Say eighteen and fifteen hundredths.

Simplify.

Check Your Progress

Write each decimal as a fraction in simplest form.
a. 0.8

b. 0.64

c. 0.824
d. 23.56

4-8 Writing Fractions as Decimals

EXAMPLES Write Fractions as Decimals

Main IDEA

- Write fractions as decimals.

FOLDABLES

Organize IT

Summarize the process for writing a fraction as a decimal under the Fractions tab of your Foldable.

Write each fraction as a decimal.

(1) $\frac{7}{10}$

Since the denominator is 10 , write $\frac{7}{10}$ as a decimal.
$\frac{7}{10}=\square \quad$ Read 0.7 as seven tenths.
$2 \frac{1}{4}$
Since 4 is a factor of 100 , write an equivalent fraction with a denominator of 100 .

Since $4 \times 25=100$, multiply the numerator and denominator by 25 .

Read 0.25 as twenty-five hundredths.
$\frac{3}{8}$
METHOD 1 Use paper and pencil.

METHOD 2 Use a calculator.
$3 \div 8$ ENTER 0.375
Therefore, $\frac{3}{8}=$ \square

Check Your Progress
Write each fraction as a decimal.
a. $\frac{3}{10}$
\square
b. $\frac{9}{20}$

c. $\frac{5}{8}$

EXAMPLE Mixed Numbers as Decimals

4) BEVERAGES At a meeting, people drank 25 bottles of water. The water came in packs of 8 . This makes $3 \frac{1}{8}$ eight-packs. Write this number as a decimal. $3 \frac{1}{8}=\square+\square \begin{aligned} & \text { Definition of a mixed } \\ & \text { number. }\end{aligned}$ $=3+1 \overleftarrow{\div} 8$ ENTER $\quad \begin{aligned} & \text { Use a calculator to write } \frac{1}{8} \\ & \text { as a decimal. }\end{aligned}$

Read 3.125 as three and one hundred twenty-five thousandths.

People at the meeting drank \square eight-packs of bottled water.

Check Use a calculator. $3 \square 1 \div 8$ ENTER $3.125 \checkmark$

Check Your Progress
PAPER Lilly's school used $5 \frac{4}{25}$ boxes of paper copying newsletters to be distributed to each student in the school. Write this number as a decimal.

4-9 Algebra: Ordered Pairs and Functions

BUILD YOUR VOGABULARY (pages 86-87)

Main IDEA

- Use ordered pairs to locate points and organize data.

The coordinate plane is formed when two intersect at their zero points. This point is called the origin. The \square number line is the \boldsymbol{x}-axis and the
\square number line is the \boldsymbol{y}-axis.

Ordered pairs name points on the coordinate plane. The number in an ordered pair is the \boldsymbol{x}-cooordinate, and the \square number is the \boldsymbol{y}-coordinate.

EXAMPLE Name Points Using Ordered Pairs

(1) Write the ordered pair that names point S.

Step 1 Start at the origin. Move right along the \square until you are under point S. The x-coordinate of the ordered pair is \square

Step 2 Now move up until you reach point S. The y-coordinate is \square
So, point S is named by the ordered pair \square

Check Your Progress
Write the ordered pair that names point E.

BUILD YOUR VOGABULARY (pages 86-87)
To graph a point means to place a dot at the point named by an \square

EXAMPLIS Graphing Ordered Pairs

(3) Graph the point $T(2,2)$.

- Start at the origin.
- Move \square units to the right on the x-axis.
- Then move \square units up to locate the point.
- Draw a dot and label the dot \square
3 Graph the point $U\left(1 \frac{1}{2}, 0\right)$.
- Start at the origin.
- The value $1 \frac{1}{2}$ is halfway between \square and \square So on the x-axis, move halfway between \square and \square

- Move \square units on the y-axis.
- Draw a dot and label the dot \square

Check Your Progress

Graph and label each point on a coordinate plane.
a. $F(0,1)$
b. $G\left(2,2 \frac{1}{2}\right)$
c. $H(3,1.5)$

EXAMPLES

4
PETS Amelia feeds her dog, Buster, 2 cups of food each day. Amelia made this table to show how much food Buster eats for $1,2,3$, and 4 days. List this information as ordered pairs (days, food).

The ordered pairs are

Days	Food (cups)
1	2
2	4
3	6
4	8

\square
(5) Graph the ordered pairs in Example 3. Then describe the graph.

The points

Check Your Progress
 TABLES

Jordan is planning to have a party. The table shows the number of guests he can invite if he sets up $1,2,3$, and 4 tables. List this information as ordered pairs (tables, guests). Graph the ordered pairs. Then describe the graph.

Tables	Guests
1	4
2	8
3	12
4	16

Homework Assignment

Page(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 4 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 4, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 86-87) to help you solve the puzzle.

4-1
 Greatest Common Factor

For Exercises 1-2, use the Venn diagram.

1. Identify the common factors of 42 and 56 .

2. What is the greatest common factor of 42 and 56 ?

Factors of 42
Factors of 56

\square
Find the GCF of each set of numbers.
3. 24,80

4. 52,78

5. $30,36,54$

Simplifying Fractions

Replace each \square with a number so the fractions are equivalent.
6. $\frac{2}{3}=\frac{\square}{9}$

7. $\frac{5}{12}=\frac{\square}{48}$

8. $\frac{7}{9}=\frac{\square}{27}$

Match each fraction to its equivalent fraction in simplest form.
9. $\frac{9}{21} \square$
10. $\frac{12}{15}$

11. $\frac{12}{18}$

12. $\frac{10}{90}$

13. $\frac{14}{16}$

14. $\frac{15}{21}$ \square
a. $\frac{4}{5}$
e. $\frac{2}{3}$
b. $\frac{5}{7}$
f. $\frac{1}{9}$
c. $\frac{2}{9}$
g. $\frac{7}{8}$
d. $\frac{3}{7}$

4-3

Mixed Numbers and Improper Fractions

Underline the correct term to complete each sentence.
15. The number $1 \frac{7}{8}$ is (a mixed number/an improper fraction).
16. The number $\frac{13}{5}$ is (a mixed number/an improper fraction).

Write each mixed number as an improper fraction.
17. $3 \frac{5}{6}$

18. $9 \frac{2}{7}$

19. $4 \frac{5}{8}$

4-4

Problem-Solving Investigation: Make an Organized List

Solve. Use the make an organized list strategy.
20. BOOKS Reymundo has three books in a series. In how many ways can he arrange these books on his bookshelf?

4-5

Least Common Multiple

Complete.
21. Numbers that are multiples of both 4 and 8 are
\square
22. The least number that is a multiple of both 4 and 8 is the
\square

4-6

Comparing and Ordering Fractions

Write $<,>$, or $=$ to make a true sentence.
23. $\frac{2}{5} \square \frac{6}{15}$
24. $\frac{1}{3} \square \frac{4}{9}$
25. $\frac{5}{8} \square \frac{4}{7}$
26. How is LCM related to LCD?
\square

4-7

Writing Decimals as Fractions
Match each decimal to the equivalent fraction in simplest form.
27. 0.5 \square $\begin{array}{ll}\text { a. } \frac{1}{2} & \text { e. } \frac{7}{20}\end{array}$
28. 3.08

b. $3 \frac{1}{4}$
f. $3 \frac{2}{25}$
29. 0.35

c. $3 \frac{2}{5}$
g. $\frac{18}{25}$
30. 3.25

31. 0.72 \square
32. The decimal 0.6 is written as a fraction $\frac{6}{10}$. Why is the denominator of the fraction 10 ?

4-8

Writing Fractions as Decimals

Write each fraction or mixed number as a decimal.
33. $\frac{5}{8}$ \square
34. $\frac{9}{12}$ \square
35. $2 \frac{7}{40}$ \qquad
36. Ms. Huang's class asked students about their favorite kind of pizza. Pepperoni was the favorite of $\frac{3}{8}$ of the students. Write this fraction as a decimal.
\square

4-9

Algebra: Ordered Pairs and Functions

37. Label the coordinate plane.

Use the coordinate plane to name the ordered pair for each point.
38. C

39. D

40. F \square

41. G \square
42. Describe how to graph point $S(10,4)$.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 4.

Check the one that applies. Suggestions to help you study are given with each term.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 4 Practice Test on page 243 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 4 Study Guide and Review on pages 238-242 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 243.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 4 Foldable.
- Then complete the Chapter 4 Study Guide and Review on pages 238-242 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 4 Practice Test on page 243.

5

Operations with Fractions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with two sheets of $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$ paper, four index cards, and glue.

STEP 1) Fold one sheet in in half widthwise.

STEP 21 Open and fold the bottom to form a pocket. Glue edges.

5TEP 3) Repeat Steps 1 and 2. Glue the back of one piece to the front of the other to form a booklet.

STEP 4 Label each left-hand pocket What I Know and each right-hand pocket What I Need to Know. Place an index card in each pocket.

NOTE-TAKING TIP: As you read the chapter, write examples of new concepts on note cards. As you learn the material on the note cards, you will have proof of how much you have learned.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 5. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
compatible numbers			
like fractions			
reciprocal			
unlike fractions			

5-1 Rounding Fractions and Mixed Numbers

EXAMPLE Round to the Nearest Half

Main IDEA

- Round fractions and mixed numbers.
(1) Round $6 \frac{4}{5}$ to the nearest half.

The numerator of $\frac{4}{5}$ is almost as large as the denominator.
So, $6 \frac{4}{5}$ rounds to \square

Check Your Progress
Round $3 \frac{9}{11}$ to the nearest half.

EXAMPL: Measure to the Nearest Half

2 Find the length of the line segment to the nearest half inch.

To the nearest half inch, the line segment is \square

Check Your Progress
Find the length of the segment to the nearest half inch.

EXAMPL:

3 DECORATING There is a $4 \frac{3}{4}$-foot gap between the entertainment center and a wall in a family's living room. Should the family purchase a 5 -foot wide bookshelf or a $4 \frac{1}{2}$-foot wide bookshelf? Explain your reasoning.
$4 \frac{3}{4}$ is less than \square. So, a \square wide bookshelf would be too large. Five feet is greater than $4 \frac{3}{4}$ feet. So, in order for the bookshelf to fit, the family should round $4 \frac{3}{4}$ down and buy the \square wide bookshelf.

Check Your Progress

COOKING Phyllis has a recipe that calls for $3 \frac{7}{8}$ cups of spaghetti sauce. Should she purchase a 4-cup jar of spaghetti sauce or a $3 \frac{1}{2}$-cup jar of spaghetti sauce for the recipe? Explain your reasoning.

5-2 Problem-Solving Investigation: Act It Out

EXAMPLE

MAIN IDEA

- Solve problems by acting them out.

Homework
 ASSIGNMENT

Page(s):

Exercises:

PIES Darnell and Ayana bought $8 \frac{1}{4}$ pounds of peaches.
Each pie requires $1 \frac{1}{3}$ pounds of peaches. How many pies can Darnell and Ayana make?
UNDERSTAND You know they have \square pounds of peaches
and each pie requires \square pounds. You need to determine how many pies they can make.

PLAN Using a scale, find or create something that weighs approximately $1 \frac{1}{3}$ pounds. Keep adding $1 \frac{1}{3}$-pound items to the scale until the total weight is as close to $8 \frac{1}{4}$ pounds as possible without going over.

SOLVE

$$
1 \frac{1}{3}+1 \frac{1}{3}+1 \frac{1}{3}+1 \frac{1}{3}+1 \frac{1}{3}+1 \frac{1}{3}=\square \mathrm{lb}
$$

Six $1 \frac{1}{3}$-pound items weigh \square lb
Seven $1 \frac{1}{3}$-pound items would weigh more than $8 \frac{1}{4}$ pounds, so they have enough peaches to make pies.

CHECK \quad Seven $1 \frac{1}{3}$-pound items would weigh $8+1 \frac{1}{3}$ or

of peaches, they do not have enough to make 7 pies.

Check Your Progress

LEMONADE Isabel plans to fill a pitcher that holds $7 \frac{2}{3}$ cups with lemonade. Each glass she will use to serve the lemonade holds $1 \frac{2}{5}$ cups. How many guests can she serve lemonade to if each guest has one glass full?

5-3 Adding and Subtracting Fractions with Like Denominators

Main Idea

- Add and subtract fractions with like denominators.

BUILD YoUR VoGABULARY (page 115)

Fractions with the same \square are called like fractions.

EXAMPLE Add Like Fractions

Key Concepts

Adding Like Fractions To add fractions with the same denominators, add the numerators. Use the same denominator in the sum.

Subtracting Like Fractions To subtract fractions with the same denominators, subtract the numerators. Use the same denominator in the difference.
(1) Find the sum of $\frac{3}{10}$ and $\frac{9}{10}$.

$$
\frac{3}{10}+\frac{9}{10}=\frac{\square}{10}
$$

Add the numerators.

Simplify.

Write the improper fraction as a mixed number.

EXAMPLE Subtract Like Fractions

2 Find $\frac{10}{12}-\frac{1}{12}$. Write in simplest form.

Subtract the numerators.

Simplify.

Check Your Progress

Add or subtract. Write in simplest form.
a. $\frac{3}{8}+\frac{7}{8}$
b. $\frac{17}{18}-\frac{5}{18}$

EXAMPL:

FOLDABLES

ORGANIZE IT

Use the note cards in your Foldable to record what you learn about adding and subtracting fractions with like denominators. As you learn the concepts, move the note cards from the Need to Know pocket to the Know pocket in your Foldable.

Homework

 AssignmentPage(s):
Exercises:

5-4 Adding and Subtracting Fractions with Unlike Denominators

MAIN IDEA

- Add and subtract fractions with unlike denominators.

BUILD YOUR VOGABULARY (page 115)

Unlike fractions are fractions with \square denominators.

EXAMPLE Add Unlike Fractions

(1) Find $\frac{3}{4}+\frac{1}{5}$.

The least common denominator of $\frac{3}{4}$ and $\frac{1}{5}$ is \square

Write the problem.

Rename using the LCD, 20.

EXAMPLE Subtract Unlike Fractions

2 Find $\frac{3}{5}-\frac{1}{6}$.
The least common denominator of $\frac{3}{5}$ and $\frac{1}{6}$ is \square
Write the Rename using Subtract the problem. the LCD, 30. fractions.

Check Your Progress
Add or subtract. Write in simplest form.
a. $\frac{1}{4}+\frac{2}{3}$
b. $\frac{5}{6}-\frac{3}{8}$

EXAMPLE

FOLDABLES

ORGANIZE IT

Record what you learn about adding and subtracting fractions with unlike denominators on the note cards in your Foldable. As you learn the concepts, move the note cards from the Need to Know pocket to the Know pocket in your Foldable.

3 PET ADOPTION Use the table to find the fraction of adopted dogs in one town that are either golden retrievers or mixed breed.

Find $\frac{7}{25}+\frac{2}{5}$.
The least common denominator
of $\frac{7}{25}$ and $\frac{2}{5}$ is \square.

Adopted Dogs	
Breed	Fraction
German Shepherd	$\frac{3}{20}$
Golden Retriever	$\frac{7}{25}$
Jack Russell Terrier	$\frac{1}{20}$
Poodle	$\frac{3}{25}$
Mixed breed	$\frac{2}{5}$

Write the Rename using problem. the LCD, 25.

So, of the adopted dogs, mixed breed. are either Golden Retrievers or
\square

Check Your Progress
ICE CREAM Use the table to find the fraction of the orders that are for either vanilla or chocolate ice cream.

Ice Cream Orders	
Flavor	Fraction
Chocolate	$\frac{1}{6}$
Chocolate chip	$\frac{5}{18}$
Cookie dough	$\frac{5}{36}$
Strawberry	$\frac{7}{36}$
Vanilla	$\frac{2}{9}$

EXAMPLE Evaluate an Expression with Fractions

Remember It
 The first step in evaluating an algebraic expression is replacing the variables in the expression with numbers.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

Homework ASSIGNMENT

Page(s):
Exercises:
4. ALGEBRA Evaluate $p-q$ if $p=\frac{5}{6}$ and $q=\frac{1}{2}$.

$$
\begin{array}{rll}
p-q & =\square-\square & p=\square, q=\square \\
& =\frac{5}{6}-\frac{1 \times \square}{2 \times \square} & \text { Rename } \frac{1}{2} \text { using the LCD, } 6 . \\
& =\frac{5}{6}-\square & \text { Simplify. } \\
& =\square \text { or } \quad \text { Subtract. Write in simplest form. }
\end{array}
$$

Check Your Progress ALGEBRA Evaluate $m-n$ if $m=\frac{7}{8}$ and $n=\frac{2}{3}$.

5-5 Adding and Subtracting Mixed Numbers

EXAMPLES Add or Subtract Mixed Numbers

MAIN IDEA

Add and subtract mixed numbers.

Key Concept

Adding and Subtracting Mixed Numbers To add or subtract mixed numbers, first add or subtract the fractions. Then add or subtract the whole numbers. Rename and simplify if necessary.

1) Find $6 \frac{7}{\mathbf{8}}-3 \frac{\mathbf{1}}{\mathbf{8}} . \quad$ Estimate $\square-\square=\square$

Subtract the fractions.

Subtract the whole numbers.
$6 \frac{7}{8} \quad 6 \frac{7}{8}$
$-3 \frac{1}{8} \longrightarrow-3 \frac{1}{8}$

Check for Reasonableness $3 \frac{3}{4} \approx 4$

2 Find $3 \frac{1}{5}+5 \frac{3}{4}$.
Estimate \square $+$ \square $=$ \square
Write the problem.
Rename the fractions Add the fractions. using the LCD, 20. Then add the whole numbers.

Check for Reasonableness $8 \frac{19}{20} \approx 9 \checkmark$

Check Your Progress
Add or subtract. Write in simplest form.
a. $8 \frac{7}{9}-5 \frac{4}{9}$
b. $3 \frac{3}{8}+6 \frac{1}{3}$

EXAMPLES Rename Numbers to Subtract

3 Find $11-5 \frac{5}{6}$.

Estimate \square
\square $=$ \square

Rename 11 as

$-5 \frac{5}{6} \longrightarrow-5 \frac{5}{6}$

Subtract.
Check for Reasonableness $5 \frac{1}{6} \approx 5 \checkmark$
Find $12 \frac{3}{4}-5 \frac{1}{6}$
Estimate \square
\square
\square

Rename $\frac{3}{4}$ and $\frac{1}{6}$ using their LCD, \square.
$-5 \frac{1}{6} \longrightarrow-\square$

Subtract.

Check for Reasonableness $7 \frac{7}{12} \approx 8 \boldsymbol{V}$

Check Your Progress

a. Find $8-5 \frac{5}{8}$.
b. Find $11 \frac{5}{6}-7 \frac{1}{4}$.

EXAMPLE

Remember IT

Use estimation to check the reasonableness of your answers.

Homework Assignment

5 TEST EXAMPLE Alice ran $10 \frac{1}{5}$ miles on Monday. On Wednesday, she ran $9 \frac{3}{4}$ miles. How many miles did Alice run on both days?
A $1 \frac{11}{20}$ miles
C $19 \frac{19}{20}$ miles
B $19 \frac{11}{20}$ miles
D $20 \frac{19}{20}$ miles

Read the Item

You need to find the distance Alice ran on both days.

Solve the Item

First use the LCD to rename the fractions. Then add.

The answer is

Check Your Progress MULTIPLE CHOICE How far will Claire travel if she rides a bus from school to the library and then home?

F $7 \frac{6}{14}$ miles $\quad \mathbf{H} 7 \frac{11}{12}$ miles
G $7 \frac{23}{24}$ miles
J $7 \frac{17}{18}$ miles

5-6 Estimating Products of Fractions

Main Idea

- Estimate products of fractions using compatible numbers and rounding.

BUILD YOUR VOGABULARY (page 115)

Compatible numbers are numbers that are easy to
\square

EXAMPLES Estimate Using Compatible Numbers

(1) Estimate $\frac{1}{5} \times 28$.

Find a multiple of 5 close to 28.
$\frac{1}{5} \times 28 \longrightarrow \frac{1}{5} \times 30 \quad \begin{aligned} & 30 \text { and } 5 \text { are compatible numbers since } \\ & 30 \div 5=6\end{aligned}$
$\frac{1}{5} \times 30=\square \quad 30 \div 5=\square$
So, $\frac{1}{5} \times 28$ is about \square
2 Estimate $\frac{3}{4} \times 17$.

WRITE IT

Which method would you use to estimate $\frac{1}{6} \times 19$, compatible numbers or rounding? Explain.
\qquad a. $\frac{1}{4} \times 35$
b. $\frac{3}{7} \times 22$

Remember It

Placing fractions on a number line can help you round the fractions to estimate.

Homework Assignment

Page(s):
Exercises:

EXAMPLE Estimate by Rounding to $0, \frac{1}{2}$, or 1
Estimate $\frac{4}{5} \times \frac{1}{6}$.

$$
\begin{aligned}
& \frac{4}{5} \times \frac{1}{6} \longrightarrow \square \times \frac{1}{6} \\
& \square \times \frac{1}{6}=\frac{1}{6}
\end{aligned}
$$

So, $\frac{4}{5} \times \frac{1}{6}$ is about \square.

Check Your Progress
Estimate $\frac{1}{9} \times \frac{7}{8}$.

EXAMPLE Estimate With Mixed Numbers

4) MEASUREMENT Estimate the area of the rectangle.

Round each mixed number to the nearest whole number.

So, the area is about \square square inches.

Check Your Progress
MEASUREMENT Estimate the area of the rectangle.

5-7 Multiplying Fractions

EXAMPLE Multiply Fractions

MAIN IDEA
 - Multiply fractions.

(1) Find $\frac{1}{5} \times \frac{1}{6}$.

$$
\frac{1}{5} \times \frac{1}{6}=\frac{\square}{\square} \quad \begin{aligned}
& \text { Multiply the numerators. } \\
& \text { Multiply the denominators. }
\end{aligned}
$$

EXAMPLE Multiply Fractions and Whole Numbers

2 Find $\frac{5}{8} \times 7$.
Estimate $\frac{1}{2} \times 8=\square$

KEy Concept

Multiplying Fractions To multiply fractions, multiply the numerators and multiply the denominators.

Check Your Progress

 form.a. $\frac{1}{3} \times \frac{1}{9}$
b. $\frac{4}{9} \times 8$

FOLDABLES

ORGANIZE IT

Record what you learn about multiplying fractions on the note cards in your Foldable. As you learn the concepts, move the note cards from the Need to Know pocket to the Know pocket in your Foldable.

EXAMPLE Simplify Before Multiplying

(3) Find $\frac{3}{7} \times \frac{2}{9}$.

Estimate $\frac{1}{2} \times \frac{2}{9}=\square$
The numerator 3 and the denominator 9 have a common
factor. Divide both the numerator and denominator by \square
$\frac{3}{7} \times \frac{2}{9}=\frac{\stackrel{1}{8} \times 2}{7 \times \not{ }_{3}}$

Simplify. Compare to the estimate.

Check Your Progress

Find $\frac{3}{8} \times \frac{4}{5}$.

EXAMPLE Evaluate Expressions

4. ALGEBRA Evaluate $p q$ if $p=\frac{3}{4}$ and $q=\frac{8}{9}$.

The GCF of 3 and 9 is 3 . The GCF of 4 and 8 is 4 . Divide both the numerator and the denominator by 3 and then by 4 .

Simplify.

Homework

 AssignmentPage(s):
Exercises:

Check Your Progress
Evaluate $x y$ if $x=\frac{3}{4}$ and $y=\frac{4}{9}$.

5-8 Multiplying Mixed Numbers

EXAMPLE Multiply a Fraction and a Mixed Number

MAIN IDEA

- Multiply mixed numbers.
(1) Find $\frac{1}{3} \times 6 \frac{3}{7}$.

Estimate Use compatible numbers $\longrightarrow \frac{1}{3} \times \square=\square$

Check Your Progress Find $\frac{1}{4} \times 4 \frac{2}{5}$.
\square

KEy Concept

Multiplying Mixed Numbers To multiply mixed numbers, write the mixed numbers as improper fractions and then multiply as with fractions.

EXAMPLE Multiply Mixed Numbers

2 DISTANCES Belinda lives $1 \frac{1}{2}$ times farther from school than Jamie does. If Jamie lives $4 \frac{1}{5}$ miles from school, how far from school does Belinda live?
Jamie lives $4 \frac{1}{5}$ miles from school. Multiply $4 \frac{1}{5}$ by $1 \frac{1}{2}$.

First, write mixed numbers as improper fractions.

Then, multiply the numerators and the denominators.

Simplify.

Belinda lives \square miles from school.

EXAMPLE Evaluate Expressions
(3) ALGEBRA If $r=3 \frac{3}{4}$ and $s=2 \frac{4}{5}$, what is the value of $r s$?

Divide the numerator and

Simplify.

Homework

 AssignmentPage(s):
Exercises:
Check Your Progress ALGEBRA If $m=2 \frac{5}{8}$ and $n=4 \frac{4}{7}$, what is the value of $n m$?

5-9 Dividing Fractions

Main IDEA

- Divide fractions.

BUILD YOUR YOCABULARY (page 115)

Any two numbers whose product is \square are called reciprocals.

EXAMPLES Find Reciprocals

(1) Find the reciprocal of 7 .

2 Find the reciprocal of $\frac{3}{8}$.

$$
\text { Since } \frac{3}{8} \times \square=1 \text {, the reciprocal of } \frac{3}{8} \text { is } \square \text {. }
$$

Check Your Progress

Find the reciprocal of each number.
a. 4
b. $\frac{5}{7}$

EXAMPLES Divide by a Fraction

Key Concept

Dividing Fractions To divide by a fraction, multiply by its reciprocal.

3 Find $\frac{1}{3} \div \frac{5}{6}$.

Multiply by the reciprocal,

(4) Find $5 \div \frac{1}{6}$.

Check Your Progress
a. $\frac{1}{4} \div \frac{7}{12}$

Divide. Write in simplest form.
b. $3 \div \frac{1}{3}$

EXAMPLE Divide by a Whole Number

5 RACE A relay race is $\frac{3}{4}$ of a mile long. There are
4 runners in the race. What portion of a mile will each runner run?

Divide $\frac{3}{4}$ into 4 equal parts.
$\frac{3}{4} \div 4=\frac{3}{4} \times \square \quad$ Multiply by the reciprocal.

Each runner will run \square of a mile.

Check Your Progress CRAFTS For a project, Becki needs to cut $\frac{1}{2}$ of a poster board into 5 equal-size pieces. What part of the original poster board is each piece?

HoMEWORK AssignMent

Page(s):
Exercises:

5-10 Dividing Mixed Numbers

EXAMPLE Divide by a Mixed Number

MAIN IDEA

Divide mixed numbers.

FOLDABLES

Organize IT

Record what you learn about expressing mixed numbers as improper fractions before dividing on the note cards in your Foldable. As you learn the concepts, move the note cards from the Need to Know pocket to the Know pocket in your Foldable.

(1) Find $6 \frac{1}{4} \div 2 \frac{1}{2}$.

Estimate $6 \div 3=2$

$=\frac{\stackrel{5}{25}}{\underset{2}{4}} \times \frac{\stackrel{1}{2}}{\underset{1}{5}}$

Write mixed numbers as improper fractions.

Multiply by the reciprocal.

Divide by the GCFs.

Simplify.
Check for Reasonableness $2 \frac{1}{2} \approx 2$

EXAMPLE Evaluate Expressions

2 ALGEBRA Find $f \div g$ if $f=2 \frac{5}{8}$ and $g=\frac{2}{3}$.

Simplify.

Check Your Progress

a. Find $3 \frac{3}{4} \div 2 \frac{1}{2}$.
b. ALGEBRA Find $a \div b$ if $a=3 \frac{3}{4}$ and $b=\frac{5}{8}$.

EXAMPL:

3 ADVENTURE RACING A team took $3 \frac{3}{4}$ days to complete 180 miles of an adventure race consisting of hiking, biking, and river rafting. How many miles did they average each day?
Estimate $180 \div 4=45$
$180 \div 3 \frac{3}{4}=180 \div \quad$ Write the mixed number as an improper fraction.
$=\frac{180}{1} \times \square \quad$ Multiply by the reciprocal.
$=\frac{180}{1} \times \frac{4}{15} \quad$ Divide 180 and 15 by the GCF, 15.

Simplify. Compare to the estimate.

Be sure you express your answers with the correct units.

Homework

 AssignmentPage(s):
Exercises:
Check Your Progress DRIVING Mario took $4 \frac{1}{3}$ days to travel a distance of 260 miles. How many miles did he average each day?

5

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 5 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 5, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 115) to help you solve the puzzle.

5-1
 Rounding Fractions and Mixed Numbers

Round each number to the nearest half.

1. $\frac{1}{15} \square$
2. $\frac{9}{10} \square$
3. $\frac{17}{20} \square$
4. $\frac{7}{12}$
5. $\frac{23}{50}$
6. $\frac{1}{9}$
\square
7. Give an example of when it is better to round up even if the rules say to round down.
\square

5-2

Problem-Solving Investigation: Act It Out

Solve. Use the act it out strategy.

8. RACQUETBALL Three friends would like to play racquetball. How many 2-person teams can be formed?
\square

5-3

Adding and Subtracting Fractions with Like Denominators

Match each verbal sentence with the number sentence you would write to answer the question. An answer may be used more than once.
9. How much is $\frac{4}{7}$ cup and $\frac{2}{7}$ cup? \square
10. How much wider is a stick that is $\frac{4}{7}$ in. wide than a stick that is $\frac{2}{7} \mathrm{in}$. wide?
a. $\frac{4}{7}+\frac{2}{7}=\frac{6}{7}$
b. $\frac{4}{7}-\frac{2}{7}=\frac{2}{7}$
11. Find the difference between $\frac{4}{7}$ and $\frac{2}{7}$. \square
12. What is the sum of $\frac{4}{7}$ and $\frac{2}{7}$? \square

5-4

Adding and Subtracting Fractions with Unlike Denominators
13. Describe how to evaluate $m-n$ if $m=\frac{5}{6}$ and $n=\frac{2}{9}$.

$$
\begin{aligned}
m-n & =\frac{5}{6}-\frac{2}{9} \\
& =\frac{5 \times 3}{6 \times 3}-\frac{2 \times 2}{9 \times 2} \\
& =\frac{15}{18}-\frac{4}{18} \\
& =\frac{11}{18}
\end{aligned}
$$

\square
\square

14. What does it mean to rename a fraction?

15. What is the LCD of $\frac{1}{6}$ and $\frac{1}{4}$? \square

5-5

Adding and Subtracting Mixed Numbers

Match each sum or difference to the correct mixed number.
16. $4 \frac{3}{4}-2 \frac{1}{6} \square$
$\begin{array}{ll}\text { a. } 6 \frac{1}{3} & \text { d. } 9 \frac{7}{10}\end{array}$
17. $5 \frac{1}{4}+2 \frac{1}{8} \square$
b. $12 \frac{3}{10}$
e. $9 \frac{1}{3}$
c. $7 \frac{3}{8}$
f. $6 \frac{11}{12}$
18. $3 \frac{1}{2}+6 \frac{1}{5} \square$
19. $10-3 \frac{2}{3} \square$
20. $12 \frac{1}{2}+3 \frac{1}{6}$ \square
21. HEIGHT Kenneth is $56 \frac{1}{2}$ inches tall.

His sister is $44 \frac{5}{8}$ inches tall. How much taller is Kenneth than his sister?

5-6

Estimating Products of Fractions
Estimate each product using the method given. Show how you found your estimate.
22. $\frac{6}{8} \times 17$, compatible numbers
23. $\frac{4}{6} \times \frac{4}{5}$, rounding
\square

5-7

Multiplying Fractions

Multiply. Write in simplest form.
24. $\frac{2}{5} \times \frac{3}{4}$

25. $\frac{1}{2} \times 5$

26. SALES A sixth-grade class is selling 345 tickets to the school play. One-fifth of the tickets were sold on Monday. How many tickets were sold on Monday?
\square
27. ALGEBRA Evaluate $r s$ if $r=\frac{1}{2}$ and $s=\frac{2}{3}$.
\square

5-8

Multiplying Mixed Numbers

28. $\frac{4}{7} \times 5 \frac{5}{6}$
29. $1 \frac{3}{5} \times 2 \frac{1}{4}$

30. RECIPES Emily wanted to divide a recipe for lemonade in half for a party. The recipe called for $1 \frac{3}{4}$ cups of lemon juice. How much lemon juice did Emily need?
\square

5-9

Dividing Fractions

Find the reciprocal of each number.
31. $\frac{7}{8}$
32. $\frac{1}{2}$

33. 6 \square
34. Describe in words each step shown for finding $\frac{2}{3} \div \frac{5}{6}$.

$$
\begin{aligned}
& \frac{2}{3} \div \frac{5}{6} \\
&=\frac{2}{3} \times \frac{6}{5} \square \\
&=\frac{2 \times{ }^{2}}{\not 2} \times 5 \\
& 1 \\
&=\frac{4}{5}
\end{aligned}
$$

5-10

Dividing Mixed Numbers

35. Describe what is happening at each step below.

Find the value of $a \div b$ if $a=5 \frac{5}{8}$ and $b=2 \frac{1}{4}$.

$$
a \div b=5 \frac{5}{8} \div 2 \frac{1}{4}
$$

\square

$$
=\frac{45}{8} \div \frac{9}{4}
$$

$$
=\frac{45}{8} \times \frac{4}{9}
$$

$$
=\frac{\frac{5}{85}}{\frac{8}{2}} \times \frac{\stackrel{1}{4}}{9}
$$

$$
=\frac{5}{2} \text { or } 2 \frac{1}{2}
$$

\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 5.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 5 Practice Test on page 307 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 5 Study Guide and Review on pages 302-306 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 5 Practice Test on page 307.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 5 Foldable.
- Then complete the Chapter 5 Study Guide and Review on pages 302-306 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 5 Practice Test on page 307.

Ratio, Proportion, and Functions

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of graph paper.

STEP 1 Fold one sheet of grid paper in thirds lengthwise.

STEP 1 Unfold lengthwise and fold one fourth down widthwise. Cut to make three tabs as shown.

NOTE-TAKING TIP: Making a chart can help you in comparing mathematical concepts. First, determine what will be compared. Then decide what standards will be used for comparisons. Finally, use what is known to find similarities and differences.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 6.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
arithmetic sequence			
equivalent ratio			
proportion			
proportional			
rate			

Vocabulary Term	Found on Page	Definition	Description or Example
ratio			
ratio table			
scaling			
sequence			
term			
unit rate			

6-1 Ratios and Rates

MAIN IDEA

- Express ratios and rates in fraction form.

BUILD YOUR VOGABULARY (pages 144-145)

A ratio is a comparison of two quantities by division.

EXAMPLE Write a Ratio in Simplest Form

1 RECREATION A store has 10 unicycles and 4 scooters. Write the ratio in simplest form that compares the number of scooters to the number of unicycles. Then explain its meaning.

The ratio of scooters to unicycles is \square \square, or \square For every \square scooters, there are \square unicycles.

Check Your Progress

FRUIT Kim has 8 apples and 6 oranges. Write the ratio in simplest form that compares the number of oranges to the number of apples. Then explain its meaning.

EXAMPLE Use Ratios to Compare Parts to a Whole

BOOKS Several students were asked to name their favorite kind of book. Write the ratio that compares the number of students who chose fantasy books to the total number of students who responded.

Favorite Book	
Subject	Number of Responses
Sports	7
History	9
Mystery	4
Fantasy	5

Five students preferred fantasy out of a total of

The ratio of the number of students who chose fantasy to the total number of responses is \square

Check Your Progress

SPORTS Students have the balls listed in the table available to use during recess. What is the ratio of basketballs to the total number of balls?

Ball	Number
Volleyball	2
Tennis	5
Basketball	6
Soccer	3

FOLDABLES

ORGANIZE IT

Write the definition of ratio under the first tab of your Foldable. Include notes on finding ratios and unit rates. Be sure to write a few examples of ratios.

HoMEWORK ASSIGNMENT

[^0]
BUILD YOUR VOGABULARY (pages 144-145)

A rate is a ratio comparing two quantities with different kinds of units.

A unit rate has a denominator of 1 .

EXAMPLE Find a Unit Rate

3 FOOD Find the cost per ounce of a 16-ounce jar of salsa that costs \$2.88.

Write the rate that compares the cost to the number of ounces.

Then divide to find the unit rate.

So, the cost per ounce of the salsa is \square

Check Your Progress

TEMPERATURE The outside temperature rises 32 degrees in four hours. Find the temperature increase for one hour.

6-2 Ratio Tables

MAIN IDEA

- Use ratio tables to represent and solve problems involving equivalent ratios.

BUILD YOUR VOCABULARY (pages 144-145)

A ratio table contains columns that are filled with pairs of numbers that have the same \square
Equivalent ratios express the same relationship between two quantities.

EXAMPLE Equivalent Ratios of Larger Quantities

BEANS A recipe calls for 5 cups of water for each cup of pinto beans. Use the ratio table to find how many cups of water should be used for 4 cups of pinto beans.

Cups of Beans	1			4
Cups of Water	5			\square

METHOD 1 Find a pattern and extend it.
For 2 cups of beans, you would need a total of $5+5$ or 10 cups of water.

Continue this pattern until you reach 4 cups.

METHOD 2 Multiply each quantity by the same number.

Since $1 \times 4=4$, multiply each quantity by 4 .

So, you would need \square of water for 4 cups of beans.

Check Your Progress
PUNCH A recipe for punch calls for 3 cups of juice for every cup of soda. Use the ratio table to find how many cups of juice should be used for 5 cups of soda.

Cups of Soda	1				5
Cups of Juice	3				

EXAMPLE Equivalent Ratios of Smaller Quantities

2 SPIDERS Texas has over 900 species of spiders. Use the ratio table to find how many legs a spider has.

Divide each quantity by one or more common factors until you reach a quantity of 1 spider.

So, a spider has \square legs.

Check Your Progress

WINDOWS Each apartment in Jarome's apartment building has the same number of windows. Use the ratio table to find how many windows each apartment in the building has.

Number of Apartments	8	4		1
Number of Windows	32			

BUILD YOUR VOGABULARY (pages 144-145)
\square o \square two related quantities by
the same number is called scaling.

EXAMPLE Use Scaling

3 CLOTHING Coco used 12 yards of fabric to make 9 blouses. Use the ratio table to find the number of blouses she could

Yards of Fabric	12		20
Number of Blouses	9		\square

There is no whole number by which you can multiply 12 to get 20. So, scale back to 4 and then scale forward to 20 .

Divide each quantity by a common factor, 3.

Then, since $4 \times 5=20$, multiply each quantity by 5 .

So, Coco could make \square with 20 yards of fabric.

Check Your Progress PAINT Mrs. Wallace ordered 8 bottles of paint for 18 students. Use the ratio table to find the number of bottles of paint she would need to order for 27 students.

Number of Students	18		27
Bottles of Paint	8		\square

6-3 Proportions

Main Idea

Determine if two ratios are proportional.

BUILD YOUR VOGABULARY (pages 144-145)

Two quantities are proportional if they have a constant ratio or rate.

A proportion is an equation stating that two ratios or rates are equivalent.

EXAMPLES Use Unit Rates

Determine if the quantities in the pair of ratios or rates are proportional. Explain your reasoning and express each proportional relationship as a proportion.
(1) $\mathbf{2 0}$ rolls for $\mathbf{\$ 5 ;} \mathbf{4 8}$ rolls for $\mathbf{\$ 1 2}$

Write each rate as a fraction. Then find its unit rate.

Since the rates have the same unit rate, they are equivalent. The cost is proportional to the number of rolls.

242 people on 7 teams; 64 people on 8 teams

Since the rates do not have the same unit rate, they are not equivalent. So, the number of people is \square

3 FOOD You can buy 3 medium pizzas at The Pizza Place for $\$ 18$ or 5 medium pizzas for $\$ 30$. Are these selling rates proportional? Explain your reasoning.

Since the unit rates are the same, \square, the rates are
equivalent. So, the selling rates are proportional.

Check Your Progress

Determine if the quantities in the pair of ratios or rates are proportional. Explain your reasoning and express each proportional relationship as a proportion.
a. 18 cookies for $\$ 6 ; 24$ cookies for $\$ 8$

b. 16 students with 8 teachers; 30 students with 10 teachers

c. FOOD At a farmer's market, one farmer is selling 6 pumpkins for $\$ 12$. Another farmer is selling his pumpkins 10 for $\$ 20$. Are these selling rates proportional? Explain your reasoning.

EXAMPLES Use Equivalent Fractions

Determine if the quantities in the pair of ratios or rates are proportional. Explain your reasoning.
4) 5 laps swum in 8 minutes; 11 laps swum in 16 minutes

Write each ratio as a fraction.

The numerator and the denominator are not multiplied by the same number. So, the fractions are not equivalent.

swum is not proportional to the number of minutes.
(5) 8 corrals with 56 horses; 4 corrals with 28 horses

is proportional to the number of horses.

Check Your Progress

Determine if the quantities in the pair of ratios or rates are proportional. Explain your reasoning.
a. 2 classes taken in 5 hours; 8 classes taken in 15 hours

b. 10 cages with 25 birds; 2 cages with 5 birds

6-4 Algebra: Solving Proportions

EXAMPLES Solve Using Equivalent Fractions

MAIN IDEA

- Solve proportions.

Solve each proportion.

1) $\frac{4}{5}=\frac{28}{x}$

Find a value for x so the fractions are equivalent.

$$
\frac{4}{5}=\square
$$

Since $5 \times 7=35, x=$ \square
2) $\frac{b}{5}=\frac{16}{20}$

$$
\begin{gathered}
\frac{x 4}{\frac{b}{5}=\frac{16}{20}} \\
\times 4=\frac{16}{20}
\end{gathered}
$$

Since $4 \times 4=16, b=$ \square
3) $\frac{19}{38}=\frac{n}{22}$

$$
\left.\begin{array}{rl}
\div 2\left(\frac{19}{38}\right. & \left.=\frac{n}{22}\right) \div 2
\end{array} \begin{array}{l}
\text { Since } 38 \div 2=19, \text { divide each } \\
\text { denominator by } 2 .
\end{array}\right] \begin{aligned}
\frac{19}{38} & =\square \quad \text { THINK What is } 22 \text { divided by } 2 ?
\end{aligned}
$$

So, $n=$ \square
Since $5 \times 4=20$, multiply the numerator and denominator by 4 .
a. $\frac{3}{8}=\frac{9}{x}$
b. $\frac{18}{24}=\frac{m}{4}$
c. $\frac{12}{48}=\frac{f}{28}$

EXAMPLE Make Predictions in Proportional Situations

FOLDABLES

ORGANIZE IT

Write the definition of proportion in your own words under the Proportion tab in your Foldable. then write a few examples and show how to find their solutions.

4 SPORTS Out of the 40 students in a gym class,

 12 rate soccer as their favorite sport. Based on this result, predict how many of the 4,200 students in the community would rate soccer as their favorite sport.Write and solve a proportion. Let s represent the number of students who can be expected to rate soccer as their favorite sport.

Since $40 \times 105=4,200$, multiply the numerator and denominator by 105.

$$
\frac{12}{40}=\square
$$

Of the students in the community, about \square can be expected to rate soccer as their favorite sport.

Check Your Progress

BUSINESS Out of 50 people in one department of a large corporation, 35 stated that they enjoy their job. Based on this result, how many of the 2,400 employees of this corporation can be expected to say that they enjoy their job?

EXAMPLE Solve Using Unit Rates

5 WAGES Cedric earned $\$ 184$ for 8 hours of work. At this rate, how much will he earn for 15 hours of work?

Step 1 Set up the proportion. Let d represent the dollar amount Cedric will earn for 15 hours of work.

Step 2 Find the unit rate.

Find an equivalent fraction with a denominator of 1 .

Step 3 Rewrite the proportion using the unit rate and solve using equivalent fractions.

So, the value of d is \square . At the given rate, Cedric will earn \square for 15 hours of work.

Check Your Progress

DOGS Marci walked 24 dogs in 6 days. At this rate, how many dogs will she walk in 14 days?

Homework ASSIGNMENT

Page(s):
Exercises:

6-5 Problem-Solving Investigation: Look for a Pattern

EXAMPLE

MAIN IDEA

- Solve problems by looking for a pattern.

Solve. Use the look for a pattern strategy.
BAND One marching band formation calls for 12 band members in the front row. Each row in the formation has 3 more members than the row in front of it. Make a list of the members in each of the first 8 rows.

UNDERSTAND You know there are \square band members in the front row, and each row has \square more members than the row in front of it. You need to find how many band members are in each of the first \square rows.

PLAN Start with 12 members in the front row and use pattern of adding 3 for each row.

1: 12
2: $12+3=$ \square
3:

4: \square
$5: \square+3=\square$
$6: \square+3=\square$
$7: \square+3=\square$
$8: \square+3=\square$

The number of band members in the first 8 rows is
\square

CHECK

Check the pattern of adding 3 by starting with the eighth row and subtracting 3 for each previous row.

Check Your Progress WEIGHTS Josiah lifts weights every day. If he lifts 20 pounds on the bench press on the first day and adds 2 pounds each day, how many days will it take him to lift 50 pounds?

6-6 Sequences and Expressions

Main IDEA

- Extend and describe arithmetic sequences using algebraic expressions.

BUILD YOUR VOCABULARY (pages 144-145)

A sequence is a list of numbers in a specific order. Each number in the list is called a term of the sequence.

A sequence is an arithmethic sequence if each term can be found by adding the same number to the previous term.

EXAMPLE Describe Sequences

1) Use words and symbols to describe the value of each term as a function of its position. Then find the value of the tenth term in the sequence.

Position	1	2	3	4	n
Value of Term	7	14	21	28	\square

Notice that the value of each term is \square its position number. So, the value of the term in position n is \square

Position	Multiply by 7	Value of Term
1	$1 \times 7=$	7
2	$2 \times 7=$	14
3	$3 \times 7=$	21
4	$4 \times 7=$	28
n	$n \times 7=$	$7 n$

Now find the value of the tenth term.

The value of the tenth term in the sequence is \square

Check Your Progress
Use words and symbols to describe the value of each term as a function of its position. Then find the value of the tenth term in the sequence.

Position	1	2	3	4	n
Value of Term	9	18	27	36	\square

EXAMPLE Make a Table

2 TIME There are 60 seconds in 1 minute. Make a table and write an algebraic expression relating the number of seconds to the number of minutes. Then find how many seconds it takes Shaila to walk to school if it takes her 9 minutes.

Notice that the number of minutes times 60 gives the number of seconds. So, to find how long it takes Shaila to walk to school, use the expression

Minutes	Seconds
1	\square
2	\square
3	\square
4	\square
n	

Replace n with

Multiply.
Murtply

So, it takes Shaila \square to walk to school.

Check Your Progress

TIME There are 24 hours in 1 day.
Make a table and write an algebraic expression relating the number of hours to the number of days. Then find how many hours Hayden has to finish his science project if he has exactly 6 days.

EXAMPL:

3 TEST EXAMPLE The table shows the number of plants in a garden, based on the number of rows. Which expression was used to find the number of plants in n rows?
A $n+3$
C $3 n$
B $n-3$
D $3 n+1$

Number of Rows	Number of Plants
1	4
2	7
3	10
4	13
n	\square

Read the Item To find the expression, determine the function.

Solve the Item Notice that the values $4,7,10,13, \ldots$ increase by \square, so the rule contains $3 n$. Therefore, choices
\square and \square can be eliminated.

If the rule were simply $3 n$, then the value for position 1 would be 3×1 or 3 . But this value is 4 . So, choice \square can be eliminated.

This leaves choice \square Test a few values.

Row 1: $3 n+1=3(1)+1=$ \square
Row 3: $3 n+1=3(3)+1=$ \square
So, the answer is \square

Check Your Progress
MULTIPLE CHOICE The table shows the number of students allowed to go on a field trip based on the number of adults accompanying them. Which expression was used to find the number of students for n adults?
F $n-1$
H $n+5$
J $5 n$

Number of Adults	Number of Students
1	4
2	9
3	14
4	19
n	\square

Homework Assignment

Page(s):
Exercises:

6-7 Proportions and Equations

EXAMPLE Write an Equation for a Function

MAIN IDEA

Write an equation to describe a proportional situation.
(1) Write an equation to represent the function displayed in the table.

Input, \boldsymbol{x}	1	2	3	4	5
Output, \boldsymbol{y}	9	18	27	36	45

Examine how the value of each input and output changes. Each output y is equal to \square the input x. So, the equation that represents the function is \square

Check Your Progress
Write an equation to represent the function displayed in the table.

Input, x	1	2	3	4	5
Output, y	11	22	33	44	55

\square

EXAMPLES

BOOKS Javier sells handmade notebooks. He charges $\$ 25$ for each book.

2 Make a table to show the relationship between the number of books sold b and the total amount Javier earns t.
The total earned (output) is equal to \square the number of books sold (input).

Books Sold, \boldsymbol{b}	Multiply by 25	Total Earned (\$), \boldsymbol{t}
1	1×25	\square
2	2×25	\square
3	3×25	\square
4	4×25	\square

(3) Write an equation to find the total amount earned \boldsymbol{t} for selling b books.
Study the table from Example 2.
Words Total earned equals $\$ 25$ times the number of books sold.
Let \square represent the total earned and \square represent the number of books sold.

$$
t=\square
$$

4 How much will Javier earn if he sells 7 books?

Check Your Progress BABYSITTING Jenna babysits on the weekends. She charges $\$ 8$ for each hour.
a. Make a table to show the relationship between the number of hours Jenna babysits h and the total amount she earns t.

b. Write an equation to find the total amount earned t for h hours of babysitting.

c. How much will Jenna earn if she babysits for 14 hours?

EXAMPLE

5 DOG GROOMING The table shows the amount that a kennel charges for grooming a dog. Write a sentence and an equation to describe the data. Then find the total cost of grooming 11 dogs.

Dogs Groomed, \boldsymbol{d}	Total Cost (\$), \boldsymbol{t}
1	12
2	24
3	36
4	48

The cost of grooming is \square per dog. The total cost t is $\$ 12$ times the number of dogs d. Therefore, $t=\square$. Use this equation to find the total cost t of grooming 11 dogs.
$t=\square$
Write the equation.
\square Replace d with \square Multiply.

The total cost of grooming 11 dogs is \square

Check Your Progress

CARS The table shows the amount that a rental car company charges to rent a car per day. Write a sentence and an equation to describe the data. Then find the total cost of renting a car for 9 days.

Days, \boldsymbol{d}	Total Cost (\$), \boldsymbol{t}
1	32
2	64
3	96
4	128

Homework Assignment

Page(s):
Exercises:

6

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 6 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 6, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 144-145) to help you solve the puzzle.

6-1
 Ratios and Rates

Write each ratio as a fraction in simplest form.

1. 7 red T-shirts out of 28 T-shirts

2. 10 sixth graders of 25 students \square

Write each rate as a unit rate.

3. 240 miles in 6 hours

4. 6 drinks for $\$ 9.00$
\square

6-2
 Ratio Tables

5. INVITATIONS Juana is writing invitations to her birthday party. She wrote 24 invitations in 60 minutes. If she wrote at a constant rate, use the ratio table to determine the number of invitations she wrote in 5 minutes.

Number of Invitations	24		\square
Time (min)	60		5

6. The table in Exercise 5 is called a ratio table. Explain why.
\square

6-3

Proportions

Determine if the quantities in each pair of ratios or rates are proportional. Explain your reasoning and express each proportional relationship as a proportion.
7. 10 computers for 5 students; 30 computers for 15 students

8. 24 songs on 2 CDs; 48 songs on 3 CDs
\square

6-4

Algebra: Solving Proportions

9. WALKING David walked 6 blocks in 18 minutes. At this rate, how many minutes would it take him to walk 24 blocks?
\square
Solve each proportion.
10. $\frac{r}{12}=\frac{4}{24}$
11. $\frac{36}{6}=\frac{k}{54}$
12. $\frac{1}{5}=\frac{8}{m}$

6-5
 Problem-Solving Investigation: Look for a Pattern

Solve. Use the look for a pattern strategy.
13. NUMBER SENSE Find the next two numbers in the following pattern: $9,16,25,36, \ldots$

6-6

Sequences and Expressions
Use words and symbols to describe the value of each term as a function of its position. Then find the value of the eighth term in the sequence.

14. | Position | 1 | 2 | 3 | 4 | n |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Value of Term | 15 | 30 | 45 | 60 | \square |

\square
15.

Position	4	5	6	7	n
Value of Term	20	21	22	23	\square

\square

6-7

Proportions and Equations
SPEED SKATING Matthew can speed skate an average of 12 meters per second.
16. Make a table to show the relationship between the total distance d that Matthew can skate in s seconds.

17. Write an equation to find the total distance d that Matthew can travel in s seconds.
\square
18. How many meters can Matthew travel in 45 seconds?
\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 6.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 6 Practice Test on page 359 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 6 Study Guide and Review on pages 355-358 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 6 Practice Test on page 359.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 6 Foldable.
- Then complete the Chapter 6 Study Guide and Review on pages 355-358 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 6 Practice Test on page 359.

Percent and Probability

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with one sheet of $11{ }^{\prime \prime} \times 17^{\prime \prime}$ paper.			
STEP 1	Fold a 2" tab along the long side of the paper.		\square
STEP 3	Unfold and cut the paper and fold in thirds widthwise.		
STEP 3	Draw lines along the folds and label the head of each column as shown. Label the front of the folded table with the chapter title.	Fraction $\frac{1}{2}$	$\begin{aligned} & \hline \text { Decimal } \\ & \rightarrow 0.5 \end{aligned}$

NOTE-TAKING TIP: It is helpful to ask questions about a topic before you study it. Before you begin each lesson, look quickly through the lesson and write one question about the material. As you read, record the answer to your questions.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 7. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
complementary events			
circle graph			
experimental probability			
Fundamental Counting Principle			
outcomes			
percent			
probability			

Vocabulary Term	Found on Page	Definition	Description or Example
random			
sample			
sample space			
simple event			
survey			
[sir-vay]			
kuhl]			
theoretical probability			
tree diagram			

7-1
 Percents and Fractions

Main IDEA

Express percents as fractions and fractions as percents.

KEY CONCEPT

Percent to Fraction To write a percent as a fraction, write the percent as a fraction with a denominator of 100 . Then simplify.

BUILD YOUR VOGABULARY (pages 169-170)

A percent is a ratio that compares a number to

EXAMPLES Write a Percent as a Fraction

(1) Write $\mathbf{6 0 \%}$ as a fraction in simplest form.

$60 \%=\square$

Simplify. Divide the numerator and denominator by the GCF,

2 Write $\mathbf{1 4 0 \%}$ as a mixed number in simplest form.

Definition of percent

Write as a mixed number. Divide the numerator and denominator by the GCF, \square

Check Your Progress or mixed number in simplest form.
a. 30%
b. 180%

EXAMPLE

FOLDABLES

ORGANIze IT
Include some examples of percents written as fractions and fractions written as percents in your Foldable chart.

3

LUNCH Use the table. What fraction of the class members preferred spaghetti for the school lunch?

School Lunch Choices	
Lunch	Percent
pizza	30
spaghetti	25
hamburger	20
chicken strips	15
soup	10

The table shows that \square of the class members preferred spaghetti.
\square

Definition of percent $=\square$ Simplify.

So, \square of the class members preferred spaghetti for the
school lunch.

Check Your Progress

ICE CREAM Use the table. What fraction of the students chose chocolate as their favorite flavor?

Students' Favorite Ice Cream Flavor	
Flavor	Percent
vanilla	37
chocolate	28
chocolate chip	20
strawberry	8
other	7

EXAMPLES Write a Fraction as a Percent

(4) Write $\frac{7}{10}$ as a percent.

Since $10 \times 10=100$, multiply 7 by 10 to find n.

$$
\text { So, } \frac{7}{10}=\square \text { or } \square \text {. }
$$

5 Write a percent to represent the shaded portion of the model.
The portion shaded is $1 \frac{6}{8}$ or
 $1 \frac{3}{4}=\square \quad \begin{aligned} & \text { Write } 1 \frac{3}{4} \text { as an } \\ & \text { improper fractio }\end{aligned}$
 $\frac{7}{4}=\frac{n}{100} \quad$ Write a proportion.

Since $4 \times 25=100$, multiply 7 by 25 to find n.

Homework Assignment

Page(s):
Exercises:
Exers

Check Your Progress

Write each fraction or shaded portion of each model as a percent.
a. $\frac{4}{10}$
b.

7-2 Circle Graphs

MAIN IDEA

- Sketch and analyze circle graphs.

BUILD YOUR VOGABULARY (pages 169-170)

A circle graph is used to \square data that are parts of a whole.

EXAMPLE Sketch Circle Graphs
(1) ENTERTAINMENT The table shows how many hours a group of teenagers spent playing video games in one week. Sketch a circle graph to display the data. Remember to label each section of the graph and give the graph a title.

Time Spent Playing Video Games	
Time (h)	Percent
$0-1$	35
$1-2$	10
$2-3$	25
3 or more	30

- Write a fraction to represent each percent.

$$
\begin{array}{r}
35 \%=\frac{35}{100} \text { or } \square \\
25 \%=\frac{25}{100} \text { or } \square \\
30 \%=\frac{30}{100} \text { or or } \square \\
\text { Time Spent Playing } \\
\text { Video Games }
\end{array}
$$

- Since $10 \%=\square$, mark

"1-2 hours." Since

3 times as big as the section

for " $1-2$ hours" for "3 or more hours." Since $25 \%=$
 mark \square of the circle for " $2-3$ hours." The remaining portion of the circle should be about 35% or for " $0-1$ hour."

Check Your Progress

SPORTS
The table shows students' choices for favorite sport. Sketch a circle graph to display the data.

EXAMPLES Analyze Circle Graphs

TRANSPORTATION The circle graph shows which method

Remember It

When you read and interpret a circle graph, it is helpful to remember that the percents of all the sections add up to 100%. of transportation students use to get to Martin Luther King, Jr., Middle School.

> Method of Transportation
> Used by Students to Arrive at School

2 Which method of transportation do most students use?

The largest section of the graph is the section that represents \square . So, the method of transportation most students use is the \qquad

FOLDABLES

Organize IT

In your Foldable, write the similarities and differences among circle graphs, bar graphs, and line graphs. Think about how each kind of graph is constructed.

Homework Assignment

3 Which two methods of transportation are used by the least amount of students?
The smallest sections of the graph are the sections that represent

\square are the two methods of transportation used by the least amount of students.

4

How does the number of students who ride mopeds to school compare to the number of students who take the bus?
The percent of students who ride a moped is \square and the percent of students who ride the bus is \square
The number of students who take the bus is about \square times the number of students who ride a moped.

Check Your Progress

ICE CREAM The circle graph shows which flavor of ice cream students consider their favorite.
a. Which flavor of ice cream do most students prefer?

b. Which two flavors are the least favorite among these students?

c. How does the number of students who prefer peanut butter ice cream compare to the number of students who prefer cookie dough ice cream?

7-3 Percents and Decimals

EXAMPLES Write a Percent as a Decimal

Main Idea

- Express percents as decimals and decimals as percents.

KEY Concept

Percent as Decimal To write a percent as a decimal, rewrite the percent as a fraction with a denominator of 100. Then write the fraction as a decimal.

Write each percent as a decimal.

1) $\mathbf{8 6 \%}$

2 1%

$3 \mathbf{1 1 0 \%}$

Rewrite the percent as a fraction with a denominator of

Write as a mixed number.

Write 1 and 10 hundredths.

Check Your Progress

Write each percent as a decimal.
a. 34%
\square
b. 4%
\square
c. 154%

EXAMPLES Write a Decimal as a Percent

Write each decimal as a percent.

Key Concepts

Decimal as Percent To write a decimal as a percent, write the decimal as a fraction whose denominator is 100. Then write the fraction as a percent.

Homework

 Assignment
7-4 Probability

Main Idea

- Find and interpret the probability of a simple event.

FOLDABLES Write the definition of probability in your Foldable.

BUILD YoUR VocABULARY (pages 169-170)

An outcome is a possible \square of an experiment. A simple event is one \square or a collection of outcomes.

Probability is the \square that some event will occur.

Outcomes occur at random if each outcome is \square likely to occur.

EXAMPLES Find Probability

There are six equally likely outcomes on the spinner shown.
(1) Find the probability of landing on 1.

The probability of landing on 1 is

Find the probability of landing on 2 or 4.
$P(2$ or 4$)=\frac{\text { number of favorable outcomes }}{\text { number of possible outcomes }}$

The probability of landing on 2 or 4 is

Homework Assignment

Page(s):
Exercises:

EXAMPLE Find Probability of the Complement

3 Use the spinner from Example 1. Find the probability of not landing on 6.
The probability of not landing on 6 and the probability of landing on 6 are \square. So, the sum of the probabilities is \square

$$
P(6)+P(\text { not } 6)=1
$$

$$
\square+P(\text { not } 6)=1 \quad \text { Replace } P(6) \text { with } \square
$$

$$
\frac{1}{6}+\square=1 \quad \text { THINK } \quad \frac{1}{6} \text { plus what number equals } 1 ?
$$

So, the probability of not landing on 6 is
\square

BUILD YOUR VOCABULARY (pages 169-170)
Complementary events are two events in which either one or the other must happen, but they cannot happen at the same time. The sum of the probability of an event and its complement is \square
\square

$$
x_{0}+2
$$

Check Your Progress
A number cube is rolled.
a. Find the probability of rolling a 4.

b. Find the probability of rolling a number greater than 3 .

c. Find the probability of not rolling an even number.

EXAMPLE

4 SPORTS A sportscaster predicted that the Tigers had a 75% chance of winning tonight. Describe the complement of this event and find its probability.

The complement of winning is not winning. The sum of the probabilities is

$$
P(\text { win })+P(\text { not win })=\square
$$

\square Replace $P($ win $)$ with

$$
75 \%+\square=100 \%
$$

THINK 75% plus what number equals 100\%?

So, the probability that the Tigers will not win tonight
\square

Check Your Progress
SLEEPOVER Celia guesses the probability that her parents will allow her to sleep over her best friend's house tonight is 55%. What is the probability that Celia will not be allowed to sleep over?

7-5 Sample Spaces

Main IDEA

- Construct sample spaces using tree diagrams or lists.

FOLDABLES

Organize IT

In your Foldable, tell how a tree diagram is used to show a sample space.

Fraction	Percent	Decimal
$\frac{1}{2} \longrightarrow 50 \%$		
		0.5

BUILD YOUR VOGABULARY (pages 169-170)

The set of all possible outcomes is called the sample space.

A tree diagram is a diagram that shows all possible outcomes of an event.

EXAMPLE Use a List to Find Sample Space

1 VACATION While on vacation, Carlos can go snorkeling, boating, and paragliding. In how many ways can Carlos do the three activities? Make an organized list to show the sample space.
Make an organized list. Use S for snorkeling, B for boating, and P for paragliding.
\square
There are \square Carlos can do the three activities.

Check Your Progress

STUDENT COUNCIL

Ken, Betsy, Sally, and David are seated in a row at the head table at a student council meeting. In how many ways can the four students be seated? Make an organized list to show the sample space.

EXAMPLE Use a Tree Diagram to Find a Sample Space

2 A car can be purchased with either two doors or four

Use a tree diagram to find all the buying options.

List each choice for the number of doors. Then pair each choice for the number of doors with each choice for the types of seats.

There are \square possible buying options.

Remember It

Outcomes are all the possible results of a probability event.

Check Your Progress
A pair of sneakers can be purchased with either laces or Velcro. You may also choose white, gray, or black sneakers. Use a tree diagram to find how many different sneakers are possible.

Homework Assignment

Page(s):

Exercises:

7-6 Making Predictions

Main IDEA

Predict the actions of a larger group using a sample.

BUILD YOUR VOGABULARY (pages 169-170)

A survey is a question or set of questions designed to collect data about a specific group of people.

The population is the \square being studied in a survey.

A sample is a randomly selected group that is surveyed to represent a whole \square

EXAMPLES Make Predictions Using Proportions

Julia asked every sixth person in the school cafeteria to name the kind of activity he or she would like to do for the school's spring outing.

Spring Outing	
Activity	Students
amusement park	15
baseball game	10
water park	10
art museum	5

(1) What is the probability that a student will prefer an amusement park?

$$
\begin{aligned}
P(\text { amusement park }) & =\frac{\begin{array}{c}
\text { number of students that } \\
\text { prefer an amusement park }
\end{array}}{\text { number of students surveyed }} \\
& =\square
\end{aligned}
$$

So, the probability that a student will prefer an amusement park is

Review It

Use mental math to solve the proportion

$$
\frac{1}{10}=\frac{x}{100}
$$

(Lesson 6-4).
\qquad

Homework
Assignment
Page(s):
Exercises:
b. There are 128 hockey players in Kyle's league. Predict how many of the hockey players prefer cookies for their snack
after a game.

7-7 Problem-Solving Investigation: Solve a Simpler Problem

EXAMPLE

MAIN IDEA

Solve problems by solving a simpler problem.

Solve. Use the solve a simpler problem strategy.
BAKE SALE Elmwood Middle School received 620 contributions for its bake sale. If 40% of the contributions were cookies, how many cookies did the school receive?

UNDERSTAND You know the school received
 contributions, and \square of them were cookies. You need to find the number of cookies the school received.

PLAN Solve a simpler problem by finding 10\% of the number of contributions and then use the result to find 40% of the number of contributions.

SOLVE \quad Since $10 \%=\frac{10}{100}$ or $\frac{1}{10}, 1$ out of every 10 contributions was cookies.
$620 \div 10=\square$
Since there are four 10% in 40%, multiply 62
by 4 . $62 \times 4=$ \square
So, the school received \square cookies.
CHECK You know that $40 \%=\frac{40}{100}$ or $\frac{2}{5}$. Since $\frac{2}{5}$
of 620 is 248 , the answer is reasonable.

Check Your Progress

TALENT SHOW A total of 310 people attended a talent show at Jefferson Middle School. If 70% of those who attended were adults, how many adults attended the talent show?

7-8 Estimating with Percents

Main IDEA

- Estimate the percent of a number.

Key Concepts

Percent-Fraction

Equivalents

$$
\begin{array}{ll}
20 \%=\frac{1}{5} & 66 \frac{2}{3} \%=\frac{2}{3} \\
25 \%=\frac{1}{4} & 70 \%=\frac{7}{10} \\
30 \%=\frac{3}{10} & 75 \%=\frac{3}{4} \\
33 \frac{1}{3} \%=\frac{1}{3} & 80 \%=\frac{4}{5} \\
40 \%=\frac{2}{5} & 90 \%=\frac{9}{10} \\
50 \%=\frac{1}{2} & 100 \%=1 \\
60 \%=\frac{3}{5} &
\end{array}
$$

EXAMPLES Estimate the Percent of a Number

1) Estimate 49% of 302 .
49% is close to \square or \square
Round 302 to \square

So, 49% of 302 is about \square

2 Estimate $\mathbf{8 0 \%}$ of 1,605.

Round 1,605 to
 since it is divisible by 10 .
$\frac{1}{10}$ of 1,600 is $\square \cdot \frac{1}{10}$ or 1 tenth means divide by 10.
So, $\frac{8}{10}$ of 1,600 is 8×160 or \square
Thus, 80% of 1,605 is about \square

Check Your Progress
Estimate each percent.
a. 26% of 122
b. 40% of 1,207

EXAMPLE

3 MONEY A CD that originally cost $\$ 11.90$ is on sale for $\mathbf{3 0 \%}$ off. If you have $\$ 7$, would you have enough money to buy the CD?
To determine whether you have enough money to buy the CD, you need to estimate 70% of \square

METHOD 1 Use a proportion.

$\frac{3}{4}=\frac{x}{12} \quad$ Write the proportion.

METHOD 2 Use mental math.

$\frac{7}{10}$ of 12 is 8.4 or \square

Since

\square more than $\$ 7$, you would not have enough money.

Homework Assignment

Page(s):
Exercises:

EXAMPLE

3 TEST EXAMPLE Claire surveyed her classmates about their favorite vacation city in the United States. Predict the number of students out of 234 who would prefer New York City.
A 20
C 110

B 60
D 240

Read the Item

You need to estimate the number of students out of 234 who would prefer New York City. 26\% of the students chose New York City.

Solve the Item

26% is about 25% or \square. Round 234 to \square.
$\frac{1}{4}$ of 240 is \square.

The answer is \square

Check Your Progress

MULTIPLE CHOICE
Monica surveyed her basketball team about their favorite type of restaurant. Predict the number of students out of 318 who would prefer an Italian restaurant.

$$
\text { F } 32 \quad \text { H } 120
$$

Type of Restaurant	Percent of Students
Fast Food	8
Italian	12
Asian	33
Mexican	23
Steakhouse	24

G 50
J 200

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 7 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 7, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 169-170) to help you solve the puzzle.

7-1
 Percents and Fractions

Match each percent to the equivalent fraction in simplest form.

1. $75 \% \square$
2. 82% \square
a. $\frac{41}{50}$
b. $\frac{11}{20}$
c. $\frac{3}{4}$
d. $\frac{2}{5}$
e. $\frac{6}{25}$
3. 24% \square 4. 55% \square
4. SURVEYS Felicia surveyed her class about their favorite kind of movies. Two fifths of the students said they liked comedies best. Write this fraction as a percent.

7-2

Circle Graphs

Complete each sentence.

6. A circle graph is used to
\square
7. The percentages of the sections of a circle graph always add up to \square
8. In a circle graph, you can identify the greatest and least values of a set of data by \square
9. The interior of the circle graph represents a \square

7-3

Percents and Decimals
Write each percent as a decimal.
10. 53% \square 11. 125% \square
12. 2% \square
13. Describe in words each step shown for writing 0.99 as a percent.

$$
\begin{aligned}
0.99 & =\frac{99}{100} \\
& \square
\end{aligned}
$$

7-4

Probability

Use the spinner for Exercises 14-20. Match each outcome to its theoretical probability. Answers may be used more than once.
14. spinning a 1 \square
15. spinning a 3
16. spinning a 1 or a 2

17. spinning a 0

18. spinning a number

a. 1
b. $\frac{5}{8}$
c. 0
d. $\frac{1}{2}$
e. $\frac{1}{4}$
f. $\frac{3}{4}$
g. $\frac{3}{8}$
h. $\frac{1}{6}$
19. not spinning a 1

20. spinning a 2

21. Write in words how you would read the expression P (event).

22. There is an 85% chance that it will rain tomorrow. Describe the complement of this event and find its probability.
\square

7-5
Sample Spaces
Jessica is getting dressed for school. She can choose pink pants or red pants, a white shirt or a cream shirt, and tan shoes or black shoes.
23. Use a tree diagram to find how many possible outfits she can wear.
\square
24. What is the probability she will choose pink pants, a white shirt, and tan shoes?
\square

7-6

Making Predictions
25. Write the three characteristics of a good sample.

26. The table shows the results of a survey. Predict how many students out of 364 would prefer to have a talent show for a school assembly.

School Assembly	
Science Fair	6
Poetry Reading	5
Talent Show	17

7-7

Problem-Solving Investigation: Solve a Simpler Problem
Solve. Use the solve a simpler problem strategy.
27. AMUSEMENT PARKS An amusement park offers a discount of 20% to students. Admission tickets are $\$ 40$. About how much money would students pay with the discount?

28. CARS On average, 15 cars pass over Wilson Bridge every hour. At this rate, how many cars pass over Wilson Bridge in one week?
\square

7-8

Estimating with Percents
Write the fraction for each percent.
29. $20 \%=\square$
30. $30 \%=\square$
31. $50 \%=\square$
32. $100 \%=\square$
33. $33 \frac{1}{3} \%=\square$
34. $66 \frac{2}{3} \%=\square$

Estimate each percent.

35. 23% of 90
\square
36. 47% of 18
\square
37. 61% of 29
\square

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 7.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 7 Practice Test on page 411 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 7 Study Guide and Review on pages 406-410 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 7 Practice Test on page 411 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 7 Foldables.
- Then complete the Chapter 7 Study Guide and Review on pages 406-410 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 7 Practice Test on page 411 of your textbook.

8

Systems of Measurement

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

NOTE-TAKING TIP: When you take notes, be sure to record vocabulary words and definitions. In addition, record examples and complete computations.

BUILD YOUR YOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 8.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
capacity			
Celsius $\left({ }^{\circ} \mathrm{C}\right)$			
centimeter			
cup			
degree			
elapsed time			
Fahrenheit $\left.{ }^{\circ} \mathrm{F}\right)$			
fluid ounce			
foot			
gallon			
gram			
inch			
kilogram			
kilometer			
liter			
mass			
meter			

Vocabulary Term	Found on Page	Definition	Description or Example
metric system			
mile			
milligram			
milliliter			
millimeter			
ounce			
pint			
pound			
temperature			
yard			

8-1
 Length in the Customary System

EXAMPLE Draw a Line Segment

Main IDEA

Change units of length and measure length in the customary system.

Key Concept

Customary Units of Length

1 inch (in.)
width of a quarter
1 foot (ft) = 12 in .
length of a large adult foot

1 yard (yd) $=3 \mathrm{ft}$ length from nose to fingertip

1 mile (mi) $=1,760 \mathrm{yd}$ 10 city blocks

FOLDABLES Include these units under the Customary Length tab in your Foldable.

1) Draw a line segment measuring $1 \frac{5}{8}$ inches.

Draw a line segment from \square to

Check Your Progress
Draw a line segment measuring $2 \frac{3}{4}$ inches.
\square

EXAMPLE Measure Length
2 RUBBER BANDS Measure the length of the rubber band to the nearest half, fourth, or eighth inch.

The rubber band is between \square inches and \square inches.
It is closer to

The length of the rubber band is about \square inches.

Homework AssignMent

Page(s):
Exercises:

Since 3 feet $=1$ yard, \square by \square.

```
\[
27 \div \square=9
\]
```

So, 27 feet $=\square$ yards.

Check Your Progress

a. $5 \mathrm{ft}=\square$ in.
b. $33 \mathrm{ft}=\square \mathrm{yd}$.

Complete.

8-2 Capacity and Weight in the Customary System

MAIN IDEA

- Change units of capacity and weight in the customary system.

BUILD YOUR VOGABULARY (pages 197-198)

Capacity is the amount that can be held in a container.

EXAMPLES Change Units of Capacity

Complete.

(1) $5 \mathbf{q t}=\square \mathbf{p t}$

So, 5 quarts $=$ \square pints.

You are changing a larger unit

 to a smaller unit. Since 1 quart $=\square$ pints, Multiply 5 by \square2 $80 \mathrm{fl} \mathrm{oz}=\square \mathbf{p t}$
First, find the number of cups in 80 fluid ounces. Since 8 fluid ounces $=\square$ cup, divide 80 by 8 .

So, 80 fluid ounces $=\square$ cups.
Next, find the number of pints in 10 cups.
Since 2 cups $=\square$ pint, divide 10 by 2.
\square
So, 80 fluid ounces $=$ \square pints.

Check Your Progress
a. $3 \mathrm{qt}=\square \mathrm{pt}$

Complete.

b. $96 \mathrm{fl} \mathrm{oz}=\square \mathrm{pt}$

EXAMPLES Change Units of Weight

3 ELEPHANTS An adult male elephant weighs 11,000 pounds. How many tons is this?
$11,000 \mathrm{lb}=\square \mathrm{T}$

Divide to change pounds to tons.

So, 1,000 pounds $=\square$ tons.

BANQUETS How many people at a banquet can be served 4 ounces of carrots from 8 pounds of carrots?
First, find the total number of ounces in 8 pounds.

pounds to ounces.

Next, find how many sets of

So, \square people can be served 4 ounces of carrots.

Homework
AssignMent
Page(s):
Exercises:
d. CHOCOLATE How many 4-ounce bags of chocolate candy can be made with 7 pounds of chocolate candy?

8-3 Length in the Metric System

MAIN IDEA
- Use metric units of
length.

BUILD YOUR YOGABULARY (pages 197-198)
 A meter (m) is the \square unit of \square in the metric system.
 The metric system is a
 \square system of
 \square and measures.

Key Concept

Metric Units of Length
1 millimeter (mm) thickness of a dime

1 centimeter (cm) half the width of a penny

1 meter (m)
width of a doorway
1 kilometer (km) six city blocks

FOLDABLES Be sure to write these units under the Metric Length tab.

EXAMPLES Use Metric Units of Length

Write the metric unit of length you would use to measure each of the following.

(1) width of a classroom

The width of a classroom is \square than the width of a doorway, but much \square than the length of six city blocks. So, the \square is an appropriate unit of measure.

2 the height of a drinking fountain

The \square of a drinking fountain is close to the \square of a doorway. So, the \square is an appropriate unit of measure.

3 distance from the East Coast to the West Coast
The distance from the East Coast is much \square than six city blocks. So, the \square is an appropriate unit of measure.

Remember It

One centimeter is about the width of your index finger.

Homework
 Assignment

4) width of a wide-tip marker

The width of a wide-tip marker is close to \square the width of a penny. So, the \square is an appropriate unit of measure.

Check Your Progress Write the metric unit of length you would use to measure each of the following.
a. length of a toothpick

b. distance from your home to your school
\square
c. length of a flashlight
\square
d. length of a minivan

EXAMPLE Estimate and Measure Length

(5) PECANS Estimate the metric length of the pecan. Then measure to find the actual length.

The length of the pecan appears to be the width of a penny.
So, the pecan is about \square. Use a ruler
to measure the actual length of the pecan. The pecan is
\square

Check Your Progress
GEOMETRY Estimate the length of the line segment shown below. Then measure to find the actual length.

8-4 Mass and Capacity in the Metric System

Main Idea

- Use metric units of mass and capacity.

Key Concept

Metric Units of Mass
1 milligram (mg) grain of salt

1 gram (g)
small paper clip
1 kilogram (km)
six medium apples
Metric Units of Capacity
1 milliliter (mL)
eyedropper
1 liter (L)
small pitcher
Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
FOLDABLES Be sure to include these metric units of mass and capacity in your Foldable.

BUILD YOUR VOGABULARY (pages 197-198)

The mass of an object is the amount of material it contains.

EXAMPLE Use Metric Units of Mass

Write the metric unit of mass that you would use to measure the following. Then estimate the mass.
(1) push pin

A pushpin has a mass \square than one small paper clip, but \square than six apples. The \square is the appropriate unit.

Estimate A pushpin is a little \square than a paper clip. One estimate for the mass of a pushpin is \square

EXAMPLE Use Metric Units of Capacity

Write the metric unit of capacity that you would use to measure the following. Then estimate the capacity.

2 the fruit juice in a punch bowl
A punch bowl has a capacity about the \square as a small pitcher. So, the \square is the appropriate unit. One estimate for the fruit juice in a punch bowl is \square

Homework
 AssignMent

Check Your Progress
Write the metric unit of mass or capacity that you would use to measure each of the following. Then estimate the mass or capacity.
a. pencil
b. bicycle

c. small cup of juice

d. large pitcher of milk

EXAMPLE Compare Metric Units

(3) BATS A biologist weighed several different types of bats. The table shows her results. Is the total mass of the bats more or less than one kilogram?

Type of Bat	Mass (g)
Spotted Bat	18
Evening Bat	9
Hoary Bat	34
Free-tailed Bat	15
Northern Yellow Bat	31

Find the total mass.

Since 1 kilogram $=\square$ grams and 107 grams is less than 1,000 grams, the total mass of the bats is
 one kilogram.

Check Your Progress

PUPPIES A veterinarian weighed four puppies from the same litter. The table shows his results. Is the total mass of the puppies more or less than one kilogram?
\square

Puppy	Mass (g)
Max	625
Dotty	810
Sam	790
Molly	575

8-5 Problem-Solving Investigation: Use Benchmarks

EXAMPLE

MAIN IDEA

- Solve problems using benchmarks.

Solve. Use a benchmark.

COOKIES You need 200 grams of flour to make cookies, but all you have is a balance. It doesn't have any calibrations to show mass. You do have a package of rice that you know is $\mathbf{7 9 4}$ grams. How can you measure the flour?
UNDERSTAND You need to measure \square grams of flour using a balance and a package of rice that is
\square grams.
A benchmark is a measurement by which other items can be measured. Since the package of rice is about 800 grams and you need to measure 200 grams, divide the rice into equal portions. Each portion will be about \square grams. Use one portion of the rice to measure an amount of flour with the same mass.

SOLVE Balance one portion of the rice and a cup of flour. Since you know one portion of rice is about

200 grams, adjust
until the two are balanced.

CHECK
Since $800 \div 4=\square$, you know that each of the four portions of rice is about
 grams. By balancing one portion of rice with the flour, you know the rice and flour are equal. Therefore, you have 200 grams of flour for the cookies.

Check Your Progress Solve. Use a benchmark.

COOKING You need $2 \frac{1}{4}$ cups of water for a casserole, but all you have is an empty 8 -ounce soup can. Describe a way you can measure the water.

8-6 Changing Metric Units

EXAMPLES Change Metric Units

Complete.

1) $\square \mathrm{mm}=489 \mathrm{~cm}$

Since 1 centimeter $=\square$ millimeters, \square by \square.
$489 \times$

So, \square $\mathrm{mm}=489 \mathrm{~cm}$.

2 $147 \mathrm{~g}=\square \mathbf{k g}$

So, $147 \mathrm{~g}=\square \mathrm{kg}$

Check Your Progress
Complete.
a. $\quad \mathrm{mm}=173 \mathrm{~cm}$

b. $256 \mathrm{~g}=\square \mathrm{kg}$

Remember IT

King Henry died Monday drinking chocolate milk. You can use this mnemonic, or memory aid, to remember the order of prefixes in the metric system: kilo-, hecto-, deca-, meters, deci-, centi-, milli-. Try writing your own mnemonic for the order of the prefixes.

EXAMPL:

3 TRAINING Use the table to determine the total number of kilometers Brady swam during three days of practice for a 200-meter race.

Practices	
Day	Distance (m)
Monday	300
Tuesday	420
Wednesday	580

First, find the total number of \square Brady swam.
$300+420+580=$ \square meters

Change 1,300 meters to \square
$1,300 \div 1,000=\square$ kilometers
Brady swam \square kilometers during the three days of practice.

Check Your Progress

HIKING Use the table to determine the total number of kilometers Suhele hiked during three days of camping.

Hiking	
Day	Distance (m)
Friday	50
Saturday	900
Sunday	850

8-7 Measures of Time

EXAMPLE Add Units of Time

Main IDEA

- Add and subtract measures of time.

KEY CONCEPT

Units of Time

1 second (s)
time needed to say 1,001
1 minute $(\min)=60$ seconds time for 2 average TV commercials

1 hour $(h)=60$ minutes time for 2 weekly TV sitcoms
(1) Find the sum of 3 h 15 min 52 s and 1 h 42 min 11 s .

Estimate 3 h 15 min $52 \mathrm{~s}+1 \mathrm{~h} 42 \mathrm{~min} \approx$

3 h +1 h15 min 42 min52 s 11 s	Add seconds first, then minutes and finally hours.
$\square \mathrm{h} \square \mathrm{min} \square \mathrm{s}$	
$\square 3$ seconds is greater than	
60 seconds or $\square \square$ minute.	

$\underbrace{4 \mathrm{~h} 57 \min (1 \min 3 \mathrm{~s})}_{4 \mathrm{~h} \square \min 3 \mathrm{~s}} \quad$ Rename 63 seconds.

Check for Reasonableness $4 \mathrm{~h} 58 \mathrm{~min} 3 \mathrm{~s} \approx 5 \mathrm{~h} \boldsymbol{\checkmark}$

EXAMPLE

2 MARATHONS The table shows the times of the winners of the men's and women's races at the 2007 Boston Marathon. How much faster was Cheruiyot's time than Grigoyeva's time?

Race	Runner	Time		
Men's	Cheruiyot	$2 \mathrm{~h} \quad 14 \mathrm{~min}$	13 s	
Women's	Grigoyeva	2 h	29 min	18 s

Estimate 2 h $29 \min 18 \mathrm{~s}-2 \mathrm{~h} 14 \min 13 \mathrm{~s} \approx$

2 h 29 min	18 s		
-2 h 14 min	13 s	\quad	Subtract the seconds first,
:---			
then minutes, and finally			
the hours.			

\square the hours.

Grigoyeva's time. $15 \mathrm{~min} 5 \mathrm{~s} \approx 15 \mathrm{~min} \checkmark$

Review It

How is renaming when you subtract hours and minutes similar to renaming when you subtract mixed numbers? (Lesson 5-5)
\qquad
\qquad
\qquad
\qquad

Check Your Progress

a. Find the sum of 2 h 18 min 37 s and 5 h 31 min 11 s .
\square
b. Jeremy ran a local marathon in 2 hours 53 minutes 47 seconds. His best friend Sam ran the same marathon in 2 hours 38 minutes 55 seconds. How much faster did Sam run?
\square

BUILD YOUR VOGABULARY (pages 197-198)

Elapsed time is how much time has passed from beginning to end.

EXAMPLE Elapsed Time

3 MOVIES A movie begins at 2:45 P.M. and ends at 4:22 P.M. How long is the movie?
You need to find out how much time has elapsed.

2:45 P.M. to 3:00 P.M.
 3:00 P.M. to 4:22 P.M.
 minutes.
15 min
$+\quad 1 \mathrm{~h}$
22 min
h \square \min

The length of the movie is \square hour \square minutes.

Check Your Progress
BUSES A bus leaves the station at 6:45 A.M. If it arrives at its destination at 8:10 A.M., how long was its trip?

8-8 Measures of Temperature

MAIN IDEA

- Choose and estimate reasonable temperatures.

BUILD YOUR VOGABULARY (pages 197-198)

Temperature is the measure of \square or \square of an object or environment. Temperature is measured in degrees. In the \square system, temperature is measured in degrees Celsius (${ }^{\circ} \mathrm{C}$). In the \square system, temperature is measured in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$).

EXAMPLES Choose Reasonable Temperatures

Choose the more reasonable temperature for each.
(1) hot water in a bathtub: $62^{\circ} \mathrm{F}$ or $102^{\circ} \mathrm{F}$

Normal body temperature is \square, so hot water in a bathtub would be warmer than your body temperature. So,
\square is a more reasonable temperature.
ice cream: $16{ }^{\circ} \mathrm{C}$ or $-2^{\circ} \mathrm{C}$
On the Celsius scale, water freezes at \square and ice cream needs to be kept frozen. So, \square would be too warm for the temperature of ice cream. The more reasonable temperature

Check Your Progress

Choose the more reasonable temperature for each.
a. inside a restaurant: $22^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$

b. cold glass of lemonade: $50^{\circ} \mathrm{F}$ or $70^{\circ} \mathrm{F}$
\square

EXAMPLES Give Reasonable Temperatures

Give a reasonable estimate of the temperature in degrees Fahrenheit and degrees Celsius for each situation.

3 inside a freezer

The temperature inside a freezer should be colder than room temperature and also cold enough for water to \square So, a reasonable temperature is $\square{ }^{\circ} \mathrm{F}$ and $\square{ }^{\circ} \mathrm{C}$

4 water in a Florida lake

Water in a Florida lake would be warm but not \square
So, a reasonable temperature is
\square ${ }^{\circ} \mathrm{C}$.

Check Your Progress Give a reasonable estimate of the temperature in degrees Fahrenheit and degrees Celsius for each situation.
a. water skiing

b. snow sledding

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 8 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 8, go to
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 197-198) to help you solve the puzzle.

8-1

Length in the Customary System

Underline the correct term to complete each sentence.

1. To change from smaller to larger units of length, (divide, multiply).
2. The (meter, mile) is a common unit of length in the customary system.

Complete.

3. $24 \mathrm{in}=\square \mathrm{ft}$
4. $9 \mathrm{ft}=\square \mathrm{yd}$
5. $5 \mathrm{ft}=\square$ in
6. Draw a line segment measuring $3 \frac{3}{4}$ inches.
\square

8-2

Capacity and Weight in the Customary System

7. Order pint, gallon, cup, fluid ounce, and quart from the smallest to largest
\square

Complete.

8. $4 \mathrm{c}=\square \mathrm{pt}$
9. $2 \mathrm{c}=\square \mathrm{fl} \mathrm{oz}$
10. $1 \mathrm{gal}=\square \mathrm{qt}$
11. $6,000 \mathrm{lb}=\square \mathrm{T}$
12. $64 \mathrm{oz}=\square \mathrm{lb}$
13. $5 \mathrm{lb}=$ \square

8-3

Length in the Metric System

Match each of the following with the metric unit of length you would use to measure it. Answers may be used more than once.
14. pencil \square
15. distance from Paris to Rome \square
16. width of a basketball court \square
17. cover of a book \square
18. width of a thin wire \square
a. meter
b. millimeter
c. inch
d. kilometer
e. centimeter

8-4

Mass and Capacity in the Metric System

Match each of the following with the metric unit of mass or capacity you would use to measure it. Answers may be used more than once.
19. bottle of food coloring \square
20. bottle of orange juice \square
21. sixth grader \square
22. silver dollar \square
a. liter
b. kilogram
c. ounce
d. milligram
e. gram
f. milliliter

8-5

Problem-Solving Investigation: Use Benchmarks

24. WALKING Sophia would like to walk 2 miles every day around her neighborhood. She knows that 1 mile is about 10 blocks. Describe a way she could estimate the distance she should walk.

8-6

Changing Metric Units

Underline the correct term to complete each sentence.

25. One thousand grams is equivalent to (one kilogram, one milligram).
26. One hundred meters is equivalent to (one hectometer, one centimeter).
27. One hundredth of a meter is equivalent to (one hectometer, one centimeter).

Complete.

28. $525 \mathrm{~g}=\square$ kg 29. $258 \mathrm{~cm}=\square \mathrm{m}$ 30. $1 \mathrm{~m}=\square \mathrm{km}$
29. $3,000 \mathrm{mg}=\square \mathrm{g}$ \square mL
30. $260 \mathrm{cL}=\square \mathrm{L}$

8-7

Measures of Time
Match each sum or difference to the correct answer.
34. $2 \mathrm{~h} 36 \min 9 \mathrm{~s}+1 \mathrm{~h} 28 \min 16 \mathrm{~s}$ \square a. 4 h 4 min 25 s
b. 8 h 48 min 1 s
c. 4 h 47 min 18 s
35. 6 h $35 \min 18 \mathrm{~s}+2 \mathrm{~h} 12 \min 43 \mathrm{~s}$ \square
36. 9 h 13 min 35 s - 4 h $26 \min 17$ s
d. 59 min 51 s
37. HOMEWORK Destyne started her homework at 3:50 P.M. She finished her homework at 5:25 P.M. How long did it take Destyne to do her homework?

8-8

Measures of Temperature
Underline the more reasonable temperature for each.
38. eggs boiling on the stove: $75^{\circ} \mathrm{C}$ or $100^{\circ} \mathrm{C}$
39. healthy boy: $98.8^{\circ} \mathrm{F}$ or $101^{\circ} \mathrm{F}$
40. frozen pizza: $32^{\circ} \mathrm{C}$ or $-15^{\circ} \mathrm{C}$
41. inside the mall: $50^{\circ} \mathrm{F}$ or $71^{\circ} \mathrm{F}$

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 8.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 8 Practice Test on page 465 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 8 Study Guide and Review on pages 461-464 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 8 Practice Test on page 465.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 8 Foldables.
- Then complete the Chapter 8 Study Guide and Review on pages 461-464 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 8 Practice Test on page 465.

Student Signature

Parent/Guardian Signature

Teacher Signature

9

Geometry: Angles and Polygons

FOLDABLES

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with seven half-sheets of notebook paper.

STEP 1 Fold a sheet in half lengthwise. Then cut a 1 " tab along the left edge through one thickness.

STEP 2 . Glue the 1" tab down. Write the word Geometry on this tab and the lesson and title on the front tab.

STEP 3. Write Definitions and Examples under the tab

STEP 4 Repeat Steps 1-3 for each lesson using the remaining paper. Staple them to form a booklet.

NOTE-TAKING TIP: Outlining can help you understand and remember complicated
 information. As you read a lesson, take notes on the material. Include definitions, concepts, and examples. After you finish each lesson, make an outline of what you learned.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 9.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
acute angle [uh-KYOOT]			
acute triangle			
angle			
complementary angles			
congruent angles [kuhn-GROO-uhnt]			
congruent figures			
congruent segments			
corresponding sides			
degree [dih-GREE]			
equilateral triangle [e-kwuh-LA-tuh-rul]			
isosceles [eye-SAH-suh-LEEZ]			
line segment			
obtuse angle [ahb-TOOS]			

(continued on the next page)

Vocabulary Term	Found on Page	Definition	Description or Example
obtuse triangle			
parallelogram			
quadrilateral [KWAH- druh-LA-tuh-ruhl]			
rectangle			
rhombus [RAHM-buhs]			
right angle			
right triangle			
scalene triangle [SKAY-leen]			
side			
similar figures			
square			
straight angle			
supplementary angles			
trapezoid			
vertex			

9-1 Measuring Angles

MAIN IDEA
- Measure and classify
angles.

BUILD YOUR VOCABULARY (pages 219-220)
Angles have \square sides that share a
The degree is the most common unit of measure
for \square.

EXAMPLES Measure Angles

Use a protractor to find the measure of each angle.

1

Align the \square of the protractor with the vertex of the angle. The angle measures \square

2

The angle measures \square

HoMEWORK AssignMent

The angle is \square So, it is a \square angle.

The angle is larger than a

EXAMPLES Classify Angles

Classify each angle as acute, obtuse, right, or straight.

Check Your Progress Classify each angle as acute, obtuse, right, or straight.
a.

9-2 Estimating and Drawing Angles

EXAMPLE Estimate Angle Measure

MAIN IDEA

Estimate measures of angles and draw angles.

Remember It

When you check your answers for reasonableness, keep in mind that a right angle measures 90° and that half of a right angle measures 45°.

(1) Estimate the measure

 of the angle.The angle is greater than \square and less than
\square So, a reasonable estimate is about

Check Your Progress

Estimate

 the measure of the angle.

EXAMPLE Draw an Angle

(2) Use a protractor and a straightedge to draw a 39° angle.

Step 1 Draw one side of the angle. Then mark the \square and draw an arrow.

Step 2 Place the \square of the protractor on the vertex. Align the mark labeled \square on the protractor with the line. Find
 on the correct scale and make a dot.

FOLDABLES

Organize It

On the Lesson 9-2 section of your Foldable, write information on estimating angle measures and drawing angles. Include some of your own examples.

Homework Assignment

Page(s):
Exercises:

Step 3 Remove the protractor and use a \square to draw the side that connects the \square and the dot.

Check Your Progress Use a protractor and a straightedge to draw a 64° angle.

9-3 Angle Relationships

BUILD YOUR VOGABULARY (pages 219-220)
 MAIN IDEA
 - Classify and apply angle relationships.
 When two lines intersect, they form two pairs of opposite angles called
 \square

Angles with the same measure are congruent angles.

EXAMPLE Find a Missing Angle Measure

(1) Find the value of \boldsymbol{x} in the figure.

The angle labeled x° and the angle labeled 110°
\square angles. Therefore, they are congruent. So, the value of x is \square

Check Your Progress

Find the value of x in the figure.

BUILD YOUR VOGABULARY (pages 219-220)

Two angles are supplementary if the sum of their measures

Two angles are complementary if the sum of their measures

EXAMPLE Classify Pairs of Angles

2 Classify the pair of angles as complementary, supplementary, or neither.

$$
30^{\circ}+60^{\circ}=\square
$$

Since the sum of their measures is \square, the angles are \square

Check Your Progress Classify each pair of angles as complementary, supplementary, or neither.
a.

b.

EXAMPLE Find Missing Angle Measures

Find the value of x in each figure.

Homework Assignment

Page(s):
Exercises:

$$
\begin{aligned}
85^{\circ}+x^{\circ} & =180^{\circ} \\
85^{\circ}+\square & =180^{\circ}
\end{aligned}
$$

Since the angles form a straight line, they are

Definition of supplementary angles.
So, the value of x is \square

Check Your Progress figure.
a.

b.

9-4 Triangles

BUILD YoUR VocabULARY (pages 219-220)
 A triangle with all
 \square angles is called an acute triangle.
 A triangle with
 \square is called a right triangle. A triangle with one \square angle is called an obtuse triangle.

MAIN IDEA

- Classify triangles and find missing angle measures in triangles.

EXAMPLES Classify a Triangle by Its Angles

Classify each triangle as acute, right, or obtuse.

The 90° angle is a right angle. So, the triangle is a triangle.

2

All the angles are \square So, the triangle is an \square triangle.

Check Your Progress
 Classify each triangle as acute,

 right, or obtuse.a.

b.

EXAMPLE Find Angle Measures

Key Concept

Sum of Angle Measures in a Triangle

The sum of the measures of the angles in a triangle is 180°.

3 PARK A city park is in the shape of a triangle. Find the value of x in the triangle.
The three angles marked are the angles of a triangle. Since the sum of the angle measures in a triangle is
$\square, x^{\circ}+36^{\circ}+36^{\circ}=180^{\circ}$.

Use mental math to solve the equation.

$$
x+36+36=180 \quad \text { Write the equation. }
$$

 added to 72 equals 180?
$\square+72=180 \quad$ You know that $\square+72=180$.
So, the value of x is \square

Check Your Progress
Find the value of x.

BUILD YOUR VOGABULARY (pages 219-220)

Each \square of a triangle is a line segment.

Line segments that have the same \square are called congruent segments.
A scalene triangle has \square congruent sides. An isosceles triangle has \square congruent sides.
\square congruent sides.

EXAMPLES Classify a Triangle by Its Sides
Classify each triangle as scalene, isosceles, or equilateral.

4

None of the sides are congruent. So, the triangle is a \square triangle.

Only \square of the sides are congruent.

So, the triangle is an \square triangle.

Check Your Progress
Classify each triangle as scalene, isosceles, or equilateral.
a.

b.

Homework Assignment

Page(s):
Exercises:

9-5 Quadrilaterals

MAIN IDEA

- Classify quadrilaterals and find missing angle measures in quadrilaterals.

Key Concept

Angles of a Quadrilateral
The sum of the measure of the angles of a quadrilateral is 360°.

BUILD YOUR VOGABULARY (pages 219-220)

A quadrilateral has \square sides and \square angles.

EXAMPLE Find Angle Measures

(1) Find the value of x in the quadrilateral shown.

Since the sum of the angle measures in a quadrilateral is 360°, $x+50+130+50=360$.
$x+50+130+50=360 \quad$ Write the equation.
$x+\square=360 \quad$ Add 50, 130, and 50.
THINK What measure added to 230 equals 360 ?
$\square+230=360 \quad$ You know that $\square+230=360$.
So, the value of x is \square

Check Your Progress
Find the value of x in the quadrilateral shown.

FOLDABLES

ORGANIZE IT

On the Lesson 9-5 section of your Foldable, include the triangle and quadrilateral shown at the right. Be sure to list the characteristics of each figure.

```
9-1
Measuring
Angles
```

BUILD YOUR VOCABULARY (pages 219-220)

EXAMPLE Classify Quadrilaterals

2 RUGS Classify the quadrilateral of each rug below.

The first rug is a \square . The second rug is a

Check Your Progress
Classify the quadrilateral below.

Problem-Solving Investigation: Draw a Diagram

EXAMPLE Use the Draw a Diagram Strategy

MAIN IDEA

Solve problems by drawing a diagram.

HOMEWORK

Assignment
Page(s):
Exercises:

FOOD Biscuits will be made using square biscuit cutters that are 2 inches long and 2 inches wide. The biscuits will be placed 2 inches apart on a baking sheet, and 1 inch from the edge. How many biscuits will fit on a baking sheet that is 24 inches by 28 inches?

UNDERSTAND You know all the dimensions. You need to find how many biscuits will fit on a baking sheet.

PLAN
Draw a diagram.
SOLVE

The diagram shows that \square biscuits will fit

CHECK Make sure the dimensions meet the requirements. The length of the pan is 28 inches and the width is 24 inches. So, the answer is correct.

Check Your Progress

DISTANCE The dentist lives one third of the way between Nina's house and the school. If Nina lives 5 miles from the dentist, how many miles does she live from the school?

9-7
 Similar and Congruent Figures

Main Idea

- Identify similar and congruent figures.

BUILD YOUR VOGABULARY (pages 219-220)

Figures that have the same \square but not necessarily the same size are called similar figures.

Figures that have the sam \square and \square are congruent figures.

EXAMPLES Identify Similar and Congruent Figures

Write IT

Are all equilateral triangles similar, congruent, both, or neither? Explain.,
\qquad
©
Tell whether each pair of figures is similar, congruent, or neither.

The figures have the same shape but not the same size.
They are \square

2

The figures have neither the same \square nor \square

Check Your Progress
Tell whether each pair of figures is similar, congruent, or neither.
a.

b.

BUILD YOUR VOGABULARY (pages 219-220)

FOLDABLES

Organize IT

In the Lesson 9-7 section of your Foldable, take notes about similar and congruent figures and corresponding parts. Include some of your own examples.

```
9-1
Measuring
Angles
```

The sides of \square figures that "match" are called corresponding sides.

EXAMPLE Identify Corresponding Sides

SKATEBOARDING RAMPS The two ramps shown are congruent.

3 What side of triangle $Q R S$ corresponds with $\overline{A C}$?
Corresponding sides represent the same side of congruent figures. So, $\overline{Q S}$ corresponds to \square

Check Your Progress The two floor tiles shown are congruent.

What side of rectangle $A B C D$ corresponds with $\overline{F G}$ on rectangle $E F G H$?

EXAMPLE Identify Similar Figures

4. Which rectangle below is similar to rectangle $E F G H$?

Examine the ratios of corresponding sides to see if they have a constant ratio.

Rectangle ADCB Rectangle MPON Rectangle WXYZ

$\frac{G F}{C B}=\frac{6}{4}$ or $\square \quad \frac{G F}{O N}=\frac{6}{10}$ or $\square \quad \frac{G F}{Y X}=\frac{6}{9}$ or \square

Not similar
Not similar
Similar

So, rectangle \square is similar to rectangle $E F G H$.

Homework Assignment

Page(s):
Exercises:

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 9 Foldable to help you study for your chapter test.

VOCABULARY PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 9, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 219-220) to help you solve the puzzle.

9-1

Measuring Angles
Write whether each angle is acute, obtuse, right, or straight.

1. 18° \square
2. 180° \square
3. 163° \square
4. 90° \square
5. Use a protractor to find the measure of the angle. Then classify the angle as acute, obtuse, right, or straight.
\square

9-2

Estimating and Drawing Angles

Estimate the measure of each angle.

6.

8.

9-3

Angle Relationships

Find the value of x in each figure.
9.

10.

\square

Classify each pair of angles as complementary, supplementary, or neither.
11.

12.

9-4
Triangles
Classify each triangle as acute, right, or obtuse.
13.

14.

15. Classify the triangle shown as scalene, isosceles, or equilateral.

9-5

Quadrilaterals

Match characteristics to each kind of figure. Answers may be used more than once.
16. rectangle

17. square \square
18. parallelogram
19. rhombus \square
20. trapezoid \square
a. All angles are congruent.
b. Opposite sides are congruent.
c. All angles are right angles.
d. All sides are congruent.
e. Opposite angles are congruent.
f. Exactly on pair of opposite sides parallel.

9-6

Problem-Solving Investigation: Draw a Diagram
Solve. Use the draw a diagram strategy.
21. DECORATING Tanya is decorating her square dining room for a party. She would like to hang three streamers from the center of the ceiling to each wall. If she also hangs one streamer from the center to each corner of the room, how many streamers does she need?

9-7

Similar and Congruent Figures

22. Tell whether each characteristic is true for congruent and similar figures. Write congruent, similar, or both.
a. have the same shape \square
b. may or may not have the same size
c. must have the same size \square
Tell whether each pair of figures is congruent, similar or neither.

23.

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 9.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 9 Practice Test on page 515 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 9 Study Guide and Review on pages 509-514 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 9 Practice Test on page 515.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 9 Foldables.
- Then complete the Chapter 9 Study Guide and Review on pages 509-514 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 9 Practice Test on page 515.

Student Signature

Teacher Signature

Measurement: Area, Perimeter, and Volume

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes.

Begin with a sheet of $11^{\prime \prime} \times 17^{\prime \prime}$ paper and six index cards.

STEP 1 Fold lengthwise about 3" from the bottom.

STEP 3 Fold the paper in thirds.

STEP 3) Open and staple the edges on either side to form three pockets.

STEP 4. Label the pockets as shown. Place two index cards in each pocket.

NOTE-TAKING TIP: As you read a chapter, take notes, define terms, record concepts, and sketch examples in tabular form. Then you can use the table to compare and contrast the new material.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 10. As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
base			
center			
chord			
circle			
circumference [suhr-KUHM-fuh- ruhns]			
cubic units			
diameter			
[deye-A-muh-tuhr]			

Vocabulary Term	Found on Page	Definition	Description or Example
height			
perimeter [puh-RIH-muh-tuhr]			
radius			
rectangular prism			

BUILD YOUR VOGABULARY (pages 241-242)

MAIN IDEA

- Find the perimeters of squares and rectangles.

KEY CONCEPT

Perimeter of a Square The perimeter P of a square is four times the measure of any of its sides s.

EXAMPLE Perimeter of a Square

1) ARCHITECTURE The base of the Eiffel Tower is shaped like a square with 125 -meter sides. What is the perimeter of the base?

$P=\square s$	Perimeter of a square
$P=\square(125)$	Replace s with 125.
$P=\square$	Multiply.

The perimeter of the base of the Eiffel Tower is

Check Your Progress
A new discount store is being built with its base in the shape of a square with 75 -foot sides. What is the perimeter of the base?

EXAMPLE Perimeter of a Rectangle

KEY CONCEPT

Perimeter of a Rectangle The perimeter P of a rectangle is the sum of the lengths and widths. It is also two times the length, plus two times the width w.

2 Find the perimeter of the rectangle.

$P=2 \ell+2 w$
Write the formula.

$P=\square+\square \quad$ Multiply.
$P=\square$ Add.
The perimeter is \square meters.

Check Your Progress
Find the perimeter of the rectangle.

10-2 Circles and Circumference

MAIN IDEA

- Estimate and find the circumference of circles.

KEY Concept

Radius and Diameter The diameter d of a circle is twice its radius r. The radius r of a circle is half of its diameter d.

BUILD YOUR VOGABULARY (pages 241-242)

A circle is the set of all \square in a plane that are the same distance from a \square called the center.

A chord is any segment with both \square on the circle.

The diameter is the distance \square a circle through its center.

The radius is the distance from the \square to any point on a circle.

The circumference is the distance \square a circle.

EXAMPLE Find the Radius

(1) The diameter of a circle is 48 centimeters. Find the radius.

The radius is \square centimeters.

Check Your Progress
The radius of a circle is 22 centimeters. Find the diameter.

EXAMPLES Estimate the Circumference

Key Concept

Circumference The circumference of a circle is equal to π times twice its radius.

Estimate the circumference of each circle.

2

Circumference of a circle
and r with

Circumference of a circle

Multiply.

Multiply.

Check Your Progress each circle.
a. diameter $=4 \mathrm{yd}$
b. radius $=12$ in.

EXAMPLE Use a Calculator to Find Circumference

4 Use a calculator to find the circumference of the circle. Round to the nearest tenth.
$C=\square$

Circumference of a circle

$2 \times \pi \times 16$ ENTR 18.8495559215
The circumference is about \square yards.

Check Your Progress

Use a calculator to find the circumference of a circle with a diameter of 24 centimeters. Round to the nearest tenth.

EXAMPLE

5 TEST EXAMPLE Anna knows the diameter of a basketball hoop but would like to find the circumference. Which method can she use to find the circumference of the basketball hoop?
A Divide the diameter by π.
B Multiply the radius by π.
C Multiply the diameter by 2 , and then multiply by π.
D Multiply the diameter by π.

Read the Item

You need to determine the method used to find the circumference of the basketball hoop. You know the
 of the basketball hoop.

Solve the Item

Use the formula for the circumference of a circle $C=\square$.
The formula states that the circumference of a circle is equal to

Check Your Progress

MULTIPLE CHOICE A standard baseball has a circumference of 9 inches. Which method can be used to find the radius of the baseball?

F Divide the circumference by π and then multiply by 2.
G Divide the circumference by π and then divide by 2 .
H Multiply the circumference by π and then multiply by 2 .
J Multiply the circumference by π and then divide by 2 .

10-3 Area of Parallelograms

MAIN IDEA

- Find the areas of parallelograms.

Key Concept

Area of a Parallelogram The area A of a parallelogram is the product of any base b and its height h.

FOLDABLES Write the formula for the area of a parallelogram on your Foldable.

BUILD YoUR Vocabulary (pages 241-242)

The base of a parallelogram can be any one of its \square The shortest distance from the base to the \qquad side is the height of a parallelogram.

EXAMPLES Find Areas of Parallelograms

Find the area of each parallelogram.

The area is \square square units or \square

Replace b with \square and h with
 $A=$ \square Multiply.

The area is \square square centimeters or \square

Check Your Progress parallelogram.
a.

EXAMPLE

3 INTERIOR DESIGN Find the area of the floor that the rug will cover.

The area rug is a parallelogram, so use the formula $A=b h$.

Area of parallelogram
 with
 $10 \frac{1}{2}=\frac{21}{2}, 6 \frac{1}{4}=\frac{25}{4}$.

The area rug will cover \square square feet.

Check Your Progress

ART

Find the area of the mural that John needs to paint.

10-4 Area of Triangles

EXAMPLES Find the Area of a Triangle

Main IDEA

- Find the areas of triangles.

Key Concept

Area of a Triangle The area A of a triangle is one half the product of the base b and its height h.

Find the area of each triangle.
(1)

$A=\frac{b h}{2}$

$A=\frac{\square}{2}$
Replace b with \square and h with
\square
Area of a triangle

Simplify the numerator.
$A=$ \square

By counting, you find that the measure of the base is \square units and the height is \square units. and h with \square

Divide.

The area of the triangle is \square

$A=\frac{b h}{2} \quad$ Area of a triangle

Replace b with \square and h with \square $A=\frac{\square}{2}$

Simplify the numerator.

Divide.

The area of the triangle is \square

FOLDABLES

Organize IT

Write the formula for the area of a triangle on your Foldable.

EXAMPL

a.

b.

3 BANNER Ari cut out a banner in

 the shape of a triangle. What is the area of the banner?

Area of a triangle

Replace b with \square and h with \square

Simplify the numerator.

Divide.
The area of the banner is \square square inches.

Check Your Progress

Rachael decides to purchase a triangular pennant to hang on her bedroom wall as a souvenir of the baseball game she attended. If the base of the pennant is 9 inches and the height is 25 inches, how many square inches of her wall will be covered by the pennant? Round to the nearest tenth.

Homework Assignment

Page(s):
Exercises:

10-5 Problem-Solving Investigation: Make a Model

EXAMPLE Use the Make a Model Strategy

Main Idea

- Solve problems by making a model.

Homework

 Assignment

SOUP CANS Soup cans in a grocery store display are arranged in the shape of a triangle. The top row has one can, and each row below it has one more can than the previous row. How many rows are there in the display if 28 cans are used?

UNDERSTAND You need to know how many rows are in the display. There is \square can in the top row and each row below it has \square can than the previous row. You have used \square cans.

PLAN Make a model using blocks to find the number of rows in the display.

SOLVE Begin with 30 blocks. Place one block to represent the one can in the top row. For the next row, place two blocks under the first block. For each consecutive row, continue adding one block to the amount of blocks in the previous row.

By continuing this pattern, $1+2+3+4+5$

make \square rows.
CHECK $28-7-6-5-4-3-2-1$ leaves no extra soup cans.

Check Your Progress CHAIRS Sandy is setting up chairs

 for the school band concert. If she places 5 chairs in the front row and each row behind the front row has two more chairs than the previous row, how many rows of chairs will be needed to seat 147 people?
10-6 Volume of Rectangular Prisms

Main Idea

Find the volume of rectangular prisms.

Key Concept

Volume of a Rectangular Prism The volume V of a rectangular prism is the product of its length ℓ, width w, and height h.

FOLDABLES Be sure to write the formula for the volume of a rectangular prism, $V=B h$, in your Foldable.

BUILD YOUR VOGABULARY (pages 241-242)

The bases of a rectangular prism are congruent

three-dimensional figure is the volume of the figure.
Volume is measured in cubic units.

EXAMPLE Find the Volume of a Rectangular Prism

(1) Find the volume of the rectangular prism.

METHOD 1 Use $V=\ell w h$.
$V=\ell w h$

Volume of a rectangular prism

\square Multiply.

METHOD 2 Use $V=B h$.
B, or the area of the base, is square meters.
$V=B h$

$V=\square$
\square \times
 or \square

Volume of a rectangular prism

Multiply.
The volume is \square

WRITE IT

In your own words, explain the difference between a twodimensional figure and a three-dimensional figure.
\qquad
\qquad
\qquad
\qquad

Homework Assignment

Page(s):
Exercises:

10-7 Surface Area of Rectangular Prisms

MAIN IDEA
- Find the surface areas
of rectangular prisms.

BUILD YOUR VOCABULARY (pages 241-242)
The \square of the areas of all the \square of a prism is called the surface area of the prism.

EXAMPLE Find the Surface Area of a Rectangular Prism

(1) Find the surface area of the rectangular prism.

KEy Concept

Surface Area of a Rectangular Prism The surface area S of a rectangular prism with length ℓ, width w, and height h is the sum of the areas of the faces.

Foldables Include the formula for finding the surface area of a rectangular prism on your Foldable.

Find the area of each face.

top and bottom
$2(\ell w)=2(\square \times \square)=\square$
front and back

two sides
$2(w h)=2(\square \times \square)=\square$

Add to find the surface area.

The surface area is \square $+$ \square $+$ \square or \square square centimeters.

Remember IT

According to the order of operations, first you simplify within parentheses, then you multiply, and finally you add from left to right.

Homework

 AssignmentPage(s):
Exercises:

Check Your Progress rectangular prism.

EXAMPL:

2 PACKAGING A box measures 13 inches long, 7 inches wide, and 4 inches deep. What is the surface area of the box?
$S=2 \ell w+2 \ell h+2 w h \quad$ Surface area of a prism

$$
\ell=\square, w=\square, h=\square
$$

$$
S=2(\square \times \square)+2(\square \times \square(\square \times \square)
$$

$S=2(\square)+2(\square)+2(\square)$
Simplify within parentheses.
$S=\square+\square+\square$ Multiply.
$S=\square$
Add.
The surface area of the box is \square

Check Your Progress
A box measures 9 inches long,
5 inches wide, and 12 inches deep. What is the surface area of the box?

BRINGING IT ALL TOGETHER

STUDY GUIDE

FOLDABLES

Use your Chapter 10 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 10, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 241-242) to help you solve the puzzle.

10-1

Perimeter

Complete.

1. The formula for the perimeter of a rectangle is \square
2. The formula for the perimeter of a square is \square
3. Find the perimeter of a rectangle.
15.8 ft
$8.1 \mathrm{ft} \square 8.1 \mathrm{ft}$
15.8 ft

10-2
Circles and Circumference

Underline the correct term to complete each sentence.

4. The distance around a circle is called the (perimeter, circumference).
5. The distance from the center of a circle to any point on the circle is called the (radius, diameter).
6. The circumference of a circle is equal to π times its (diameter, radius).
7. Use a calculator to find the circumference of a circle with a diameter of 15 meters. Round to the nearest tenth if necessary.

10-3

Area of Parallelograms

Match the area to the description of each parallelogram.

8. base 7 cm ; height $3.5 \mathrm{~cm} \square$
9. base 6.5 cm ; height 2 cm

10. base 5.5 cm ; height 2.5 cm \square 11. base 4.75 cm ; height 2 cm \square
11. A carpet in the shape of a parallelogram has a base of 3.75 m and a height of 2.25 m . \square Estimate the area of the floor that the carpet will cover.
a. $13 \mathrm{~cm}^{2}$
b. $9.5 \mathrm{~cm}^{2}$
c. $8.75 \mathrm{~cm}^{2}$
d. $24.5 \mathrm{~cm}^{2}$
e. $13.75 \mathrm{~cm}^{2}$

10-4

Area of Triangles

13. Write in words the formula for the area of a triangle.

Find the area of each triangle.
14.

15.

16.

10-5

Problem-Solving Investigation: Make a Model

Solve. Use the make a model strategy.

17. MUSIC Mrs. Chase's 64 music students are having a concert. The students are standing on a set of risers that are four rows high. She has arranged the students so that there are 10 students in the front row and each row thereafter has four more students. How many students are in the top row?
\square

10-6

Volume of Rectangular Prisms

Explain what each of the following formulas mean.

18. $V=\ell w h$
\square
19. $V=B h$
\square
Find the volume of each rectangular prism.
20. length, 8 in., width, 5 in., height, 2 in. \square
21. length, 7 cm , width, 4 cm , height, 2 cm \square
22. length, 2 ft , width, 3 ft , height, 2 ft \square 10-7

Surface Area of Rectangular Prisms

Find the surface area of each rectangular prism.
23. $\ell=6 \mathrm{ft}, w=5 \mathrm{ft}, h=1.5 \mathrm{ft}$ \square
24. $\ell=10 \mathrm{~cm}, w=6 \mathrm{~cm}, h=8 \mathrm{~cm}$ \square
25. $\ell=7 \mathrm{~m}, w=4 \mathrm{~m}, h=1 \mathrm{~m}$ \square
26. Shira has 120 tiles that are each 1 in . square. She wants to cover the outside of a rectangular box completely with the tiles. Give the dimensions of a box that she could cover completely with tiles. (There may be some tiles left over.)

10

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 10.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 10 Practice Test on page 565 of your textbook as a final check.

I used my Foldable or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 10 Study Guide and Review on pages 561-564 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 565.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 10 Foldable.
- Then complete the Chapter 10 Study Guide and Review on pages 561-564 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 10 Practice Test on page 565.

Integers and Transformations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter．You will see Foldable reminders in the margin of this Interactive Study Notebook to help you in taking notes．

Begin with eleven sheets of notebook paper．

STEP 1 Staple the eleven sheets together to form a booklet．

Cut a tab on the second page the width of the white space．On the third page， make the tab 2 lines longer， and so on．

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 11.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
angle of rotation			
image			
quadrant			
reflection			
rotation			
rotational symmetry			
transformation			

11-1 Ordering Integers

EXAMPLE Compare Integers

MAIN IDEA

- Compare and order integers.

Remember It

On a number line, the number to the left is always less than the number to the right.

1) Replace with <or > to make -2 - $\mathbf{6}$ a true sentence. Graph -2 and -6 on a number line. Then compare.

Since -2 is to the \square of $-6,-2 \square-6$.

Check Your Progress Replace with $<$ or $>$ to make $-7-3$ a true sentence.
\square

EXAMPLE Order Integers

2 Order 18, $0,-10$, and 12 from greatest to least.
Graph the numbers on a number line.

The order from greatest to least is \square

Check Your Progress
Order $20,-4,-20$, and 5 from greatest to least.

EXAMPLE

3 WEATHER The average daily low temperatures in four northern towns are $6,-14,10$, and -8 degrees Fahrenheit. Order the temperatures from least to greatest.
First, graph each integer. Then, write the integers as they appear on the number line from \square to \square

The order from the least to greatest is \square

Check Your Progress GOLF The final scores for four

 golfers competing in a tournament are $2,-5,4$, and -1 . Order the scores from least to greatest.
HOMEWORK ASSIGNMENT

Page(s):
Exercises:

11-2 Adding Integers

EXAMPLES Add Integers with Same Sign

Main IDEA
Add integers.

Write It

Write the following equation in words: $-4+(-3)=-7$.
\qquad
\qquad
\qquad
\qquad

1 Find $+6+(+1)$.
METHOD 1 Use counters.

Add \square positive counters and \square positive counter to the mat.

METHOD 2 Use a number line.

> Start at 0 . Move 6 units to the
> \square to show +6 . From there, move 1 unit right to show +1.

$\mathrm{So},+6+(+1)=\square$.

2 Find $-5+(-3)$.
METHOD 1 Use counters.

FOLDABLES
ORGANIZE IT
Write about what you learn about adding integers with different signs under the Lesson 11-2 tab of your Foldable. Be sure to include examples.

METHOD 2 Use a number line.

EXAMPL: Add Integers with Different Signs

(3) Find $-7+3$.

METHOD 1 Use counters.

METHOD 2 Use a number line.

So, $-7+3=\square$.

KEy Concept

Adding Integers The sum of two positive integers is always positive.

The sum of two negative integers is always negative.
The sum of a positive integer and a negative integer is sometimes positive, sometimes negative, and sometimes zero.

Homework Assignment

Page(s):
Exercises:

Check Your Progress
Add. Use counters or a number line if necessary.
a. $+4+(+2)$
b. $-2+(-5)$
\square
c. $-9+7$
\square

11-3 Subtracting Integers

EXAMPLE Subtract Positive Integers

Main IDEA

- Subtract integers.

Key Concept

Subtracting Integers To subtract an integer, add its opposite.
(1) Find 8-5.

METHOD 1 Use counters.
 mat to show +8 . Then, remove
 positive counters.

METHOD 2 Add the opposite.

$$
\begin{aligned}
8-5 & =8+ \\
& =\square
\end{aligned}
$$

\square To subtract 5, add \square

So, $8-5=$ \square

Check Your Progress
Find $9-2$.

EXAMPLE Subtract Negative Integers

2 Find -7-(-2).
METHOD 1 Use counters.

Place $7 \square$ counters on
the mat to show -7 . Then, remove 2

WRITE IT

Think about the number line. How is subtracting negative integers similar to adding positive integers?
\qquad
\qquad
\qquad
\qquad

\qquad

METHOD 2 Add the opposite.

$$
\begin{aligned}
-7-(-2) & =-7+\square \quad \text { To subtract }-2, \text { add } \square . \\
& =\square .
\end{aligned}
$$

So, $-7-(-2)=\square$.
Check Use a number line to find $-7+2$.

Check Your Progress Find $-8-(-5)$.

EXAMPLE Subtract Integers Using Zero Pairs

(3) Find -3-5.

METHOD 1 Use counters.

Place 3 negative counters on the mat to show \square.

Since there are no positive counters, add 5

Now remove \square positive counters.

FOLDABLES

ORGANIZE IT

Under the Lesson 11-3 tab of your Foldable, write what you learn about subtracting positive integers, subtracting negative integers, and subtracting integers using zero pairs. Include examples.

Homework

 Assignment

METHOD 2 Add the opposite.

Check Your Progress Find -6-1.

EXAMPLE

SEA LEVEL Parts of Death Valley in California are below sea level. A hiker starts at an elevation of 12 feet above sea level. Then she hikes to an elevation that is $\mathbf{8}$ feet below sea level. What is the difference between the two elevations?
Subtract 8 feet below sea level from 12 feet above sea level.

$$
\begin{aligned}
12-(-8) & =12+\square & & \text { To subtract }-8, \text { add } \square . \\
& =\square & & \text { Simplify. }
\end{aligned}
$$

The difference between the two elevations is \square feet.

Check Your Progress WEATHER Yesterday's low

 temperature was $5^{\circ} \mathrm{F}$. If today's low temperature is expected to be $-3^{\circ} \mathrm{F}$, what is the difference between these two temperatures?
11-4 Multiplying Integers

EXAMPLES Multiply Integers with Different Signs

MAIN IDEA

- Multiply integers.

Key Concept

Multiplying Integers The product of two integers with different signs is negative.

The product of two integers with the same sign is positive.

Multiply.
(1) $9 \times(-6)$
$9 \times(-6)=\square$

2- -5×7
$-5 \times 7=\square$

Check Your Progress

a. $4 \times(-7)$

EXAMPLES Multiply Integers with Same Signs
Multiply.
(3) 7×9
$7 \times 9=\square$
The integers have the same sign.
The product is

4. $-4 \times(-8)$
$-4 \times(-8)=$

The integers have the same sign.
The product is \square

Check Your Progress

Multiply.

a. 5×4

b. $-2 \times(-7)$

11-5 Problem-Solving Investigation: Work Backward

EXAMPLE Use the Work Backward Strategy

MAIN IDEA

- Solve problems by working backward.

Homework ASSIGNMENT

Jackie bought 3 identical shirts in different colors.
Including the $\$ 3.24$ sales tax, she paid a total of $\$ 57.24$. What was the cost of each shirt before the tax was added?

UNDERSTAND You know that the 3 identical shirts cost
\square, including \square in sales tax.

You need to find the cost of each shirt before the sales tax.

PLAN Start with the total cost and subtract the sales tax.

SOLVE $\quad \$ 57.24 \longrightarrow \quad$ Cost of the three shirts with tax. $-\$ 3.24 \longrightarrow$ Sales tax

Since the 3 shirts cost \square before sales tax and each shirt is the same, each shirt costs

CHECK Start with the cost of each shirt before sales tax, $\$ 18$. Multiply $\$ 18$ by the number of shirts, $\square \times \square$ or \square. Finally, add the $\$ 3.24$ in sales tax to the cost of the shirts,

Check Your Progress

POPCORN David is selling gourmet-flavored popcorn. The first week, he sold 3 cheddar cheese popcorn tins, 11 caramel popcorn tins, and 7 butter popcorn tins. If he has 12 popcorn tins left, how many tins did he have to start?

11-6 Dividing Integers

EXAMPLES Divide Integers

MAIN IDEA

- Divide integers.

Key Concept

Dividing Integers The quotient of two integers with different signs is negative.

The quotient of two integers with the same sign is positive.

Divide.

(1) $-9 \div 3$

Separate \square negative counters into \square equal-size groups.

There are 3 groups of 3 negative counters.

So, $-9 \div 3=\square$.

2 $28 \div 7$
Separate \square positive counters into \square equal-size groups.

There are 7 groups of 4 positive counters.

So, $28 \div 7=$ \square

Check Your Progress Divide. Use counters if necessary.
a. $-16 \div 4$

b. $24 \div 8$

EXAMPLES Divide Integers

3 Find $\mathbf{- 1 6} \div 2$.

Find $36 \div(-6)$

Find $-30 \div(-5)$.

FOLDABLES

ORGANIZE IT
Under the Lesson 11-6 tab of your Foldable, record what you learn about dividing integers. Include two of your own examples and find the quotients.

Check Your Progress Divide. Work backward if necessary.
a. $-36 \div 9$

b. $14 \div(-2)$

c. $-42 \div(-6)$

EXAMPLE

6 TEST EXAMPLE A scuba diver descended a total of 56 feet below the surface of the ocean in 4 minutes. If the diver descended at a constant rate, which integer gives the feet descended each minute?
A - 14
C 7
B -7
D 14

Read the Item

You need to find the feet per minute the diver descended. Represent the total number of feet below the surface of the ocean using \square

Solve the Item

Since $-56 \div 4=\square$, the answer is \square.

Check Your Progress
 MULTIPLE CHOICE Roberto

 missed a total of 6 points on a science quiz. If he missed the same number of points on each of 3 problems, which integer represents the number of points missed for each problem?F 6
H -2
G 2
J -6

Homework

 ASSIGNMENTPage(s):
Exercises:

MAIN IDEA

- Locate and graph ordered pairs on a coordinate plane.

BUILD YOUR YOGABULARY (page 262)

The coordinate system, or coordinate plane, is a grid used to locate points.

EXAMPLES Identify Ordered Pairs

Identify the ordered pair that names each point. Then identify its quadrant.
point P
Step 1 Start at the \square Move
\square on the x-axis to find the x-coordinate of point P, which is \square

Step 2 Move down the y-axis to find the y-coordinate, which is \square .

Point P is named by \square
Point P is in the \square quadrant.

(2) point S

Step 1 Start at the origin. Move left on the x-axis to find the x-coordinate of point S, which is \square
Step 2 Move down the y-axis to find the y-coordinate, which is \square Point S is named by \qquad Point S is in the \square quadrant.

Check Your Progress Write the ordered pair that names each point. Then identify its quadrant.
a. point A

b. point B

Homework ASSIGNMENT

Page(s):
Exercises:

EXAMPLE Graph Ordered Pairs

3 Graph point A at $(-4,3)$.

Next, since the y-coordinate is 3 , move \square units \square. Draw a dot.

Check Your Progress
Graph point C at (2, -4).

Main IdeA

Graph translations on a coordinate plane.

BUILD YOUR YOGABULARY (page 262)

A transformation is a \square of a geometric
figure. The resulting figure is called an image.
Sliding a figure without \square

EXAMPLE Graph a Translation
(1) Translate quadrilateral $A B C D$ 5 units to the right. Graph quadrilateral $\boldsymbol{A}^{\prime} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime} \boldsymbol{D}^{\prime}$.
Move each vertex of the quadrilateral \square units right.
Label the new vertices $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime}.

Connect the new vertices to draw the quadrilateral. The coordinates of the new quadrilateral are A^{\prime}

and D^{\prime}

Check Your Progress

Translate square $A B C D$ 6 units to the right.
Graph rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

EXAMPLE Graph a Translation

2 Translate triangle MNO
3 units to the right and 2 units down. Graph triangle $M^{\prime} N^{\prime} O^{\prime}$.

Move each vertex of the triangle
\square units right and \square units
down. Label the new vertices M^{\prime}, N^{\prime}, and O^{\prime}.

Connect the new vertices to draw the triangle. The coordinates of the new

\square , and
\square .

Check Your Progress
Translate triangle $R S T 4$ units to the left and 3 units up. Graph triangle $R^{\prime} S^{\prime} T^{\prime}$.

EXAMPLE Find Coordinates of a Translation

3 A rug had corners at ordered pairs (2, 4), (-1, 5), and $(-4,-6)$. What will be the new ordered pairs if the rug is moved 3 units to the right and 4 units down?
The vertices of the rug after the translation can be found by
\square 3 to the x-coordinates and

Original Coordinates	$(x+3, y-4)$	New Coordinates
\square	\square	\square
\square		\square
\square		\square

The new coordinates are \square , and
\square

Check Your Progress

Teresa is moving the desk in her office 3 units right and 2 units down. If the desk had original coordinates at $A(-2,5), B(3,5), C(3,1)$, and $D(-2,1)$, find the new vertices of the desk after the translation.

Homework Assignment

Main IDEA

Graph reflections on a coordinate plane.

FOLDABLES

ORGANIZE IT

Under the Lesson 11-9 tab of your Foldable, record what you learn about reflecting figures. Include an example of a reflection over the x-axis and a reflection over the y-axis.

BUILD YOUR VOGABULARY (page 262)

A reflection is the mirror image that is created when a figure is \square over a line.

EXAMPLE Reflect a Figure Over the x-Axis

1) Triangle $A B C$ has vertices $A(2,4), B(0,7)$, and $C(-2,2)$. Graph the figure and its reflected image over the \boldsymbol{x}-axis. Then find the coordinates of the reflected image.

Graph triangle $A B C$ on a coordinate plane. Then count the number of units between each vertex and the x-axis.
A is \square units from the axis.
B is \square units from the axis.
C is \square units from the axis.

Make a point for each vertex the same distance away from \square the \square but on the opposite side and connect the new points to form the image of triangle $A^{\prime} B^{\prime} C^{\prime}$. The coordinates are A^{\prime} \square , B \square , and C^{\prime} \square

Check Your Progress
$\triangle D E F$ has vertices as shown. Graph its reflected image over the x-axis. Then find the coordinates of the reflected image.

EXAMPLE Reflect a Figure Over the y-Axis

(2) Quadrilateral RSTV has vertices $R(2,3), S(-1,5)$, $T(-3,0)$ and $V(3,-4)$. Graph the figure and its reflected image over the y-axis. Then find the coordinates of the reflected image.
Graph quadrilateral $R S T V$ on a coordinate plane. Then count the number of units between each vertex and the y-axis.
R is \square units from the axis.
S is \square units from the axis.
T is \square units from the axis.
V is \square units from the axis.

Make a point for each vertex the same distance away from the \square on the opposite
 side of the \square and connect the new points to form the image of quadrilateral $R^{\prime} S^{\prime} T^{\prime} V^{\prime}$.

\square and V^{\prime}

Check Your Progress Quadrilateral $W X T Z$ has vertices as shown. Graph its reflected image over the y-axis. Then find the coordinates of the reflected image.

MAIN IDEA
- Graph rotations on a
coordinate plane.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

FOLDABLES

OrgANIZE IT

Under the Lesson 11-10 tab of your Foldable, record what you learn about rotating figures. Include an example of a clockwise rotation and a counterclockwise rotation.

BUILD YOUR VOGABULARY (page 262)

A rotation occurs when a figure is rotated around a
\square

EXAMPLE Rotate a Figure Clockwise

(1) Triangle $X Y Z$ has vertices $X(2,4), Y(0,7)$, and $Z(-2,2)$. Graph the figure and its image after a clockwise rotation of 90° around the origin. Then find the coordinates of the rotated image.
Graph triangle $X Y Z$ on a coordinate plane.
Sketch segment $\overline{Z O}$ connecting point Z to the

Sketch another segment $\overline{Z^{\prime} O}$
so that the angle between
points Z, O, and Z^{\prime} measures
\square and the segment

is congruent to $\overline{Z O}$.

Similarly, draw segments for points X and Y. Then connect the vertices to form triangle $X^{\prime} Y^{\prime} Z^{\prime}$.
The coordinates are

and $Z^{\prime} \square$.

Check Your Progress
Triangle $X Y Z$ has vertices $X(2,4)$, $Y(0,7)$, and $Z(-2,2)$. Graph the figure and its image after a counterclockwise rotation of 90° around the origin. Then find the coordinates of the rotated image.

BUILD YOUR VOGABULARY (page 262)

A figure has rotational symmetry if the figure can be rotated about its center by a certain number of degrees and still look like the original.

The angle of rotation is the degree measure of the angle through which the figure is rotated.

EXAMPLE Determine Rotational Symmetry

2 Determine whether the letter has rotational symmetry. Write yes or no. If yes, name the angle of rotation.
Since the letter cannot be rotated and still look like it does in its original position, the letter \square have rotational symmetry.

Check Your Progress
Determine whether the letter has rotational symmetry. Write yes or no. If yes, name the angle of rotation.

\square

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 11 Foldable to help you study for your chapter test.

VOCABULARY
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 11, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (pages 262) to help you solve the puzzle.

11-1

Ordering Integers

Write < or > to make a true sentence.

1. 9 \square -1
2. -5 \square 5
3. 0 \square -3
4. -8 \square -10
5. GAMES The table shows the results of a board game after the first round. Arrange the players from least to greatest score.
\square

Name	Score
David	-10
Maria	0
Sophie	20
Michael	-15

11-2

Adding Integers
Add. Use counters or a number line if necessary.
6. $+3+(-8) \square$
7. $-9+(-4) \square$
8. $-7+(+9)$ \square
9. $-5+(-1)$ \square
10. MONEY Malcolm opened a savings account with a deposit of $\$ 9$ in January. He withdrew $\$ 4$ in February. What was the final amount in his account? \square

11-3

Subtracting Integers
Subtract. Use counters if necessary.
11. $5-(-2)$

13. $-4-(-4)$

12. $-6-3$

14. $+8-2$

15. DIVING Ben dove 12 feet below the surface of the ocean. Then he descended another 5 feet What was his final depth below the surface?

16. Draw a picture to show how you would use counters to find $-4-(-2)=-2$.

11-4

Multiplying Integers

Complete.

17. The product of two integers with the same sign is \square
18. The product of two integers with different signs is \square

Multiply.

19. 6×7

20. -4×8

21. $-3 \times(-2)$

22. 5×4

23. $-7 \times(-9)$

24. ALTITUDE A hot air balloon descends at a rate of 5 feet per second. Where is the balloon in relation to its original altitude after 8 seconds?

11-5
Problem-Solving Investigation: Work Backward
Solve. Use the work backward strategy.
26. NUMBERS A number is multiplied by 3 . Then 1 is added to the result. After subtracting 90 , the result is 1 . What is the number?

11-6

Dividing Integers

Complete.

27. The quotient of two integers is positive if the integers have
\square
28. The quotient of two integers is negative if the integers have
\square
Write whether the quotient of each pair of integers will be positive or negative. Then divide.
29. $-28 \div 14$ \square 30. $-25 \div(-5)$ \square
30. $33 \div(-11)$ \square 32. $-36 \div(-12)$ \square

11-7

The Coordinate Plane
Graph and label each point on a coordinate plane.
33. point $B(4,-2)$

34. point $S(-3,-1)$

11-8
Translations
35. Triangle $A B C$ has vertices $A(-4,-4), B(0,-3), C(2,-5)$. Graph the figure and its image after a translation of 4 units right and 2 units up.

11-9

Reflections

Quadrilateral RSTV has vertices $R(2,1), S(2,5), T(4,6)$, and $V(5,3)$.
36. Find the coordinates after a reflection over the x-axis.

37. Fine the coordinates after a reflection over the y-axis.
\square

11-10

Rotations

38. Triangle $D E F$ is shown below. Graph its image after a clockwise rotation of 90° about the origin.

39. The figure has rotational symmetry. Name the angle(s) of rotation.

11

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 11.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 11 Practice Test on page 625 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 11 Study Guide and Review on pages 620-624 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 11 Practice Test on page 625 of your textbook.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 11 Foldables.
- Then complete the Chapter 11 Study Guide and Review on pages 620-624 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 11 Practice Test on page 625 of your textbook.

12

Algebra: Properties and Equations

Use the instructions below to make a Foldable to help you organize your notes as you study the chapter. You will see Foldable reminders in the margin this Interactive Study Notebook to help you in taking notes.

Begin with eleven sheets of notebook paper.

STEP 1 Staple the eleven sheets together to form a booklet.

Cut a tab on the second page the width of the white space. On the third page, make the tab 2 lines longer, and so on.

STEP 31 Write the chapter title on the cover and label each tab with the lesson number.

NOTE-TAKING TIP: When taking notes, it is useful to include an explanation of how to solve the problems you write.

BUILD YOUR VOGABULARY

This is an alphabetical list of new vocabulary terms you will learn in Chapter 12.
As you complete the study notes for the chapter, you will see Build Your Vocabulary reminders to complete each term's definition or description on these pages. Remember to add the textbook page number in the second column for reference when you study.

Vocabulary Term	Found on Page	Definition	Description or Example
Addition Property of Equality			
coefficient			
inverse operations			
quadrants			
zero pair			

12-1 The Distributive Property

Main Idea

- Use the Distributive Property to compute multiplication problems mentally and to rewrite algebraic expressions.

Key Concept

The Distributive Property To multiply a sum by a number, multiply each addend by the number outside the parentheses.
$a(b+c)=a b+a c$
$(b+c) a=b a+c a$

BUILD YOUR YOGABULARY (page 292)

The Distributive Property combines \square and \square multiplication to compute multiplication involving parentheses.

EXAMPLE Use the Distributive Property

1 Find 8×64 mentally using the Distributive Property.

Check Your Progress
Find 7×56 mentally using the Distributive Property.

EXAMPLE Apply the Distributive Property

2 Su is baking cookies and cupcakes. The cookies use 2 cups of sugar per batch and the cupcakes use 3 cups of sugar per batch. How many total cups of sugar are needed if she is making 5 batches of each?

METHOD 1 Multiply. Then add.

METHOD 2 Add. Then multiply.

$$
\underbrace{5 \underbrace{(2+3)}=\square \text { or }}_{\begin{array}{l}
\text { amount of sugar needed for one batch } \\
\text { of cookies and one batch of cupcakes }
\end{array}}
$$

Using either method, Su needs \square cups of sugar.

FOLDABLES

ORGANIZE IT

Under the Lesson 12-1 tab of your Foldable, record what you learn about the Distributive Property. Describe how you can use the Distributive Property to multiply mentally.

Homework

 AssignmentPage(s):
Exercises:

12-2 Simplifying Algebraic Expressions

Main Idea

- Use the Commutative and Associative Properties to simplify expressions.

Key Concept

Commutative Property
$a+b=b+a$
$a \cdot b=b \cdot a$
Associative Property
$(a+b)+c=a+(b+c)$
$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
BUILD YoUR VocABULARY (page 292)
Equivalent expressions have the \square value.
The Commutative Property states that the \square
in which numbers are added or multiplied does not change
the \square or \square
The Associative Property states that the way in which

numbers are | when they are added |
| :--- |
| or multiplied does not change the \square |
| \square |

EXAMPLES Use Properties to Simplify Expressions

(1) Simplify the expression $4+(6+x)$.

$$
4+(6+x)=(\square+\square)+\square \quad \text { Associative Property }
$$

$$
=\square+\square \quad \text { Add } 4 \text { and } 6 .
$$

2 Simplify the expression $(12+x)=15$.

$$
\begin{aligned}
(12+x)+15 & =(\square+\square)+\square & & \text { Commutative Property } \\
& =x+(\square+\square) & & \text { Associative Property } \\
& =x+\square & & \text { Add 12 and } 15 .
\end{aligned}
$$

3 Simplify the expression $3(5 x)$.
$3(5 x)=3 \cdot(5 \cdot x)$
$=(\square \cdot \square) \cdot \square \quad$ Associative Property
$=\square$

Parentheses indicate multiplication.

Multiply 3 and 5.

FOLDABLES

ORGANIZE IT

Under the Lesson 12-2 tab of your Foldable, record what you learn about the Commutative and Associative Properties. Include examples for addition and multiplication.

Homework Assignment

Check Your Progress
 Simplify each expression.

a. $3+(5+x)$
b. $(11+x)+8$
c. $4(7 x)$

BUILD YOUR VOCABULARY (page 292)

Like terms contain the same \square such as x, $2 x$, and $3 x$.

EXAMPLE Use Models to Simplify Expressions

(1) Simplify the expression $6 x+3+2 x$.

Use six x-tiles to model \square three 1-tiles to model \square , and two x-tiles to model
 the same shape. There are eight x-tiles and three 1 -tiles.
So, $6 x+3+2 x=$ \square
\square

Check Your Progress
Simplify the expression $5 x+4+2 x$.

12-3 Solving Addition Equations

BUILD YOUR VOGABULARY (page 292)

Main Idea

- Solve addition equations.

Inverse operations are operations that undo each other, such as addition and subtraction.

EXAMPLE Solve an Equation by Subtracting

Solve $x+4=5$.
METHOD 1 Use models.

Model the equation.

$$
x+4=5
$$

Remove 4 counters from each side.

$$
\begin{aligned}
x+4-\square & =5-\square \\
x & =\square
\end{aligned}
$$

METHOD 2 Use symbols.

$$
x+4=5 \quad \text { Write the equation. }
$$

The solution is \square

EXAMPLE Solve an Equation by Using Zero Pairs

Key Concept

Subtraction Property of Equality If you subtract the same number from each side of an equation, the two sides remain equal.

Solve $x+11=7$. Check your solution.
METHOD 1 Use models.

Model the equation.

Add 4 zero pairs to the right side of the mat so there are 11 positive counters on the right.
$x+11=7$

Remove 11 positive counters from each side.

$$
\begin{aligned}
x+11-\square & =7-\square \\
x & =\square
\end{aligned}
$$

METHOD 2 Use symbols.

$$
x+11=7 \quad \text { Write the equation. }
$$

$$
x=
$$

Subtract 11 from each side.

The solution is \square Check $-4+11=7 \checkmark$
Check Your Progress
Solve each equation. Use models if nececssary.
a. $m+9=3$
b. $x+7=13$

BUILD YOUR VOGABULARY (page 292)

The Subtraction Property of Equality can be used to solve an equation by \square the same number from each side of the equation.

EXAMPL:

3 PENNSYLVANIA The width of Pennsylvania (from north to south) is $\mathbf{2 8 0}$ miles. This is $\mathbf{1 2 0}$ miles more than the length of the state (from east to west). Write and solve an addition equation to find the length of Pennsylvania.

So, the width of Pennsylvania is \square miles.

Check Your Progress
INTERNET Steve was on the Internet for 40 minutes last night. This was 15 more minutes than Beth spent on the Internet the same night. Write and solve an addition equation to find the amount of time Beth spent on the Internet last night.

12-4 Solving Subtraction Equations

EXAMPLE Solve an Equation by Adding

Main IDEA

- Solve subtraction equations.

Key Concept

Addition Property of Equality If you add the same number to each side of an equation, the two sides remain equal.

1) Solve $x-5=10$.

METHOD 1 Use models.

Model the equation.

Add 5 positive counters to each side of the mat. Remove the zero pairs.

$$
\begin{aligned}
x-5+\square & =10+ \\
x & =\square
\end{aligned}
$$

\square

METHOD 2 Use symbols.

$$
x-5=10 \quad \text { Write the equation. }
$$

Add
 to each side.

Simplify.
The solution is \square

Check Your Progress
Solve $w-3=9$.

BUILD YOUR VOGABULARY (page 292)

The Addition Property of Equality can be used to solve an equation by \square the same number to each side of the equation.

EXAMPLE Solve a Subtraction Equation

2) Solve $x-5=-1$. Check your solution.

Check Your Progress
Solve $d-8=-5$. Check your solution.

EXAMPLE

3 WEATHER The difference between the record high and low temperatures in Oregon is $173^{\circ} \mathrm{F}$. The record low temperature is $-54^{\circ} \mathrm{F}$. What is the record high temperature in degrees Fahrenheit?

You need to find the record high temperature. Write and solve an equation. Let x represent the high temperature.
$x-(-54)=173 \quad$ Write the equation.

Subtract \square from each side.
Simplify.
The record high temperature is

Check Your Progress
AGES The difference between the age of Julie's mother and Julie's age is 27 years. Julie's age is 6 . What is the age of Julie's mother?

12-5 Solving Multiplication Equations

MAIN IDEA

- Solve multiplication equations.

BUILD YOUR VOGABULARY (page 269)

The coefficient of a variable is the number by which the variable is multiplied.

EXAMPLE Solve a Multiplication Equation

Solve $6 x=18$. Check your solution.
 necessary.

EXAMPLE Solve a Multiplication Equation

(2) Solve $-5 b=15$.

Write the equation.
Divide each side by \square
$-5 \div(-5)=\square$ and $1 b=b$
The solution is \square Check this solution.

Check Your Progress
Solve $-3 t=21$. Check your solution.

EXAMPLE

3 GEOMETRY The area of a rectangle is 144 square inches, and the width is 4 inches. Write an equation to find the length of the rectangle and use it to solve the problem.

Use the formula area $=$ length \times width.

The length of the rectangle is \square

Check Your Progress GEOMETRY The area of a

 rectangle is 126 square feet and the width is 7 feet. Write an equation to find the length of the rectangle and use it to solve the problem.
12-6 Problem-Solving Investigation: Choose the Best Method of Computation

EXAMPL: Choose the Best Method of Computation

MAIN IDEA

- Solve problems by choosing the best method of computation.

Homework

 Assignment

MONEY The 11 members of the volleyball team are selling candy bars to raise money for new uniforms. They have 2 weeks to raise $\$ 500$. The team makes $\$ 0.97$ for each candy bar sold. If each member sells 26 each week, will they be able to raise enough money in two weeks? Explain.

UNDERSTAND You know that each of the 11 team members will sell \square candy bars each week and make \square on each one. You need to determine whether the team will make \square in 2 weeks.

PLAN Since an exact answer is needed and several calculations are required, use a \square to find the total amount the team will earn.

SOLVE $\quad 11$ members $\times 2$ weeks $\times \$ 0.97$ per candy bar $\times 26$ candy bars each $=$ \square yes, the team will raise $\$ 500$ in 2 weeks.

CHECK Go back and review the data and your multiplication to be sure you get a total of $\$ 554.84$. Since $11 \times 2 \times 0.97 \times 26=\$ 554.84$, and $\$ 554.84>\$ 500$, the answer is correct.

Check Your Progress COOKIES Rosita made cookies

for a bake sale. She sold 36 cookies on Friday, 54 cookies on Saturday, and 68 cookies on Sunday. Her family ate 9 cookies after the bake sale was over, and she had 25 cookies left. How many cookies did Rosita make for the bake sale?

BRINGING IT ALL TOGETHER

STUDY GUIDE

Foldables

Use your Chapter 12 Foldable to help you study for your chapter test.

Vocabulary
 PUZZLEMAKER

To make a crossword puzzle, word search, or jumble puzzle of the vocabulary words in Chapter 12, go to:
glencoe.com

BUILD YOUR Vocabulary

You can use your completed Vocabulary Builder (page 292) to help you solve the puzzle.

12-1

The Distributive Property

Find each product mentally.

1. 5×32

2. 6×55

3. 3×24

4. 7×43

Use the Distributive Property to rewrite each algebraic expression.
5. $2(x-6)$

7. $5(x+9)$

6. $3(x+2)$

8. $7(x-8)$

9. CANDLES Votive candles come in packages of 6 and tealight candles come in packages of 8 . If Mariana buys 3 packages of each, how many candles will she have?
\square

12-2

Simplifying Algebraic Expressions

Simplify each expression.

10. $2+(5+x)$

11. $(8+x)+3$

12. $4(9 x)$

13. $4+(6+x)$

14. $(10+x)+7$

15. $7(6 x)$

16. Simplify the expression $3 x+5+4 x$.

12-3
Solving Addition Equations
17. $m+(-5)=7$ \square 18. $6+y=-6$ \square
19. RECYCLING Andrew and Jacob are collecting aluminum cans to recycle. Andrew has 56 cans. This is 18 more cans than Jacob has. Write and solve an addition equation to find how many aluminum cans Jacob has.

12-4
Solving Subtraction Equations
Match the method of solving with the correct equation.
20. $m-7=7$ \square
21. $r-9=-6$ \square
22. $7=s-3$ \square
23. $-2=p-6$ \square
24. $x-2=1$ \square

12-5

Solving Multiplication Equations

25. Use the model to solve the equation $2 x=8$.

$$
\begin{aligned}
2 x & =8 \\
\square & =\square \\
x & =\square
\end{aligned}
$$

Solve each equation.
26. $27=3 s$

27. $-6 n=48$

28. $-12 j=-36$

12-6

Problem-Solving Investigation: Choose the Best Method of Computation

Solve. Choose the best method of computation. Explain your reasoning.
29. FOOD A small bag of potato chips weighs about 0.85 ounce.

What is the weight of 12 bags of potato chips?

ARE YOU READY FOR THE CHAPTER TEST?

Checklist

Math Online

Visit glencoe.com to access your textbook, more examples, self-check quizzes, and practice tests to help you study the concepts in Chapter 12.

Check the one that applies. Suggestions to help you study are given with each item.

I completed the review of all or most lessons without using my notes or asking for help.

- You are probably ready for the Chapter Test.
- You may want to take the Chapter 12 Practice Test on page 667 of your textbook as a final check.

I used my Foldables or Study Notebook to complete the review of all or most lessons.

- You should complete the Chapter 12 Study Guide and Review on pages 663-666 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may want to take the Chapter 12 Practice Test on page 667.

I asked for help from someone else to complete the review of all or most lessons.

- You should review the examples and concepts in your Study Notebook and Chapter 12 Foldable.
- Then complete the Chapter 12 Study Guide and Review on pages 663-666 of your textbook.
- If you are unsure of any concepts or skills, refer back to the specific lesson(s).
- You may also want to take the Chapter 12 Practice Test on page 667.

[^0]: Page(s):
 Exercises:

