This Notebook Helps You:

- Preview the chapter
- Build your mathematics vocabulary knowledge
- Organize and take notes using graphic organizers
- Improve your writing skills
- Reflect on mathematical concepts
- Prepare for chapter tests

Name: \qquad
Period: \qquad

How to Use This Book:

Your Investigation Notebook and Reflection Journal will help you succeed in IMPACT Mathematics by providing:

- organizational tools to record your notes.
- opportunities to reflect on key mathematical concepts.

For each Chapter Opener, you will find questions relating to the chapter's Real-Life Math connection, key chapter vocabulary, and Family Letter home activities.

To help you master Investigation concepts, this study guide provides opportunities to:

- review key vocabulary terms.
- summarize main ideas.
- reflect on Explore and Think \& Discuss topics.
- use a variety of graphic organizers, including Venn diagrams and tables.

Each lesson ends with a What Did You Learn? section to help you summarize key lesson ideas.

The McGraw Hill Companies

Glencoe

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior permission of the publisher.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240-4027

ISBN: 978-0-07-889752-8
MHID: 0-07-889752-1

Printed in the United States of America.

Table of Contents

Chapter 1

Chapter Opener 2
Lessons 1.1-1.3 4
Chapter 2
Chapter Opener 13
Lessons 2.1-2.3 15
Chapter 3
Chapter Opener 24
Lessons 3.1-3.4 26
Chapter 4
Chapter Opener 39
Lessons 4.1-4.4 41
Chapter 5
Chapter Opener 52
Lessons 5.1-5.3 54
Chapter 6
Chapter Opener 62
Lessons 6.1-6.3 64
Chapter 7
Chapter Opener 71
Lessons 7.1-7.4 73
Chapter 8
Chapter Opener 84
Lessons 8.1-8.3 86
Chapter 9
Chapter Opener 96
Lessons 9.1-9.3 98
Chapter 10
Chapter Opener 107
Lessons 10.1-10.4 109

Polygons, Angles, and Circles

Real-Life Math

This chapter begins by identifying some of the many places

Contents in Brief

1.1 Patterns in Geometry	4
1.2 Angles	24
1.3 Measure Around	40
Review \& Self-Assessment	52

we see polygons, angles, and circles in sports. It explains how quadrilaterals, spheres, and cylinders are used in various sports, and how angles of revolution are used in skateboarding.

Think About It

Choose a sport or game and describe how geometry is used in that sport or game.
\qquad
\qquad

What other examples in sports or in a game can you think of that involve angles? Explain.
\qquad
\qquad
\qquad

Suppose you wanted to build a skateboard ramp. Why would its shape matter?

Connections to the Past (Grade 5)

Throughout this chapter, you will identify polygons based on the number of angles and sides they have. List all the shapes you can think of, and the number of sides each has.

Vocabulary

Determine whether each statement refers to polygons (P) or circles (C).

Statement	P or C
A two-dimensional closed geometric figure with at least one angle measuring 180° is concave.	
These figures are named according to the number of sides and vertices each has.	
Circumference can be calculated using the formula C = 2 2 .	
A diameter is a chord that passes directly through this figure's center.	
When these figures have sides that are all the same length and angles that are all the same size, they are called regular.	

Family Letter

Which shapes did you find on your walk? What shapes did you find that you were not expecting to see? Draw some of the shapes you saw below.
\qquad

Shapes I saw:

What figures did you see in the building or house? Why do you think the building is shaped the way it is?
\qquad
\qquad
\qquad
\qquad

Patterns in Geometry

In Lesson 1.1, I expect to learn:

Explore

What was difficult about counting all the squares? How did you keep track of the squares you had counted? Do you think counting is the best way to find the number of squares? Why or why not?
\qquad
\qquad
\qquad
\qquad

Investigation
 1

1. Vocabulary Flat, two-dimensional geometric figures made of line segments are called \qquad

Think \& Discuss

I found this on page
 \qquad

2. Rewrite the following statements to make each a true statement.
a. A circle is a polygon.
\qquad
b. The sides of a polygon do not have to meet.
\qquad
3. Draw examples of several polygons. Name each according to the number of sides it has.
\qquad 4. Vocabulary Each corner of a polygon, where two sides meet, is called a \qquad _.

4. Name the polygon above.
5. Explain why the figure could not be named quadrilateral IGHF.

Investigation
 (2)

7. Vocabulary This \qquad is made up of rays $A B$ and $A C$.

\qquad .

Think 82 Discuss
\qquad -.

8. Explain how you can use copies of the polygon to determine the measures of its angles.
\qquad
\qquad

Develop \& Understand: A

9. Draw examples of $90^{\circ}, 180^{\circ}$, and 360° angles.
10. How would you use your example for Exercise 9 to estimate the measure of a given angle?
\qquad
\qquad
\qquad

Investigation 3

11. Write C for concave or R for regular to identify each of these polygons.
I found this on page \qquad .

Inquiry

Investigation (4)
12. Explain how can you determine whether a given set of segments can be used to build a triangle.
I found this on page \qquad .

\qquad
\qquad
\qquad
13. Give an example of segment lengths that cannot be used to make a triangle.

What Did You Learn?

I need to remember the following about:

	Polygons	Angles
definition		
naming		
categories		

Angles

In Lesson 1.2, I expect to learn:

Think \& Discuss

Explain how you could estimate the measure of the angles in the diagram below, if you know that the angles are all the same size.

Investigation ()

1. Vocabulary To measure an angle, you should place the bottom center of the \qquad at the vertex of the
\qquad -. angle. Next, you should line up the \qquad with one ray of the angle. Then you can read the angle measurement.

Think \& Discuss

2. Does the angle above measure about 63° or about 117° ? How do you know?
\qquad .
3. Vocabulary Write the letter of the vocabulary word that describes the statement.

a. \quad measures more than 90°	A. perpendicular lines
b. $_$measures exactly 90°	B. acute angle
c. \quad form a 90° angle	C. right angle
d. \quad measures less than 90°	D. obtuse angle

Develop \& Understand: A

I found this on page \qquad .
4. Identify each of the following angles as right, acute, or obtuse.

Develop \& Understand: B

I found this on page \qquad .
5. Identify each of the following as perpendicular or not perpendicular.

Investigation
 (2)

Develop \& Understand: A

6. Vocabulary Write True or False for each statement. If a
\qquad . statement is false, explain why.

a. The lines above are perpendicular lines.
b. The lines on page 8 are intersecting lines.
c. Angles a and b are vertical angles.
d. Angles b and c are vertical angles.
\qquad Think 82 Discuss
7. Predict the sum of the interior angle measures for each figure. Explain how you made your prediction.

\qquad
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
angles: \qquad
\qquad
\qquad
lines: \qquad
\qquad
finding the measure of an angle without using a protractor: \qquad
\qquad
\qquad

Measure Around

In Lesson 1.3, I expect to learn:

Vocabulary The pentagon below has a of 15 m .

Think \& Discuss

You are asked to choose the most practical method for measuring the perimeter of the classroom floor. Explain why you would rather use that method than the others you listed.

Investigation

1. How do you find the perimeter of a polygon?

I found this on page

\qquad .
2. How is finding the perimeter of a rectangle different from finding the perimeter of other polygons?
\qquad
\qquad
\qquad
3. Vocabulary Complete each statement.

I found this on page
 \qquad _.

a. Geometric rules using symbols are called
b. Which of the following is a formula for perimeter?

$$
P=2 \cdot(L+W) \quad 32+14=46 \quad A+B+C=D
$$

Develop \& Understand: B

4. Describe two methods for finding the perimeter of this figure.
\qquad

Investigation

 25. Vocabulary For the following circle, draw the radius and two chords, including the diameter. Label your drawing with the correct words.

6. Use your diagram to complete the following sentences.
a. A \qquad reaches across a circle and passes through the center of the circle. A diameter is also a \qquad _.
b. The segment from the center to a point on the circle is the \qquad
c. You can use a formula to find the \qquad or the perimeter of the circle.

Think \& Discuss

7. Explain why all diameters of a circle are the same length.
\qquad
\qquad
\qquad
\qquad -.

8. Find each of the following for the circle.

a. Radius	
b. Diameter	
c. Circumference formula	
d. Circumference of circle	

What Did You Learn?

I need to remember the following about:
Polygons

CHAPTER

CHAPTER 2

Real-Life Math

A company's value is based on the amount of money it makes in sales and services. The prices of stocks in companies are used to show the value of the company. Investors want the price of their stocks to increase.

Think About It

What would a stock gain of $\$ 1.25$ mean?
\qquad
\qquad

Why do you think decimals are used to indicate stock values?
\qquad
\qquad

Contents in Brief

2.1 Patterns in Fractions

2.2 Patterns in Decimals 74
2.3 Fraction and Decimal Equivalents

Review \& Self-Assessment 105
 \title{
Fractions and
 \title{
Fractions and Decimals
} Decimals
}

Why do you think stockbrokers tell clients to buy low, sell bigh?
\qquad
\qquad
\qquad

Connections to the Past
Throughout this chapter, you will be using and comparing fractions and decimals. Circle all of the fractions below that are equal to $\frac{1}{2}$.
$\begin{array}{llllllll}\frac{6}{12} & \frac{15}{30} & \frac{4}{7} & \frac{5}{10} & \frac{1}{3} & \frac{2}{3} & \frac{9}{12} & \frac{7}{14}\end{array}$

Vocabulary

Draw a line connecting each example to the appropriate vocabulary word.

$3 \frac{1}{3}$	Simplified, or in lowest terms
$\frac{14}{9}$	Mixed number
$0.3333 \ldots$	Repeating decimal
$\frac{1}{2}, \frac{4}{8}$	Improper fraction
$\frac{1}{5}$	Terminating decimal
0.45	Equivalent fractions

Family Letter

What way did you use fractions and decimals in your day-to-day life?
\qquad
\qquad

Write a fraction and a decimal. Describe a situation in which you could use each.

Draw diagrams to illustrate the fraction and decimal that you described above.

How did you use fractions of miles to describe distances while running errands?
\qquad
\qquad

Patterns in Fractions

In Lesson 2.1, I expect to learn:

Explore

How do $\frac{6}{8}, \frac{3}{4}$, and $\frac{12}{16}$ compare? Explain your answer.
\qquad
\qquad

Investigation

Develop \& Understand: B

1. Vocabulary Write I for improper fraction or M for mixed number.

$3 \frac{3}{4}$	
$\frac{12}{7}$	
$\frac{4}{3}$	
$5 \frac{1}{8}$	

$2 \frac{1}{8}$	
$1 \frac{1}{7}$	
$\frac{14}{5}$	
$\frac{43}{7}$	

2. Explain how to write the fraction $\frac{15}{4}$ as a mixed number.
\qquad
\qquad
3. Explain how to write $6 \frac{1}{2}$ as an improper fraction.
\qquad
\qquad
\qquad

Develop \& Understand: A
4. Vocabulary Shade the two rectangles to show equivalent fractions. What fractions did you show? How do you know they

I found this on page

\qquad .

I found this on page \qquad .

I found this on page

\qquad -.

Develop \& Understand: B

7. The fractions $\frac{6}{10}, \frac{18}{30}$, and $\frac{21}{35}$ belong to the same fraction family. What is the name of this fraction family? How did you determine which fraction family was shown?

Investigation 3
 Think \& Discuss

8. Explain how to compare the fractions $\frac{5}{6}$ and $\frac{1}{4}$ using: Show your work.
\qquad
\qquad

Investigation (4)
 Think 8. Discuss

10. Which measuring cup did you choose for Keisha to use? Why?

A Common Denominator	A Common Numerator

Develop \& Understand: B

I found this on page \qquad 9. Use one of the methods you described above to compare $\frac{3}{4}$ and $\frac{2}{3}$.

I found this on page \qquad . .

I found this on page \qquad
\qquad
\qquad

What Did You Learn?
I need to remember the following about:
comparing fractions: \qquad
\qquad
\qquad
estimating fractions: \qquad
equivalent fractions: \qquad

Patterns in Decimals

In Lesson 2.2, I expect to learn:

Explore

I found this on page \qquad How close did you get to shading exactly $\$ 1.00$ on your Spare Change card? Would you have chosen different cards if you could do it over? Why or why not?
\qquad
\qquad

Investigation (1) Develop \& Understand: A

1. Write $\$ 0.80$ and $\$ 0.08$ as fractions.

Which is greater? \qquad

I found this on page \qquad .

Develop \& Understand: B
2. Complete the table.

Calculation	Result
a. $62.73 \quad=62.73 \cdot 1$	
b. $62.73 \cdot 10 \quad=62.73 \cdot 10$	
c. $62.73 \cdot 10 \cdot 10=62.73 \cdot 100$	

3. Use the table to predict the product of $62.73 \cdot 10,000$.
4. Explain how you made your prediction. What rule can you use for multiplying by powers of 10 ?
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: C

I found this on page
 \qquad
 5. Complete the table.

Calculation	Result
a. 62.73	
b. $62.73 \div 10 \quad=\frac{1}{10}$ of 62.73	
c. $62.73 \div 10 \div 10=\frac{1}{100}$ of 62.73	

6. Predict the result of $62.73 \div 1,000$.
7. Explain how you could predict the result of $54.32 \div 100$.

Investigation

I found this on page \qquad -
8. Match the numbers on the left with the correct conversion of each measurement on the right.

A. 6 cm	1.4 cm	-
B. 14 mm	230 cm	-
C. 23 km	60 mm	-
D. 14 m	0.6 cm	-
E. 6 mm	$23,000 \mathrm{~m}$	-
F. 2.3 m	$1,400 \mathrm{~cm}$	-

Develop \& Understand: A

9. Suppose you place the meterstick shown below next to your desk. Which is a reasonable height for your desk: $0.1 \mathrm{~m}, 0.5 \mathrm{~m}$, 0.75 m , or 1 m ? Explain.

10. What would be the length in meters of a desk that is 210 centimeters long? Give your answer as a fraction and as a decimal.

Inquiry

Investigation (3)

11. Describe one thing you learned about decimals while playing Guess My Number.
\qquad
\qquad

I found this on page \qquad 12. Suppose you are playing Guess My Number. What number would you choose to make it harder for your partner to guess your number? Why would that number be more difficult to guess?

What Did You Learn?
I need to remember the following about:
decimals and metric measurements:

In Lesson 2.3, I expect to learn:
\qquad Think \& Discuss
Would you use 0.25 or 0.6 to approximate the location of point A ? Why?

Which fraction do you think would best describe the location of point $A, \frac{1}{4}$ or $\frac{5}{8}$? \qquad

Investigation (1)

I found this on page \qquad .

Investigation

I found this on page \qquad -.

Develop \& Understand: B

1. Use a mixed number and a decimal to describe the approximate location of each point.

A	B	C

Develop \& Understand: A

2. Vocabulary Give the meaning for terminating decimal in your own words.
3. List three examples of terminating decimals. Explain how you know they are terminating.
4. Suppose a calculator shows 0.333333333 . Do you think it is showing a terminating decimal? Why or why not?
\qquad
\qquad
\qquad
5. Write the following decimals as fractions in simplest form.
0.47
1.32
0.8
\qquad
\qquad
\qquad

Develop \& Understand: B

I found this on page \qquad .

Investigation (3) Example

7. Explain how you could find a decimal equivalent to $\frac{9}{20}$.

I found this on page ___ .
 \qquad .

6. Name a decimal between 1.32 and 1.325 . How did you decide?
\qquad
\qquad
\qquad
\qquad

I found this on page .
8. Vocabulary Write R for repeating decimal, or T for terminating decimal.

$2.44 \ldots$	
3.56	
1.25	
$0.88 \ldots$	
$5 . \overline{6}$	
$3.1 \overline{7}$	
4.8	
9.23	

Think \& Discuss

I found this on page ___
9. Explain how you determine whether a decimal is a repeating decimal.
\qquad
\qquad
\qquad
\qquad
\qquad

Investigation

I found this on page \qquad -.

Develop \& Understand: A

10. Describe one pattern that you found in the chart of fraction and decimal equivalents. Why do you think this pattern occurs?

What Did You Learn?

I need to remember the following about:

Changing Decimals to Fractions
EXAMPLE:

Changing Fractions to Decimals
EXAMPLE:

CHAPTER
 CHAPTER

Patterns, Numbers, and Rules

Real-Life Math

A diagram is used to show the family tree of a male honeybee.

Contents in Brief

3.1 Number Sense

3.2 Patterns
3.3 Variables and Rules 143
3.4 Apply Properties 174

Review \& Self-Assessment

The number of bees in subsequent generations forms a pattern of numbers. This pattern is represented by the Fibonacci sequence.

Think About It

List the first six terms of the Fibonacci sequence.

How did you predict the next two or three numbers in the Fibonacci sequence?
\qquad
\qquad

Suppose you wanted to predict the next six numbers in the honeybee sequence. What are two ways you could make your prediction?

Connections to the Past

Multiplication is a key mathematical operation and is a focus of this chapter. Write a multiplication equation for each array.

Vocabulary

Complete each statement with one of the following words.
exponent input order of operations
output property sequence
stages term variable

- Each item in an ordered list is called a(n)

The list is called a(n) \qquad If the items are not numbers, then the list is a sequence of \qquad

- When you apply a rule to a(n) you get a(n) \qquad
- In "three to the fourth power," or 3^{4}, the is 4 .
- The \qquad is a convention for reading and evaluating expressions.

A \qquad is a statement that is true for any number or variables.

Family Letter

Give a situation that would be described using billions.
\qquad

Explain how you determined the rule when you played What's My Rule.
\qquad
\qquad
\qquad

Give a pattern using numbers.
\qquad

Describe the pattern above using words.

What are two other ways to show a pattern?

Number Sense

In Lesson 3.1, I expect to learn:
\qquad .

Think \& Discuss

How would you determine which is greater, 4 million or 4 trillion?
\qquad

Investigation (1) Develop \& Understand: A

1. About how many years would it take to make one billion dollars if you made $\$ 1,000,000$ dollars per year?

I found this on page

\qquad .

Develop \& Understand: A and B

2. Write the following numbers in the correct ovals.

3. Determine whether each of the following statements refers to millions, billions, or trillions.

one thousand billions	
a one followed by six zeros	
a one followed by nine zeros	
one thousand millions	
a one followed by twelve zeros	

4. Vocabulary Label the parts of the machine below. Write a sentence explaining how to use the machine to find an output.

I found this on page \qquad -.

I found this on page \qquad _.

I found this on page
 ,

\qquad —.
7. Match each repeated multiplication to its exponential form.

5^{4}	$6 \cdot 6 \cdot 6$
3^{6}	$8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8 \cdot 8$
7^{8}	$5 \cdot 5 \cdot 5 \cdot 5$
6^{3}	$3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
8^{7}	$7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$

8. Match the word form to its exponential form.
three squared 8^{8}
nine to the fifth power 3^{2}
six to the fourth power $\quad 6^{4}$
eight to the eighth power 9^{5}

Develop \& Understand: C

\qquad 9. Explain the difference between a factor and an exponent.
\qquad
\qquad
\qquad
\qquad
10. Suppose you are using an input-output machine with a rule of \square^{3}. How will you find the output for an input of 4 ? What will you do differently for an input of 6 ?

What Did You Learn?
I need to remember the following about:

	Words	Examples
Millions		
Billions		
Trillions		
Exponents		
Input/Output		

Patterns

In Lesson 3.2, I expect to learn:

Investigation (1)

I found this on page \qquad —.

I found this on page

\qquad -.

1. Vocabulary In the following \qquad \square is the missing \qquad

$$
\square, \square, \boldsymbol{\infty}, \downarrow, \ldots, \square, \boldsymbol{\infty}, \downarrow
$$

Think \& Discuss

2. What are the next three terms of the following sequence?

$$
\Delta, \Delta, 0, \Delta, \Delta, 0, \Delta, \Delta, 0, \square, \longrightarrow
$$

3. Describe the pattern that you see.
\qquad
\qquad

Develop \& Understand: B

I found this on page \qquad 4. Describe how you find the next three terms of a numerical sequence.

Investigation

5. Complete the flowchart to show the order for evaluating expressions, which is also called the \qquad

[^0]

Develop \& Understand: A

6. Use the order of operations to explain whether each pair of expressions are equal to each other.

$$
\begin{array}{c|c}
\hline 4+6 \cdot(8-3) \text { and } & 3 \cdot 5-(4+1) \text { and } \\
(4+6) \cdot(8-3) & (3 \cdot 5)-(4+1)
\end{array}
$$

Investigation 3
 Think \& Discuss

7. Consider the following expressions.
\qquad .

$$
6 \cdot 3^{2} \quad(6 \cdot 3)^{2}
$$

Are the two expressions equal? Why or why not?
\qquad
\qquad
\qquad
8. Explain how you would simplify the expression $7+(8-5)^{3}$ using the order of operations.
\qquad
\qquad
\qquad
\qquad

Investigation (4.
 Think \& Discuss

9. The values 5,2 , and 12 were input into the same machine. The outputs are shown below. What rule did the machine use?

I found this on page
 \qquad

 .
10. Explain how you determined the rule for Exercise 9.

Develop \& Understand: B

11. The table below shows the outputs a particular machine produced for the given inputs. Find a rule the machine could have used.

Input	3	5	10	50	100
Output	9	15	30	150	300

output =
\qquad
12. Show a table for the outputs a particular machine produced for the given inputs.

Input	3	6	9	12	15
Output					

$$
\text { output }=\ldots \times \text { input }-
$$

What Did You Learn?

I need to remember the following about:
sequences: \qquad
\qquad
the next term in the sequence $8,2,2,2,8,2,2,8,2, \ldots$ would be: \qquad the pattern for the Fibonacci sequence is: \qquad
\qquad
stages: \qquad
\qquad
EXAMPLE: Stage $1 _$Stage $2 \ldots$ Stage 3 \qquad

Variables and Rules

In Lesson 3.3, I expect to learn:

Think \& Discuss

How did you determine the best way to find the total number of blocks? Why is "plus 2" included in the book's expression?
\qquad
\qquad
\qquad

Investigation

I found this on page \qquad -.

Develop \& Understand: A

1. If $n=8$, what is the value of $4 n-1$? Explain how you found your answer.
2. Suppose $n=3$. Would the value of the expression change? Why? What would the new value be?
\qquad
\qquad
\qquad
3. Vocabulary Write yes or no to indicate whether each of the following is a characteristic of algebraic expressions.

Includes numbers	
Included symbols	
Always has the same value	

Investigation (2)

I found this on
pages \qquad _.

Develop \& Understand: B

4. Use the steps in Parts a-c to help you write a rule for the number of triangles in the sequence.

Stage 1

Stage 2

Stage 3

Stage 4
a. The number of triangles in a stage will be represented by
\qquad
b. The stage number will be represented by
c. The pattern can be described as \qquad
\qquad
d. A rule that represents the number of triangles in any stage is

Think \& Discuss

Investigation

5. How can you show that two rules will give the same result for every stage?

I found this on page

\qquad _.

I found this on page \qquad .
6. Two rules were written for the following dot sequence, $d=n+6$ and $d=3 \cdot n$, where n represents the stage number, and d represents the number of dots in the stage.

$\bullet \bullet$ •	$\because: \%$	$\begin{aligned} & \because \because \\ & \because \because \end{aligned}$	$\begin{array}{r} \because \because \\ \because \because \\ \because \because: \end{array}$
Stage 1	Stage 2	Stage 3	Stage 4

Determine whether each rule correctly describes the sequence. For each rule, explain why or why not.
7. Explain how the number of trips it takes to cross a bridge with weight restrictions is related to the number of children and adults.

I found this on page \qquad .

Investigation

Think \& Discuss

8. How would you determine if the following rules are equivalent?

$$
a=2 b+8 \quad z=8+2 y
$$

\qquad
\qquad
\qquad

I found this on page \qquad .

Develop \& Understand: B

9. Determine which rule could be correct for the table. Explain how you know.

\boldsymbol{m}	2	3	5	10
\boldsymbol{n}	6	11	27	102
$n=3 \cdot m=m^{2}+2$				

Investigation 6

I found this on page \qquad .

Think 88) Discuss

10. Why would it be easy to confuse the rule for finding the number of legs on a group of spiders, $L=8 \cdot S$, with $S=8 \cdot L$?

Develop \& Understand: A

11. Suppose you want to buy twice as many goldfish as beta fish for your aquarium. What are the two variables in this situation?
12. In packages of colored erasers, there are three red erasers for every one green eraser. Complete the table.

Red erasers	3			
Green erasers	1			

Let \qquad represent the number of red erasers and \qquad represent the number of green erasers.
Write a rule to show the relationship between red and green erasers.

Develop \& Understand: B

13. Joel is collecting pencils. He has twice as many as Germaine. Germaine has five less than Andrea. Write expressions to show Joel's number of pencils, and Germaine's number of pencils if Andrea's number of pencils is a.
14. Explain how you wrote the expressions.

What Did You Learn?

I need to remember the following about:
algebraic expressions: \qquad
rules: \qquad
\qquad

Apply Properties

In Lesson 3.4, I expect to learn:

I found this on page \qquad - Vocabulary General statements that are based upon number patterns are called \qquad

Explore

What patterns did you discover about the page numbers in the newspaper?

Investigation (1) Think \& Díscuss

1. Name at least two everyday situations that must be done in a certain order.
2. Name two mathematical operations for which order makes a difference.

Develop \& Understand: A

\qquad 3. State a commutative operation for the table on page 175 in your own words. Give an example.
\qquad
\qquad
\qquad
\qquad 4. Give an addition and multiplication example of each term.

Then write the meaning of each term in your own words.

Term	Addition and Multiplication Examples	Meaning
a. commutative property		
b. identity element		
c. inverse elements		
d. associative property		

Investigation (2) Develop \& Understand: A

5. Vocabulary The dot diagram below illustrates the

I found this on
pages \qquad .
\qquad property.

6. Write two expressions representing number of dots in the diagram.
7. Explain why the expressions are equivalent.
\qquad
\qquad
\qquad
8. Which number is being distributed in the expression $5(3+2)$?
9. Draw a dot diagram that illustrates $5(3+2)$.

Investigation (3) Develop \& Understand: A

I found this on page \qquad .
10. Give an example of how adding in the clock- 12 system is different from the usual way of adding.

Develop \& Understand: B

11. Vocabulary Write an example for each term in the clock-12 system. Write a corresponding example in the real number system.
Clock-12 system Real number system
additive identity

$$
7+12=7
$$

additive inverses

$$
8+\ldots=12=0
$$

$$
8+\ldots=0
$$

12. Jane starts taking a test at 12 p.m. It takes her two hours.

What time will it be when Jane is finished?

What Did You Learn?

I need to remember the following about:

Commutative Property	Associative Property	Distributive Property
Example:		
	Example:	Example:

Fraction and Decimal Operations

Real-Life Math

Fractions and decimals are involved in all aspects of building houses. Architects create blueprints, and contractors use those blueprints to build the actual houses.

Think About It

What steps did you take to determine the blueprint dimensions for a 12 feet $\times 16$ feet floor with a blueprint scale of $\frac{1}{4}$?

For the grid below, each square represents 2 feet. Sketch a room with dimensions of 8 feet by 12 feet.

Connections to the Past (Chapter 2)

Complete the following statements.
$\frac{1}{2}$ of $18=$ \qquad

$$
\frac{2}{3} \text { of } 27=
$$

$$
\begin{aligned}
& \frac{1}{4} \text { of } 12= \\
& \frac{3}{5} \text { of } 20=
\end{aligned}
$$

Find three fractions equivalent to each of the following.
\qquad

Vocabulary

Connect each meaning or example to its mathematical term.

A a value found by adding all the values of a data set and dividing by the total number of values	reciprocal
B the difference between the minimum and the maximum values in a data set	range
C the middle value when all the values in a data set are ordered from least to greatest	mean
D a value much greater or less than the rest of the values in a set	median
\mathbf{E} the multiplicative inverse of a number; for example, $\frac{1}{2}$ and 2	mode
\mathbf{F} the value that occurs most often in a data set	outlier

Family Letter

Describe one item that you measured and the measurement that you took. Was the actual measurement more or less than you thought it would be?
\qquad
\qquad

What unit costs did you find? Which is the better value?
\qquad
\qquad
If you doubled a recipe that calls for $\frac{1}{2}$ cup of milk, how much milk would you need? What if you halved the recipe? How would you determine the right amounts?
\qquad
\qquad
\qquad

Add and Subtract Fractions

In Lesson 4.1, I expect to learn:

Think \& Discuss

Connect pairs of numbers whose sums equal 1 .

$\frac{3}{8}$	$\frac{1}{2}$
$\frac{2}{4}$	$\frac{4}{10}$
$\frac{7}{9}$	$\frac{5}{8}$
$\frac{3}{5}$	$\frac{2}{9}$

Investigation

Example

1. Write a related subtraction equation for this addition equation:

$$
\frac{1}{2}+\frac{2}{8}=\frac{3}{4}
$$

I found this on page \qquad -.

Investigation
 (2

I found this on page \qquad -.

Develop \& Understand: A and B

2. Rewrite each expression using a common denominator. Then find the sum or difference. Give your answer in lowest terms. If an answer is greater than 1 , write it as a mixed number.

$$
\frac{1}{5}+\frac{7}{8} \quad \frac{2}{3}-\frac{1}{8}
$$

3. Write a sentence explaining how you found the sum or difference.

Investigation
 3

I found this on page \qquad .

Develop \& Understand: A

4. Jing is writing an essay for school. The essay has to be $2 \frac{1}{2}$ pages long, and Jing has written $1 \frac{2}{3}$ pages. How many more pages does she have left to write? Explain how you found your answer.
5. Rosita has a piece of board that is $4 \frac{1}{8}$ feet long. She needs to cut off a piece that is $3 \frac{5}{6}$ feet long for a project. How much board will be left? Explain how you found your answer.
6. Circle all of the expressions that equal $\frac{1}{2}$.

$$
\begin{array}{lll}
4 \frac{1}{9}-3 \frac{2}{3} & 1 \frac{7}{9}-1 \frac{5}{18} & \frac{5}{6}-\frac{7}{12} \\
2 \frac{1}{10}-1 \frac{3}{5} & \frac{5}{8}-\frac{1}{4} & 7 \frac{3}{4}-6 \frac{2}{8}
\end{array}
$$

Investigation

7. Use a flowchart to describe the steps that you would use to find $1 \frac{1}{4}-\frac{3}{8}$ with a calculator.

I found this on page \qquad .

What Did You Learn?

I need to remember the following about:
adding and subtracting fractions: \qquad
mixed numbers: \qquad
\qquad

In Lesson 4.2, I expect to learn:

Investigation(1)

I found this on page \qquad

Think \& Discuss

1. Describe the two methods for multiplying a whole number and a fraction. Then give an example of each that shows your method.
a. Method 1: \qquad
\qquad
\qquad
b. Method 2: \qquad
\qquad
\qquad

Investigation

Develop \& Understand: A

2. Write a multiplication equation to -. represent the product of the shaded area. Find the product. Explain your process.

\qquad
\qquad

Develop \& Understand: B

3. Without using a model, find the following products.
a. $\frac{5}{6} \cdot \frac{7}{8}=$
b. $\frac{2}{3} \cdot \frac{6}{7}=$
\qquad
4. Explain why it would be easier to multiply the numerators and denominators than to draw a model for these products.

Investigation 3
 Think \& Discuss

5. Find the product $2 \frac{1}{8} \cdot 2 \frac{3}{5}$. Show how you found your product.

I found this on page

\qquad .
a. Estimate: \qquad
b. Product: \qquad
6. Which diagram illustrates the product? \qquad

a

Investigation (4.

Explore

7. Explain how Caroline and Marcus found the quotient $10 \div \frac{2}{3}$.

I found this on page
 \qquad

 .

Develop \& Understand: B

I found this on page \qquad .
8. Fill in the blanks in each pair of related equations.
$15 \div \frac{1}{6}=$ \qquad
$\frac{1}{6}$. $=15$
$9 \div \frac{3}{5}=$ \qquad
$\frac{3}{5}$. \qquad $=9$
9. How did using related multiplication equations help you find the quotients?

Investigation

Example

10. Vocabulary To divide a fraction by a fraction, multiply the

I found this on page \qquad -. \qquad of the second fraction.
11. Rewrite each division expression using multiplication.

$$
\frac{2}{3} \div \frac{4}{5} \quad \frac{13}{4} \div \frac{3}{8} \quad 16 \div \frac{1}{3}
$$

\qquad

What Did You Learn?

I need to remember:

	Reminder:	Example
multiplying fractions		
dividing fractions		
mixed numbers		
reciprocals		
numbers to fractions changing mixed		

Multiply and Divide Decimals

In Lesson 4.3, I expect to learn:

Investigation (1) Develop \& Understand: A

1. Find each product.

I found this on page \qquad .
a. $10 \cdot 45=$ \qquad
b. $10 \cdot 0.45=$ \qquad
c. $14 \cdot 26=$ \qquad
d. $14 \cdot 0.26=$ \qquad
2. Explain how you decided to place the decimals in Parts b and d?
\qquad

Investigation
 2
 Develop \& Understand: A

3. Write the decimal as a fraction and multiply. Then, give the product as a decimal.

$$
0.8 \cdot 1.4=\square \cdot \square=\square=\square
$$

4. How can writing decimals as fractions make it easier to multiply them?
\qquad
\qquad
\qquad
5. Write the letter of the product next to each multiplication expression.

$\sim 0.3 \cdot 2.13$	A. 0.00639
$[3 \cdot 2.13$	B. 0.0639
$-0.03 \cdot 2.13$	C. 0.639
$-0.003 \cdot 2.13$	D. 6.39

Investigation

I found this on page

\qquad -.

Develop \& Understand: B

6. Suppose you are buying gasoline at $\$ 3.62$ per gallon. Find the cost to fill up your lawn mower and your car.

Lawn mower: 2.3 gallons
Cost to fill up: \qquad
Your car: 18.5 gallons Cost to fill up: \qquad
7. Explain how you knew where to place the decimal in each answer.
\qquad
\qquad
\qquad

Investigation (4)

Develop \& Understand: A
8. Complete the table.

$51.36 \cdot 0.01=$	$51.36 \div 0.01=\square$
$51.36 \cdot 0.1=$	$51.36 \div 0.1=$
$51.36 \cdot 10=$	$51.36 \div 10=$
$51.36 \cdot 100=$	$51.36 \div 100=$

9. Choose two expressions from the table that have equal values. Explain why they are equal.

Investigation (5)

Think \& Discuss

10. For each situation, determine whether you should multiply or divide. Then, write an expression you could use to find each answer and find the solution.
a. A package of 30 ink pens costs $\$ 4.32$. How much would one ink pen cost?
b. Luke is buying a new bar stool to match his old ones. He knows the old ones are 26 inches tall, but the new ones are measured in centimeters. There are 2.54 centimeters in one inch. What height bar stool does Luke need?
C. Althea wants to measure her car's gas mileage. She fills up the tank with 21.2 gallons of gasoline, and drives 424 miles. How many miles per gallon does Althea's car get?
\qquad .

Develop \& Understand: B

11. Explain how you would find the cost of gas to drive 536.5 miles if your car gets 15.4 miles per gallon and gas costs $\$ 3.58$ per gallon. Then find the cost.

| What Did You Learn? |
| :--- | :--- | :--- |
| multiplying
 decimals I need to remember the following about: Example
 dividing
 decimals |

What is Typical?

In Lesson 4.4, I expect to learn:

Investigation

I found this on page \qquad _.

1. In gym class, twelve students ran one mile. Create a
\qquad to show the students' times listed.

7	10	8	7	7	6
9	6	8	8	8	9

2. Based on the students' results, find the following measures.

\qquad (value that occurs most often): \qquad
\qquad (middle value when the values are ordered from greatest to least): \qquad
3. Explain how a line plot helps you understand a set of data.
\qquad
\qquad

Investigation (2)
4. Vocabulary Write Yes or No to tell whether each statement about mean is correct.
\qquad .

The mean is the value that occurs most often in a set of data.	
Another word commonly used for mean is average.	
To find the mean, you add all the values in a set and divide by the total number of values.	
The mean is the middle value in a set of values.	

Develop \& Understand: B

5. Ten students sold gift wrap for a club fundraiser. They sold the following numbers of gift wrap packages.

$$
\begin{array}{llllllllll}
24 & 13 & 17 & 15 & 8 & 21 & 9 & 12 & 15 & 19
\end{array}
$$

Find the mean for the numbers of gift wrap packages sold. \qquad
6. Describe a situation where knowing the mean for a set of information would be useful.
\qquad
\qquad
\qquad

Investigation (3)
 Develop \& Understand: B

 I found this on page \qquad .7. Tell whether mean or median would be the best statistic to use
a. the average score on a test \qquad
\qquad
\qquad
b. the average salary of a large company
\qquad
\qquad
8. Vocabulary Fill in the table with the definition for outlier and then write the meaning in your own words.

Text Definition	My Own Definition

9. Circle the outlier in each group of data.

Data Set $\mathbf{1}$	13	14	75	19	16	17	23	16	19
Data Set $\mathbf{2}$	101	112	118	182	99	107	103	115	111

What Did You Learn?
Use the words median, mode, mean and outlier to fill in each blank.

2	6	8	8	8	10	15	24	92

I need to remember the following about:
choosing mean or median for a data set: For the data set below, I should choose
\qquad to represent the data set because the data has an
\qquad of \qquad

Data Set	46	51	55	53	8	48	50	52	44

Rate, Ratio, and Proportion

Real-Life Math

Contents in Brief

5.1 Ratios and Rates 290
5.2 Proportions 308
5.3 Similarity and Congruence 321
Review \& Self-Assessment 341

A common example of the use of gear ratios is found on bicycles. Bicycle wheels turn with a chain on gears, and bicycles with multiple gears can be adjusted so that the gear ratio fits the owner's preference.

Think About It

If a $\frac{2}{1}$ gear ratio means that the back wheel rotates twice every time the pedals rotate once, what would a gear ratio of $\frac{4}{1}$ mean?

Which would be easier on the bike rider, a gear ratio of $\frac{2}{1}$ or a ratio of $\frac{4}{1}$?
\qquad
\qquad

Connections to the Past (Chapter 2)

What is the name of each fraction family? Explain how you got your answer.
a. $\frac{8}{26}, \frac{12}{39}, \frac{16}{52}$ \qquad b. $\frac{12}{20}, \frac{21}{35}, \frac{30}{50}$ \qquad
C. $\frac{6}{2}, \frac{30}{10}, \frac{60}{20}$
d. $\frac{10}{14}, \frac{15}{21}, \frac{50}{70}$

Vocabulary

Use the following words to complete the statements about these triangles.

congruent	equivalent ratio	corresponding sides	similar
counterexample	corresponding angles	ratio	unit rate

Triangle A and Triangle B are \qquad but not

Angles E and H are \qquad
Angles D and F are a \qquad to the statement that all pairs of angles must be corresponding angles.
$\overline{F G}$ and $\overline{C D}$ are \qquad of the two triangles.
The \qquad of the sides for the two triangles is 1 to 2 or $\frac{1}{2}$. An example of a __ is $\frac{1}{2}$ because it compares one quantity to one unit of another quantity. $\frac{2}{4}$ is

Family Letter

Name one instance that would involve using ratios in real life. Explain how you would use the ratios.
\qquad
\qquad
\qquad

How can you use ratios while cooking or cleaning?
\qquad
\qquad

LESSON
 Ratios and Rates

 5.1In Lesson 5.1, I expect to learn:

Investigation
 (1)

1. Vocabulary Write True or False for each statement about ratios and correct any statements that are false.

I found this on page

\qquad

a. A ratio compares two numbers.	
b. There are several ways to express ratios.	
c. All ratios must be written as fractions.	
d. Ratios are only useful in measuring money.	

Develop \& Understand: A

2. Complete the circle by writing the given ratio in a different way in each section.

3. A ptarmigan is a type of bird. Use the word ptarmigan to find the following ratios.

Vowels	Consonants
a and i	g, m, n, p, r and t

Ptarmigan

a. Vowels to consonants
b. Vowels to the total number of letters
c. Consonants to the total number
of letters
4. What do you notice about the results of b and c ?

Investigation

I found this on page \qquad -.

Investigation
 3

Develop \& Understand: A
5. A small batch of green paint requires two cans of yellow dye and three cans of blue dye. Explain how you might make a larger batch of green paint.
\qquad
\qquad
\qquad .

Develop \& Understand: A

6. Yellow paint is used to make a batch of orange paint. The ratio table below compares the number of containers of yellow paint to the total number of containers. Complete the ratio table.

Yellow	1		5		10
Total	4	8		32	

7. Explain how you know that the color will be the same for any batch of paint.

I found this on page \qquad
\qquad
\qquad
9. Circle each unit rate below.

12 eggs for $\$ 2.00$
15 pencils for $\$ 1.50$

50 students in two classes

1 muffin for 39 cents

1 laptop computer for $\$ 550$

2 pints in 1 quart
10. Write a unit rate to show how much it would cost to buy 1 CD if 3 CDs cost $\$ 45$.

What Did You Learn?

I need to remember the following about:

Proportions

In Lesson 5.2, I expect to learn:

Think \& Discuss

How can you determine whether the points on a graph show a proportional relationship?
\qquad
\qquad

Investigation 1

\qquad .

Develop \& Understand: A

1. Are the side lengths of the quadrilateral $A B C D$ proportional to those of quadrilateral $E F G H$? Explain how you know.
2. Find the ratio of the sides of the first quadrilateral to the second.
3. Write yes or no to tell whether each set of ratios is proportional. Explain how you tested to see if each set of ratios was proportional.
\qquad
$\frac{15}{45}, \frac{27}{81}$
$\frac{5}{3}, \frac{40}{24}$
4. Choose two possible methods to determine the measure of side $E F$.

I found this on page

\qquad .

a. Explain your first method.
b. Explain your second method.
\qquad
\qquad

Inquiry

\qquad .
5. Suppose you want to tile a room that measures 10 feet by 14 feet. Describe how you would determine the number of 12 -inch by 12 -inch tiles it would take to cover the floor.
\qquad
\qquad
\qquad
6. If you changed your mind and wanted to tile the room with tiles that measure 24 inches by 24 inches, how would you change your work to determine the right number of tiles?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
proportional: \qquad
determining whether the points on a graph are proportional: \qquad
\qquad
\qquad

Similarity and Congruence

In Lesson 5.3, I expect to learn:
\qquad
\qquad

Vocabulary Write congruent or similar for each pair of figures.

How is similar different from congruent? Explain. \qquad
\qquad
\qquad

Investigation (1)

I found this on pages \qquad —.

Develop \& Understand: A

1. Explain how you would test each of the following for congruence:
a. line segments: \qquad
b. two squares: \qquad
\qquad
\qquad
C. two angles: \qquad

I found this on page

2. Which rectangles are similar? Explain how you know.
\qquad
\qquad
\qquad
Investigation (3) 3. Vocabulary Circle all the ratios that represent the same relationship as $\frac{1}{3}$.

I found this on page \qquad .

$$
12: 24
$$

1:3
$\frac{4}{12}$
5:18
$\frac{21}{63}$
7 to 20
4. What are ratios that represent the same relationship called?
\qquad _.

Develop \& Understand: B

5. Angles and sides that are located in corresponding places in two figures are
6. Vocabulary Connect the corresponding sides and angles of triangles $A B C$ and $D E F$.

Triangle $\boldsymbol{A B C}$	Triangle $\mathbf{D E F}$
$\angle A$	Side $F D$
Side $B C$	Side $D E$
$\angle B$	$\angle D$
Side $A B$	$\angle F$
$\angle C$	Side $E F$
Side $C A$	$\angle E$

7. Fill in the measures in the table below.

Description	(Figure LMNO) Side	Length (cm)	(Figure ECUT) Side	Length (cm)	Ratios
longest side	$\overline{L O}$		$\overline{E T}$		
second- longest side	$\overline{M N}$		$\overline{C U}$		
third- longest side	$\overline{N O}$		$\overline{U T}$		
shortest side	$\overline{L M}$		$\overline{E C}$		

Investigation (4)

Develop \& Understand: A
8. Explain how you would test to determine whether two figures are similar.
I found this on page \qquad -.

Percents

Real-Life Math

Surveys are used to find people's preferences and opinions, and

Contents in Brief

6.1 Use Percents
6.2 A Percent of a Quantity
6.3 Percents and Wholes many companies use the results to plan their marketing for products. Percents are often used to report survey results. Sampling helps provide a guide to the thoughts of many people by surveying a smaller group that represents the whole.

Think About It

Suppose your school has 75 girls and 200 boys between the ages of ten and twelve. Should your sample include more girls' opinions or boys' opinions? Why?

Suppose 200 students chose sandwiches as their favorite school lunch out of a total 1,000 students. How would you write the results?

Connections to the Past (Chapter 2)

Write each of the following decimals as percents. Then use each percent to identify the shaded portions of the following circles.

1. $0.25=$ \qquad

2. $0.50=$ \qquad
3. $1.0=$ \qquad

4. Label the points on the number line below with benchmark fractions.

Vocabulary

Write a definition and provide an example for each term.

Term	Mathematical Meaning	Example
percent		
rational number		

Write P for the numbers below that are percents, and N for those that are not percents. Explain how you could tell.

Number	P or N	How you knew:
25%		
34 peaches		
$\frac{75}{100}$ on a test		
36 out of 100		

Family Letter

Which home activity did you do? Write one percent that you found, and explain what that percent represented.
\qquad
\qquad

Tell how you calculated a tip or a discounted price. Was the result what you expected it to be? Why or why not?
\qquad
\qquad
\qquad

Use Percents

In Lesson 6.1, I expect to learn:

Investigation
 Develop \& Understand: A

1. Vocabulary Shade the following 100 -grids to show the percent represented by each decimal.
a. 0.72
b. 0.43
C. 0.02

2. Explain how you determined how much to shade on each grid.
\qquad .

Think \& Discuss

3. For parts a-e, connect each of the fractions and decimals with the correct percent.
a. $\frac{15}{20} \quad 70 \%$
b. $0.7 \quad 50 \%$
c. $\frac{26}{40} \quad 65 \%$
d. $0.43 \quad 75 \%$
e. $\frac{95}{190} \quad 43 \%$
4. Explain how you knew which fractions and decimals to connect.
\qquad

Develop \& Understand: B
5. Suppose there are 50 seventh graders and 24 seventh graders perform in band or choir. How would you express the ratio of seventh graders who perform in band or choir as a fraction, a decimal, and a percent? Explain how you found your answers.

I found this on page \qquad -.

Ms. Johnson's Class	
Favorite Yogurt	Number of Votes
Chocolate	13
Vanilla	11
Strawberry	6

Mr. Anderson's Class	
Favorite Yogurt	Number of Votes
Chocolate	9
Vanilla	6
Strawberry	4

Develop \& Understand: B

6. Consider the results of the survey shown above. Is it correct to say that strawberry is more popular in Ms. Johnson's class because it received more votes than it did in Mr. Anderson's class? Why or why not?
7. Explain how you could correctly compare the popularity of the yogurt flavors in each class.

Investigation (3) Develop \& Understand: A

8. Suppose a lunch survey showed that 58% of students wanted to have sandwiches and $\frac{13}{25}$ of students wanted milk. The survey was
I found this on page \qquad $-$ based on a school enrollment of 134% of last year's enrollment. Complete the table for each of these numbers.

Fraction or Mixed Number	Decimal	Percent
$1 \frac{17}{50}$		
		58%
$\frac{13}{25}$		

9. Explain how you converted the numbers in the table on page 65 from one form to another.
\qquad
\qquad
\qquad

Investigation (4) Develop \& Understand: A

10. Draw a number line. Place the numbers $0.42,0.621,34 \%$, and $\frac{9}{20}$ on the number line.

Develop \& Understand: B

11. Explain how you knew where to place each point on your number line.
\qquad
\qquad
12. Choose a fraction from Exercise 9. Write your fraction, $\frac{2}{3}$, and $\frac{5}{6}$ in order from least to greatest.

What Did You Learn?

I need to remember the following about:

percent:
\square
\square

converting a mixed number like $2 \frac{3}{4}$ to a percent and to a decimal:
\qquad
\qquad
\qquad
\qquad
\qquad

A Percent of a Quantity

In Lesson 6.2, I expect to learn:

Think \& Discuss

Explain how you could use fractions to find 50% of a number.

Investigation (1) Develop \& Understand: A

1. Each of these grids represents 400 , so each small square is worth 4.

[^1]

42\%

60\%

13\%

Shade each grid to show the percent listed below it. Find the value of each percent.

$$
\begin{aligned}
& 42 \% \text { of } 400= \\
& 60 \% \text { of } 400= \\
& 13 \% \text { of } 400=
\end{aligned}
$$

2. How did shading the grids help you find each value? Explain.
3. Help Conor explain how to estimate the price of jogging shoes
\qquad . on sale for 30% off the original price of $\$ 80$. Then have him calculate the actual sale price using Rosita's method.
\qquad
\qquad
\qquad
\qquad
\qquad .

Develop \& Understand: B

4. Bud's Electronics is offering a 20% discount on most store items. Connect each of the following products to its sale price.
Desktop Computer - \$875 \$635.20
Digital Camera - \$668 \$534.40
Widescreen TV - \$794 \$700.00
5. Suppose Bud's Electronics gave a 30% discount instead of a 20\% discount. Find each new sale price.

Desktop Computer: \qquad

Digital Camera: \qquad

Widescreen TV: \qquad

What Did You Learn?

I need to remember the following about:
finding percents using models: \qquad
\qquad
\qquad
\qquad
finding percents using multiplication: \qquad

Percents and Wholes

In Lesson 6.3, I expect to learn:

Explore

Circle the numbers below that are equivalent to 40%.

$\frac{1}{4}$	0.44	$\frac{4}{10}$
$\frac{2}{5}$	0.4	$\frac{6}{15}$
0.5	$\frac{100}{250}$	$\frac{14}{40}$

How did you determine which numbers were equivalent to 40% ? Explain.

Investigation (1)

 I found this on page \qquad —.I found this on page \qquad .

1. Suppose 62 out of 372 students said they liked science best of all the subjects in school. What percent is this? Explain how you found the answer.

Develop \& Understand: B

2. The circle graph shows eye color for the students in a middle school. There are 640 students in all. Use the numbers given to determine the percentage of students with each eye color. Give answers to the nearest whole percent.

Student Eye Color

Students with brown eyes:
Students with blue eyes:
Students with green eyes:
Students with hazel eyes:

3. How did you find the percents in Exercise 2 on page 69?

Investigation 2

Develop \& Understand: A and B

4. Write the letter of the correct answer.
a. 75
b. 120
c. 32
d. 90
e. 100
f. 45
g. 20
h. 60

40% of \ldots is 8.	11% of \quad is about 5.
25% of \quad is 8.	$33 \frac{1}{3} \%$ of \quad is 30.
140% of \quad is 105.	225% of \quad is 135.
10% of $\ldots \quad$ is 12.	$\frac{1}{2} \%$ of \quad is 0.5.

Develop \& Understand: C

I found this on page

\qquad _.
5. Explain how you found the sale prices at Tammy's Food Emporium.
\qquad

Inquiry

Investigation (3)

6. Explain how your score at Percent Ball would vary based on how well you played.

I found this on page \qquad .

What Did You Learn?

I need to remember the following about:
finding percents: \qquad
finding wholes when given percents: \qquad
\qquad
making a decision about the best deal: \qquad
\qquad
\qquad

CHAPTER

Area, Volume, and Capacity

Real-Life Math

Contents in Brief

7.1 Squares	398
7.2 Calculate Areas	409
7.3 Surface Area and Volume	434
7.4 Capacity	449
Review \& Self-Assessment	462

This chapter begins with a table showing the dimensions, perimeter, and area of playing fields for various sports. The listed playing fields are all rectangular.

Think About It

Think about the size of your classroom. Would you expect your classroom to be as big as a volleyball court? What sport do you think could be played in a space the size of your classroom?

The area of each playing field is given. Based on the dimensions of your classroom, what is your estimate of the area of your classroom floor?

If your classroom is rectangular, how would you find the exact area?

Connections to the Past

Find the area of each of the following rectangles.

Vocabulary

Draw a picture to illustrate the following vocabulary words. arc, circle sector parallelogram trapezoid and central angle

- Write the letter of the correct definition next to each term.

	A. the result of multiplying a number by itself
area	B. the space inside a three-dimensional object
capacity	C. the amount of space covering an object's surface
perfect square	D. the amount of liquid a container can hold
surface area	E. the number of square units that fit inside a shape

Family Letter

Name an example of area in real life. How is area used in your example?

Which pizza did you decide was a better deal? How did you find the answer?
\qquad
\qquad
\qquad

Squares

In Lesson 7.1, I expect to learn:

Investigation

I found this on page \qquad .

Develop \& Understand: A

1. Explain how to find the area of the following shapes. Assume that each square has an area of one square inch.

Shape A

Shape B
\qquad
\qquad
\qquad _.
2. \qquad is the formula for finding the area of a rectangle. Explain what A, L, and W represent.
\qquad
\qquad

Think \& Discuss

3. Use the grid below to draw a rectangle with dimensions 4 units by $8 \frac{1}{2}$ units and find the area. Then explain how you found the area.

\qquad
\qquad
\qquad

Investigation
 2
 Think \& Discuss

4. Evaluate 4^{2}. \qquad
Use the dots below to draw a square with an area equal to that many units.

I found this on page \qquad —.

I found this on page \qquad -.

Develop \& Understand: A

5. Vocabulary Circle all the perfect squares in the group of numbers. Explain how you knew which numbers were perfect squares.

14	9	4
36	22	41
64	72	81
95	100	31

6. What is the area of a square with side length $\frac{3}{4}$ inch? Is your answer a perfect square? Explain.

What Did You Learn?

I need to remember the following about:

Calculate Areas

In Lesson 7.2, I expect to learn:

Investigation (1) Develop \& Understand: A

1. Can you use the formula $A=L \cdot W$ to find the area of parallelograms A, B, and C ? Why or why not?
\qquad -.

Develop \& Understand: B

2. Vocabulary Use the shape below to answer the following questions.

b is the \qquad
b is the \qquad

What formula can you use to find the area of the parallelogram?

I found this on page \qquad .

Develop \& Understand: C

3. Find the area of the parallelogram below. Explain how you found it.

Develop \& Understand: A

4. Explain how finding the area of a triangle is related to finding the area of a parallelogram.

I found this on pages

\qquad _.
5. What is the formula for finding the area of a triangle? Explain how it it is used.
\qquad
\qquad
\qquad
6. Vocabulary Explain how to identify the base of a triangle and height of a triangle.
\qquad
\qquad
\qquad
7. Find the area of the triangle below. Explain how you found your answer.
\qquad
\qquad
\qquad

\qquad .

Develop \& Understand: C

8. $\triangle D E F$ is created by shearing $\triangle D E C$. What do you know about the area of $\triangle D E F$?
9. Vocabulary Write true or false for each statement. Explain each answer.
a. A trapezoid has two pairs of parallel sides.
b. The parallel sides of a trapezoid are called the bases.
10. Measure the bases and height of the trapezoid below.

base 1: \qquad base 2: \qquad height: \qquad
11. Give the formula for the area of a trapezoid and then use it to find the area in Exercise 10. Explain how you found the area.

I found this on page
12. Write the formula for finding the area of a circle. \qquad

Develop \& Understand: B

13. Which circle would have a greater area, one with a radius of 5.3 inches or one with a diameter of 11 inches? Explain how you know.
\qquad
\qquad

I found this on page \qquad .

14. Vocabulary Fill in the blanks with the terms listed below.
arc central angle circle sector radius
15. The formula for finding the area of a circle sector is $A=\frac{m}{360} \cdot \pi r^{2}$. Explain the meaning of $\frac{m}{360}$ in the formula.
16. Explain how to find the area of the following circle sector.

What Did You Learn?

I need to remember the following about:

Shape	Area Formula	Important Information
parallelogram		
triangle		
trapezoid		
circle		
circle sector		

In Lesson 7.3, I expect to learn:

I found this on page \qquad .

Vocabulary Write surface area or volume for each description.

The area of the outside covering of an object.	
The amount of space inside a three-dimensional object.	
Measured in cubic units.	
Measured in square units.	

Investigation

I found this on page \qquad .

Prism	Rectangular Prism
Can be identified by:	Can be identified by:

Develop \& Understand: A

2. If you were given a prism with this top view and you know that it is 4 blocks high, what would be the volume of the prism? Explain how you got your answer.

\qquad
3. What is the volume of the block structure below? Explain how you got your answer.
\qquad
\qquad

\qquad .

Develop \& Understand: C

4. The top view of a prism is shown below. How would you find the volume of the prism if you know its height? Explain.
\qquad
\qquad

Investigation (2) 5. Vocabulary The identical top and bottom faces of a prism

are called the \qquad
\qquad .

Think \& Discuss

6. Explain why both $V=h(A)$ and $V=h(l \times w)$ are correct formulas for finding the volume of a rectangular prism.
\qquad
\qquad
\qquad

Develop \& Understand: A

7. Consider a rectangular prism with height of 4 cm , length of 12 cm , and width of 9 cm . Draw a sketch of the prism, and then find its volume. Could the length, width, and height of the prism be interchanged to get the same volume? Explain.

Volume:

Inquiry

Investigation (3)

8. Explain the difference between a polyhedron and a regular polyhedron.

I found this on pages

\qquad .
9. Circle each regular polyhedron.

What Did You Learn?

I need to remember the following about:
surface area: \qquad
volume: \qquad
prism:
the names of common polyhedra:

Capacity

In Lesson 7.4, I expect to learn:

I found this on page

\qquad .

Explore

Vocabulary Explain how capacity is different from volume.

Investigation
 Develop \& Understand: A

1. 15 liters $=$ \qquad milliliters

I found this on pages

2. 4,460 milliliters $=$ \qquad liters
3. 1.2 liters $=$ \qquad milliliters
4. How do you convert from liters to milliliters?
5. How do you convert from milliliters to liters?
6. Suppose you have a baking pan that is 15 centimeters long, 12 centimeters wide, and 4 centimeters deep. Sketch the pan, and label its dimensions. Then, find its volume.

Volume:
7. How did you find the volume?
8. The capacity of the pan in millimeters is \qquad .
9. How is the volume of the pan on page 82 related to the capacity?

Investigation
 (2

Develop \& Understand: B

10. Complete the following conversions for customary units.

I found this on page
 \qquad .

a. 32 cups $=$ \qquad gallons
b. 8 pints $=$ \qquad cups
C. ___ pints $=5$ quarts
d. 3 gallons $=$ \qquad quarts
11. Explain how you would convert 12 pints to quarts.
\qquad .

Develop \& Understand: C

12. The capacity of a pitcher is 1 gallon. If a lemonade recipe calls for 8 cups of water per batch, how many batches of lemonade will it take to fill the pitcher? How do you know?
13. Connect the equivalent amounts.

14 pints	$\frac{1}{16}$ gallon
3 quarts	20 pints
$2 \frac{1}{2}$ gallons	$1 \frac{3}{4}$ gallons
1 cup	$\frac{3}{4}$ gallon

What Did You Learn?

I need to remember the following about:
capacity and volume: \qquad
metric units: \qquad
customary units: \qquad
\qquad

Coordinate Plane

Real-Life Math

This chapter begins with a graph of the snow that fell in New York

Contents in Brief

8.1 Interpret Graphs
8.2 Draw and Label Graphs
8.3 Graph in Four Quadrants

City in 2005-2006. Graphs make it easier to read and understand information and to make predictions about future trends.

Think About It

How did you use the graph to determine how much more snow fell in February than in December?

If a weather graph was created for where you live, what weather feature would be best shown on the graph: rain, snow, or high temperatures? What month would show the highest bar on the graph for the weather feature you chose?

Connections to the Past

Plot each ordered pair on the graph below and label it.

$(1,3)$
How did you determine where to place each point?
\qquad .

Vocabulary

Use the graph and word bank below to complete the questions that follow. Not all words will be used.

absolute value
coordinates
axes
line graph
negative numbers
opposites
ordered pair
origin
positive numbers
quadrants

- The \qquad of point A are 1 and 4 . When written as an \qquad they are (1, 4).

Point C on the graph is the \qquad

- The x and y on the graph refer to the
- The \qquad or distance from zero, of
Points D and E is 6 .
Points A and B lie in two different \qquad

Family Letter

What examples of graphs have you seen in real life? What examples in newspapers or magazines did you find?

If you found a graph in a newspaper or magazine, what values were shown on the graph? How did you determine the value for each point?
\qquad
\qquad
\qquad

Interpret Graphs

In Lesson 8.1, I expect to learn:

Investigation
 Develop \& Understand: B

1. Explain how the following two graphs represent the same points.

2. The graph below compares the ages and heights of several basketball players. Use the graph to answer the questions that follow.

a. Is the youngest player also the shortest player? How do you know?
\qquad
b. For Players A, B, C, and D, can we say that the older a player is, the taller he or she is? Explain how you know.
\qquad
\qquad

Investigation

Develop \& Understand: A

Use the graph below to answer Exercises 3 and 4.

3. What does the graph tell us about points F and G ? Explain how you know.
\qquad
\qquad
\qquad .
4. What do you think the two variables could represent?

I found this on
pages

Develop \& Understand: B and C

5. Explain how the graph showing bags of sugar is used to show the better value.
6. What pattern did you see when you answered the question about the graph showing time spent reading and watching TV?
\qquad
\qquad
\qquad .
7. The graph below shows the excitement level in a movie theater during a scary movie. The movie began at 7:00 p.m. and ended at 9:00 p.m. Explain how the events in the movie must have changed according to the graph.

What Did You Learn?

I need to remember the following about:
interpreting graphs: \qquad
\qquad
\qquad
line graphs and curves: \qquad
\qquad
\qquad
A sample curve demonstrating the excitement level during a documentary is shown below:

Draw and Label Graphs

In Lesson 8.2, I expect to learn:

Investigation

I found this on page \qquad _.

1. The school swim team comes in to practice at 6 A.m. They leave for classes at 7:30 A.m. Then, a swim class comes in at 9:30 A.M. and stays until 11:00 A.m. No one else uses the pool until 2:00 p.m.
when another class starts and lasts until 4:00 p.m. Create a graph to show how the number of people in the school swimming pool changes throughout the day.

2. Explain how you created the graph.

Investigation

I found this on page \qquad -.
3. Vocabulary Match each set of coordinates to its ordered pair.

Coordinates in relation to (0,0)	Ordered Pair
- 4 units right and 7 units up	A (6,3)
7 units right and 4 units up	B $(7,4)$
3 units right and 6 units up	C (4,7)
6 units right and 3 units up	D (3,6)

Develop \& Understand: A

I found this on page \qquad -.
5. Plot the points from Exercise 3 on page 89 on the coordinate plane below.

Investigation
 3

6. Vocabulary The \qquad on a graph tells the number of \qquad each equal interval on a grid
\qquad . represents.
7. For a Fourth of July party, the Smiths want to have a barbecue. They know that food for each person costs $\$ 3.00$. Complete the table below to help them determine how much the party will cost based on the number of guests.

People	5	10	15	20	25
Cost (dollars)	$\$ 15$				

Develop \& Understand: B

8. For the graph of the table above, which would be a better scale for the x-axis, 2 people or 5 people? Why?
9. Graph the data in the table shown above. Label the x-axis.

Investigation

I found this on page \qquad .

Develop \& Understand: A and B

10. Jahmal says that connecting the points on a graph is not always reasonable because not all points on the line would make sense. Hannah says connecting the points can be helpful. Write a sentence to help Hannah explain her reasoning to Jahmal.
11. Suppose you wanted to graph a set of data that shows the number of inches of rain that fell each month for a year with months on the horizontal axis, and inches of rain on the vertical axis. Should you connect the points with a dashed line or solid line?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
drawing graphs: \qquad
plotting points on a graph: \qquad
\qquad
\qquad
ordered pairs: The ordered pairs \qquad are shown on the coordinate plane below.

Graph in Four Quadrants

In Lesson 8.3, I expect to learn:

Vocabulary

I found this on page \qquad . Write P for a positive number or N for a negative number.

$-13^{\circ} \mathrm{F}$	
$84^{\circ} \mathrm{F}$	
$21^{\circ} \mathrm{F}$	
$-34^{\circ} \mathrm{F}$	

Investigation
 1

1. Vocabulary Write the opposite for each number shown below. Then write the opposites of numbers of your own choosing.

Number	Opposite
32.5	
$-24 \frac{1}{3}$	
-14.87	
$12 \frac{5}{7}$	

Number	Opposite

2. What do you know about two numbers that are opposites?
\qquad
\qquad
3. What is the greatest number in the table to the left? How do you know?
\qquad
\qquad
4. What is the least number in the table to the left? How do you know?
\qquad
\qquad

I found this on page \qquad .

Develop \& Understand: B

5. The absolute value of any number is sometimes negative. True or False? Explain your answer.
6. Use the number line below to find the distance from zero for each number.

a. -6.3
b. $5 \frac{1}{8}$
7. Which number in Exercise 6 has the greater absolute value? Explain how you know.

Develop \& Understand: C

8. Which expression has the greatest value? How do you know?
a. $|-8|-|3|$
b. $|10-6|$
c. $|4|+|3|$

Investigation
 3

9. Use the coordinate plane below to complete the statements below.

I found this on page
 \qquad .

a. The coordinates of point A are \qquad).
b. The point with coordinates $(5,-2)$ is point \qquad
c. Point B is located at (\quad, \quad).
\qquad .
10. Explain how to plot a point with a negative coordinate.
11. Does the graph showing daily average temperatures in September have negative x-coordinates? Why or why not?

Investigation (4) Develop \& Understand: A

12. Without plotting each point, tell in which quadrant or on
\qquad -. which axis each point is located.

Coordinates	Quadrant
$(5,8)$	
$(-2,-3)$	
$(5,0)$	
$(7,-1)$	
$(-6,4)$	
$(0,-3)$	

13. How did you determine the quadrants for the points?

Inquiry

Investigation
I found this on page \qquad .
14. Suppose you want to find the shortest route from $(2,-3)$ to $(-1,4)$ on the coordinate plane, without crossing any spaces. How many moves would it take, assuming that each space up, down, or to the left or right counts as one move?

What Did You Learn?

I need to remember the following about:
coordinate plane: \qquad
\qquad
\qquad
\qquad
quadrants: \qquad
\qquad
quadrants and the signs of the coordinates:

plotting points: \qquad
coordinates: \qquad
\qquad

Equations

Real-Life Math

This chapter begins with an example of how equations can be used

Contents in Brief

9.1 Understand Equations 534
9.2 Backtracking 546
9.3 Guess-Check-and-Improve
to determine important information about running a business. Selling birdhouses can help Amy earn money, but she can only make as many birdhouses as she has supplies. She can determine how many birdhouses she can build by using an equation. The equation has one variable, which represents the number of birdhouses she builds.

Think About It

Since Amy's goal is to make a profit, she needs to determine how many birdhouses she has to sell. Using her formula, $m=\$ 8 n$, where m is the amount of money she will earn and n is the number of birdhouses she sells, determine how much money she will earn if she sells 12 birdhouses. Explain how you found your answer.

Suppose Amy's dad loaned her \$100 to make the birdhouses. How many birdhouses can she build? Which equation did you use?

Connections to the Past (Chapter 3)

Write the letter for the missing value next to each equation.

$3+\square=10$	A. 5
$8--=6$	B. 2
$4+5=-$	C. 9
$12-7=-$	D. 7

\qquad .

Vocabulary

Write a word from the word bank to describe each expression or phrase.

backtracking	guess-check-and-improve	open sentence
equation	inequality	output
flowchart	input	solution

$3<5$		
	Trying different values to solve an equation	$\begin{gathered} m-2 \cdot 4=6 ; \\ m=14 \end{gathered}$
$9+6=5 \cdot 3$	Values you substitute into an equation	Values you get from an equation

Choose two answers and explain how they are related.
\qquad
\qquad

Family Letter

What new strategies for solving equations could you share?
How do you think learning these strategies can help you?
\qquad
\qquad
\qquad

What is one equation you wrote for someone else to solve? Explain how it should have been solved.
\qquad
\qquad

LESSON 9.1
 Understand Equations

In Lesson 9.1, I expect to learn:

Investigation

I found this on page \qquad .

1. Vocabulary Write E for equation or I for inequality.

$1.5 \cdot 8=4 \cdot 3$	
$12 \div 2=3+3$	
$6+1<10-2$	
$18 \cdot 2 \neq 17 \cdot 2$	
$24+3=9 \cdot 3$	
$51-47>2+1$	

2. How did you determine which statements were equations and which were inequalities? What is the difference?
\qquad
\qquad
\qquad
\qquad

I found this on page \qquad .

Develop \& Understand: A

3. Explain why each statement is true or false. Tell which symbol would make the statement true.
a. $13 \cdot 3-12>14 \cdot 2-1$
\qquad
\qquad
b. $22 \div 2>4 \cdot 2+1$
c. $51-12<14 \cdot 3-4$

Investigation (2)

I found this on page
\qquad

4. Write the meaning for each term in your own words.

Word	Mathematical Meaning
open sentence	
solution	

I found this on page \qquad .

Develop \& Understand: A

5. Find the solution for each open sentence. Explain how you found your solution.
a. $5 \cdot b+2=17$
\qquad
\qquad
b. $t+4=12$

Think \& Discuss

6. How many solutions are there for the equation $n^{2}-4 n=0$? Give all solutions and explain how you found your answer.
\qquad
\qquad
\qquad

Investigation 3

I found this on page
7. The directions for moving from point A to point B on the grid below are given. Use them to write a set of directions for moving from point B to point A. After you have written your directions, trace both paths and see if they match. If they do not match, find the error and correct your directions.

- Start at point A. Walk three blocks east to the oak tree.
- Turn right at the oak tree and walk two blocks south.

- Turn left at the store and walk two blocks east.
\qquad
\qquad
\qquad

8. Explain how you wrote the directions for moving from point B to point A. Did you have to correct any errors? What were they?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
equations and inequalities: \qquad
\qquad
\qquad
\qquad

Examples of true equations and inequalities: \qquad

Examples of open sentences: \qquad solutions: \qquad

Backtracking

In Lesson 9.2, I expect to learn:

Investigation

I found this on page \qquad

1. Vocabulary Draw a flowchart to help you backtrack to show this equation.

$$
3 \cdot 4+3=15
$$

2. If the flowchart represents $3 \cdot n+3=15$, what solution did you find? Explain how you found it.

Develop \& Understand: A and B

3. Complete the following flowchart.

4. Explain how you completed the flowchart. What solution does the flowchart show?
5. Circle the rule that fits the flowchart.
a. $(n+5) \cdot 8=72$
b. $n+(8-5)=72$
C. $n \cdot 8+5=72$
d. $8 \cdot(5 \cdot n)=72$

Investigation (2) Develop \& Understand: A

6. Gabriela and Erin are playing a game Think of a Number.

I found this on page \qquad _.

What is Erin's starting number? Use the flowchart below to show how you found it. \qquad

7. Draw a flowchart to represent the following equation.

$$
\frac{5 \cdot(x+4)}{2}-5=55
$$

8. Explain how you created the flowchart.
\qquad
\qquad

Investigation(3) Develop \& Understand: A

I found this on page \qquad 9. Use the pattern in this table for Parts a and b on page 103.

x	1	2	3	4	5
y	45	87	129	171	213

a. Write a rule that relates x and y. \qquad
b. Write and solve an equation to find the value of x when y is 297. Draw a flowchart to show your steps.

10. Explain how you wrote the equation. Did the flowchart help you? Why or why not?
\qquad .

Develop \& Understand: B

11. Suppose you are selling wooden toys at a craft fair. You have to pay $\$ 8$ to use the booth at the fair. You can sell the toys for $\$ 6$ each. If you need to make $\$ 218$ to buy a new skateboard, how many toys will you have to sell? Show your work.
\qquad

I need to remember the following about:
flowcharts: \qquad
\qquad
\qquad
backtracking: \qquad
\qquad
\qquad
finding patterns in tables: \qquad

\boldsymbol{n}	0	8	16	24
\boldsymbol{y}	7	9	11	13

Guess-Check-and-Improve

In Lesson 9.3, I expect to learn:

Investigation 1

1. Vocabulary What is guess-check-and-improve?

I found this on page \qquad . \qquad
\qquad
\qquad
2. Explain why you would need to use guess-check-and-improve to solve some equations.
\qquad .

Develop \& Understand: A

3. Why is backtracking not appropriate to solve $r \cdot(r-4)=96$?
4. Use guess-check-and-improve to find the input for $r \cdot(r-4)=96$. Track your answers in the table.

r	$r \cdot(r-4)=96$	Comment

Investigation 2

I found this on page \qquad .

Develop \& Understand: A

5. A badminton court at the local gym is shaped like the rectangle below. The length of the court is 4 meters greater than the width.

a. Write a rule to show the connection between the floor's area A and the width t. \qquad
b. If the area of the rectangle is 117 square meters, write an equation to find the floor's width. \qquad
C. Explain how to use guess-check-and-improve to find a solution for the equation.
\qquad
\qquad

\boldsymbol{t}	$(4+\boldsymbol{t})$	$\boldsymbol{t} \cdot(4+\boldsymbol{t})$	Comment

Investigation 3

I found this on page \qquad .

Marcus and Rosita are trying to solve the equation $n \times(14+3 n)=304$. Help them explain whether or not backtracking will work to solve this equation.

Help Marcus and Rosita solve the equation using guess-check-andimprove. Use the table below to track your answers.

n	$n \times(14+3 n)=304$	Comment

What Did You Learn?

I need to remember the following about:
how to use guess-check-and-improve: \qquad
\qquad
\qquad
\qquad
when to use guess-check-and-improve: \qquad
\qquad
how to tell whether backtracking (B) or guess-check-and-improve (G) could be used to solve an equation: \qquad
\qquad

Equation	Solution Method
$x^{2}+x=6$	
$2 y^{2}=72$	
$d^{4}-d^{2}=16$	
$\frac{1}{x}+2=15$	
$w(w+2)=36$	

Data and Probability

Real-Life Math

This chapter begins with a discussion of probability as a number between 0 and 1 . The events discussed have a low probability, or they are very unlikely to happen. For example, tossing a coin to determine the answers of a 10-question true-false test and getting all of the answers correct has a low probability of 0.001 .

Think About It

If the probability of rain for tomorrow is 60 percent, would you say it is likely or unlikely that there will be rain tomorrow? What decimal would you use to show the probability?

Connections to the Past (Chapter 8)

The graph below shows how fast Gerald's father drove on the way home. Write a sentence telling why he might have sped up and slowed down the way he did.

Time
\qquad .

Vocabulary

Give the correct letter connecting the vocabulary word to its meaning.

\quad distribution	A. the chance that an event will happen shown by a number between 0 and 1
experimental probability	B. probability that is always the same for a particular event and does not depend on an experiment
probability	C. a data display that shows things sorted into groups, illustrating how groups overlap
theoretical	D. an estimated probability based on previous sets of data
probability	
Venn	E. the way data are spread out over a graph

Family Letter

Describe at least one situation that you found in everyday life. Were you surprised by any of the situations that you found? Why or why not?
\qquad
\qquad
\qquad
\qquad
\qquad

What game of chance did you play at home? How did you use probability in the game?
\qquad
\qquad
\qquad
\qquad

Data Displays

In Lesson 10.1, I expect to learn:

Investigation

I found this on pages \qquad .

Develop \& Understand: A

1. If the graph below shows temperatures throughout the year for a place, what place do you think it might represent? Why?

2. How would a similar graph look for an island near the equator? Sketch a line on the graph above to show how you think it would look. Explain why you drew the line this way.

Investigation (2)

Develop \& Understand: A, B, and C

3. Would you choose a bar graph or a table to show the typical
\qquad per-vehicle emissions for each year?
4. Explain why you need additional information to conclude that the total amount of hydrocarbons emitted by vehicles is decreasing. Does the additional data support the statement that the amount of hydrocarbon emissions is decreasing?
\qquad
\qquad
\qquad
\qquad
\qquad
5. Vocabulary You can use a to show the finishing times divided into equal intervals.
The \qquad counts the number of data values in each interval.

Investigation (3) Develop \& Understand: B

I found this on page
6. Why would there be intervals of a bar graph that do not show a bar?

Develop \& Understand: C

7. What is another way to make a histogram showing the number of values in each interval for the frequency table on page 586?

Investigation
 4

I found this on page \qquad .
8. Vocabulary When you need data to be sorted in groups, a useful display is circles in a \qquad If an item is in two groups, it is placed in the space where two circles

Develop \& Understand: A

9. How did you represent the juniors who did not take Chinese or Spanish in your Venn diagram?

How did you show the students who took both languages?
10. Explain why you would use a Venn diagram to show the information.
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
data displays: \qquad
\qquad
\qquad
using tables to complete a bar graph:
\qquad
\qquad

Year	Pairs of Shoes (in thousands)
2004	8.5
2005	10.8
2006	12.2
2007	16.4
2008	19.3

Collect and Analyze Data

In Lesson 10.2, I expect to learn:

Investigation
 Develop \& Understand: A

1. The following is a list of things to consider when conducting a
\qquad survey. Tell whether you think each thing is important and why. Then revise the item the way that you think it should be written.
a. The items that go on the survey.
\qquad
\qquad
\qquad
b. The information you will get from the survey.
\qquad
\qquad
\qquad
\qquad
C. A plan for the survey.
\qquad
\qquad
\qquad
\qquad
\qquad

Investigation

Develop \& Understand: A

2. What information was the most useful in answering the questions about the activities?
\qquad .
\qquad
\qquad
3. How do proportions help you estimate large quantities?
\qquad .

To estimate large populations of animals, the
\qquad method is often used.
4. Suppose biologists wanted to determine the number of water snakes around a small island. They tagged and released 64 water snakes. The next year, they caught 72 water snakes and found that 18 of them had tags. Estimate the total number of water snakes in the area. Explain how you would make an estimate using a proportion.
5. Complete the drawing below to show how many triangles should be in square B, if square A is $\frac{1}{4}$ the size of square B.

6. How did you determine the number of triangles that should be square B ?
\qquad
\qquad
\qquad
\qquad
7. Twenty-four students were surveyed about the number of times I found this on page \qquad -. they go to the movies each month. Here are the findings.

Number of Trips to the Movies	None	1	2	3	4 or more
Number of Students	3	7	7	5	2

Explain why a histogram would be the best choice for displaying the data from the table.

What Did You Learn?

I need to remember the following about:

Suppose you are doing a study for your local recreation department on the summer activities of kids ages 5 to 12 . Employees of the recreation department want the information to help them decide which programs to offer for the summer. Tell how you would answer each question below.

How would you analyze the study?

Activity	Average Time Spent Each Week (hours)
Swimming	5
Going to the movies	3
Playing sports	6
Exercising	12
Drawing or painting	2
Reading	7

\qquad
\qquad
\qquad
\qquad

Which type of graph should you use to display the results of the study?
\qquad
\qquad

The Language of Chance

In Lesson 10.3, I expect to learn:

What are some words that you use when you make a prediction?

Investigation

1. Vocabulary Circle the numbers below that could be used to describe a probability that an event will happen.

0.64	0	$5 \frac{1}{3}$	$\frac{2}{5}$
$\frac{3}{8}$	13	1.24	0.24

2. How did you determine which numbers could be used to show probability?

Develop \& Understand: A and B

3. The table below shows the Beamers basketball team's record. How many games has the team played in all? \qquad

Wins	Losses	Ties
13	4	1

a. Estimate the probability that the Beamers will win its next game. Explain how you found your estimate.
\qquad
\qquad
\qquad
b. Vocabulary What can you call the probability that you found? \qquad

I found this on page \qquad -.
4. Vocabulary Write EL to show that the events are equally likely, or NEL for not equally likely.
a. tossing heads or tails with a coin
b. tossing heads or rolling a 5 with a die
C. rolling 1 or 4 with a die
\qquad
\qquad
\qquad
5. Explain how experimental probability is different from theoretical probability.
\qquad
\qquad
\qquad

I found this on page \qquad . Think \& Discuss
6. Explain why all the students are correct except Conor.

\qquad
\qquad
\qquad
\qquad Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
7. If you toss a coin 50 times, how many coins would you expect to come up heads? Explain whether you based your answer on a theoretical or on an experimental probability.

Inquiry

Investigation

I found this on page \qquad -.
8. Was the theoretical probability of winning counters different from the experimental probability when you played the Spinning Top game? Why or why not?

\qquad
\qquad
\qquad

Investigation (4)

9. Look at the two game boards below. If you are playing the Rice Drop game, on which board are you more likely to land a piece of rice on a shaded area? Why?
\qquad
\qquad

What Did You Learn?
I need to remember the following about:
experimental probability: \qquad
\qquad
\qquad
theoretical probability: \qquad

Make Matches

In Lesson 10.4, I expect to learn:

Investigation

I found this on page \qquad .

1. Vocabulary A \qquad is an experiment in which I use different items to represent the items in a real situation.
2. Name two different ways you could create a simulation of an experiment that involves pulling black and blue socks from a drawer.
\qquad _.

Develop \& Understand: A

3. Why can you use counters, blocks, or slips of paper to do the sock experiment?
4. How do you read the outcomes of a tree diagram from the diagram?

Investigation
 2

I found this on page \qquad -.

Develop \& Understand: C

The tree diagram below shows the outcomes of drawing a card, putting it back, and then drawing another card. Use the diagram to answer the questions on page 119.

5. Why do the outcomes for the second drawing show the same possibilities as the first drawing?
6. How would the next set of possible outcomes look if you drew another card? Why?

Investigation 3

I found this on page \qquad .

On Fun Day at summer camp, campers get to choose two morning activities among canoeing, hiking, horseback riding, or swimming. In the afternoon, they can choose from crafts, music, a movie, or badminton. Complete the table below to show the possibilities of choices for a camper on Fun Day.

	Crafts	Music	Movie	Badminton
Canoeing				
Hiking				
Horseback Riding				
Swimming				

7. How many possibilities are there for activity combinations? Could you have shown the possibilities in a tree diagram? If so, why was the table method shown?
8. Explain how you could have used the Fundamental Counting Principle to find the number of possible activity combinations for Fun Day. Would it have been easier? Why or why not?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
tree diagrams: \qquad

Fundamental Counting Principle: \qquad
\qquad

Suppose you have three shirts and two pairs of pants. The shirts are red, blue, and yellow; the pants are brown and black. Draw a tree diagram to show the possible choices of outfits you could wear. What is the probability that you will wear a red shirt and brown pants? Explain how you know.
\qquad
\qquad

Use the Fundamental Counting Principle to find the number of possible outfits.
\qquad
\qquad

Course 1 Contents

Chapter 1: Polygons, Angles, and Circles
Chapter 2: Fractions and Decimals
Chapter 3: Patterns, Numbers, and Rules
Chapter 4: Fraction and Decimal Operations
Chapter 5: Rate, Ratio, and Proportion
Chapter 6: Percents
Chapter 7: Area, Volume, and Capacity
Chapter 8: Coordinate Plane
Chapter 9: Equations
Chapter 10: Data and Probability

[^0]: I found this on page \qquad .

[^1]: I found this on page \qquad

