Classifying Angles

A_{n} angle is formed by two rays with a common endpoint called the vertex. Angles are measured in degrees. Angles are classified according their measure.

Right angles
measure 90°.

Acute angles
measure between 0° and 90°.

Obtuse angles measure between 90° and 180°.

EXAMPLE Classify each angle.

$\underbrace{\text { C }}$

This angle is an obtuse angle.

This angle is a right angle.

This angle is an acute angle.

EXERCISES Classify each angle as right, acute, or obtuse.

1.

2.

3.
4.

5.

6.

Classify the angles found in each polygon.

7.

8.

9.

10.

11.

12.

APPLICATIONS

13. A diagram of Tara's lawn is shown at the right. Tara plans to place a sprinkler at each corner of the lawn. What type of angle should she set the spray for each sprinkler?
14. A diagram of a baseball field is shown at the right. What type of angle is formed from a ball thrown from first base to second base to third base?
15. What type of angle is formed by a ball thrown from the pitcher to the catcher to the first baseman?

Polygons

Polygons are closed figures formed by line segments called sides. They are classified by their number of sides.

Polygon	Number of Sides
Triangle	3
Quadrilateral	4
Pentagon	5
Hexagon	6
Octagon	8

Regular polygons are polygons in which all sides are the same length and all the angles are the same size.

EXAMPLE Determine if each figure is a polygon. If the figure is a polygon, classify the polygon by the number of sides and as regular or not regular.

This figure is a polygon with six sides. It is a hexagon. It is not a regular polygon.

This figure is not a polygon since one of the sides is a curve.

This figure is a polygon with three sides. It is a triangle. It is a regular polygon.

EXERCISES Tell whether each figure is a polygon. State yes

 or no.1.

2.

3.

4.

5.

6.

Classify each polygon by the number of sides and as regular or not regular.
7.

8.

9.

10.

11.

12.

APPLICATIONS

13. A tile pattern is shown at the right. Name the polygons in the pattern.
14. Find a picture of some interesting architecture. Name some examples of polygons in the picture.
15. Draw a picture or design by using various polygons.

Triangles and Quadrilaterals

T
riangles may be classified by the measures of their angles or by the lengths of their sides.

Triangles			
Classification by Angles		Classification by Sides	
Acute	all angles acute	Scalene	all sides different lengths
Right	one right angle	Isosceles	two sides the same length
Obtuse	one obtuse angle	Equilateral	three sides the same length

Sides and angles are also used to classify quadrilaterals.

Quadrilaterals	
Trapezoid	only one pair of parallel sides
Parallelogram	both pairs of opposite sides parallel
Rectangle	parallelogram with four right angles
Rhombus	parallelogram with four sides the same length
Square	parallelogram with four right angles and four sides the same length

EXAMPLE Identify each polygon.

All of the angles are acute and all of the sides are the the same length. This triangle is acute and equilateral.

There are two pairs of parallel sides and four right angles. This quadrilateral is a rectangle.

EXERCISES Classify each triangle by its sides and by its angles.
1.

2.

3.

Name every quadrilateral that describes each figure. Then state which name best describes the figure.
4.

6.

7.

8.

9.

APPLICATIONS Find two examples of each figure in your

 school or home.10. square
11. equilateral triangle
12. parallelogram
13. rectangle
14. right scalene triangle
15. trapezoid
16. acute isosceles triangle
17. rhombus
18. obtuse scalene triangle
\qquad

Line Symmetry

If a figure can be folded in half so that the two halves match exactly, the figure has a line of symmetry.

EXAMPLE Draw all lines of symmetry for each figure.

no lines of symmetry

EXERCISES Draw all lines of symmetry for each figure.

1.

2.

4.

5.

6.

Complete each figure so that the dashed line is a line of symmetry.
7.

8.

9.

APPLICATIONS The following are designs from Navaho baskets. Determine the number of lines of symmetry for each of the designs.
10.

11.

12.

Printers use many fonts or styles of type. For Exercises 13-16, consider block capital letters.
13. List the letters that have a vertical line of symmetry.
14. List the letters that have a horizontal line of symmetry.
15. List the letters that have no line of symmetry.
16. List the letters that have more than one line of symmetry.

Measuring Angles

T measure an angle, place the center of a protractor on the vertex of the angle. Place the zero mark of the scale along one side of the angle. Read the angle measure where the other side of the angle crosses the scale.

Angles may be classified according to their measure.

EXERCISES Classify each angle as acute, right, or obtuse.

1.

2.

3.

4.

5.

6.

Use a protractor to find the measure of each angle.
7.

8.

9.

10.

11.

12.

Classify angles having each measure as acute, right, obtuse, or straight.
13. 47°
14. 95°
15. 180°
16. 82.9°
17. 90°
18. 153°
19. 179°
20. 25°

APPLICATIONS

21. The circle graph at the right shows the after-school participation of seventh grade students at Moore Middle School. Use the measure of the angles to order the activities from greatest to least involvement.

After School Participation

22. Without a protractor, draw your best estimate of an angle measuring 105°. Check your estimate with a protractor.

Angle Relationships

When two lines intersect, they form two pairs of opposite angles called vertical angles. Vertical angles have the same measure and are therefore congruent.

EXAMPLE Find $m \angle 1$.

Angle 1 and the angle whose measure is 132° are vertical angles. Therefore, they are congruent.

Thus, $m \angle 1=132^{\circ}$.

Two angles are complementary if the sum of their measures is 90°.
Two angles are supplementary if the sum of their measures is 180°.

EXAMPLES Find x in each figure.

The two angles form a right angle, which measures 90°. Therefore, the angles are complementary.

$$
\begin{aligned}
54+x & =90 \\
54+x-54 & =90-54 \\
x & =36
\end{aligned}
$$

The two angles form a straight line, which measures 180°. Therefore, the angles are supplementary.

$$
\begin{aligned}
x+105 & =180 \\
x+105-105 & =180-105 \\
x & =75
\end{aligned}
$$

EXERCISES Find the value of x in each figure.
1.

2.

3.

4.

5.

6.

7. Angles A and B are vertical angles. If $m \angle A=63^{\circ}$ and $m \angle B=(x+15)^{\circ}$, find the value of x.
8. Angles P and Q are supplementary angles. If $m \angle \mathrm{P}=(x-25)^{\circ}$ and $m \angle Q=102^{\circ}$, find the value of x.
9. Angles Y and Z are complementary. If $M \angle Y=(4 x+2)^{\circ}$ and $m \angle Z=(5 x-2)^{\circ}$, find the value of x.

APPLICATIONS

10. A carpenter uses a power saw to cut a piece of lumber at a 135° angle. What is the measure of the other angle formed by the cut?

11. Megan is making a quilt using the pattern shown at the right.
a. What is $m \angle 1$?
b. What is $m \angle 2$?
c. What is $m \angle 3$?

Circumference of Circles

Thhe formula for the circumference of a circle is $C=\pi d$ where C is the circumference and d is the diameter.

EXAMPLE The diameter of a Ferris wheel at the amusement park is 15 meters. How far does a seat on the Ferris wheel travel in one revolution?

To find the distance traveled by a seat in one revolution, find the circumference of the Ferris wheel. Use the formula $C=\pi d$. Substitute 3.14 for π and 15 for d.

$$
\begin{aligned}
& C=\pi d \\
& C \approx 3.14 \cdot 15 \\
& C \approx 47.1
\end{aligned}
$$

The circumference of the Ferris wheel is about 47.1 meters. Thus, a seat travels about 47.1 meters in one revolution.

EXERCISES
 In Exercises 1-12, find the circumference of each

 circle shown or described. Use 3.14 for π.1.

2.

3.

4.

5.

6.

7. The diameter is 16.4 km .
9. The radius is 17 ft .
11. The radius is 1.3 cm .
8. The radius is 0.5 m .
10. The diameter is 4.7 in .
12. The diameter is 10 in .

APPLICATIONS The Castle Garden is a national monument on Manhattan Island in New York City. It was originally built by the Dutch in the seventeenth century to be used as a fort. It has a diameter of about 236 feet. Use this information to answer Exercises 13-15.
13. Suppose you are standing in the center of Castle Garden and you walk toward a wall. How far will you walk?
14. You decide to walk completely around the outside wall. How far will you walk, to the nearest foot?
15. You decide to keep walking around the outside wall. About how many times will you need to walk around the wall to walk 1 mile? (Hint: 1 mile $=5,280$ feet)
16. The distance around Earth at the equator is about 25,000 miles. What is the approximate diameter of Earth at the equator, to the nearest mile?
17. Ted's town is planning on putting in a bicycle path at the local park. They want the path to be 400 meters long and circular. What should the radius be of the circle formed by the path, to the nearest meter?

Perimeter of Rectangles, Squares, and Parallelograms
 The perimeter of a figure is the distance around the figure.

EXAMPLE Determine how much fence will enclose a rectangular yard with a length of 50 feet and a width of 63 feet.

To find the perimeter of a figure, add the measures of its sides.

$$
P=50+50+63+63 \text { or } 226
$$

The perimeter or amount of fence needed is 226 feet.

EXERCISES Find the perimeter of each figure shown or

 described below.1.

2.

3.

4. rectangle:
$\ell=3.5 \mathrm{~m}$
$w=4 \mathrm{~m}$
5. square:
$s=2.5 \mathrm{in}$.
6. rectangle:
$\ell=12.75 \mathrm{ft}$
$w=8.5 \mathrm{ft}$

Measure each figure to find the perimeter. Measure to the nearest fourth inch.
7.

8.

9.

10.

APPLICATIONS

11. A rectangular room is 12 feet long by 9.5 feet wide. How many feet of wallpaper border are needed to put a border around the room?
12. Mr. Nichols wants to enclose a rectangular garden with wire fencing. The garden is against his garage so he needs to fence only three sides. How much fence does he need if the perimeter of the whole garden is 86 feet and the side of the garage is 25 feet? Draw and label a diagram of the garden.
13. Draw and label a parallelogram that has a perimeter of 30 inches.

Mixed Numbers and Improper Fractions

Thhe figure at the right shows 2 whole circles plus $\frac{1}{3}$ of a circle. The mixed number $2 \frac{1}{3}$ describes the number of circles.
Mixed numbers may be expressed as improper
 fractions. An improper fraction is a fraction in which the numerator is greater than the denominator.
To express a mixed number as an improper fraction, multiply the whole number by the denominator. Add the numerator to the product. Write the sum over the denominator.

EXAMPLE Express $2 \frac{1}{3}$ as an improper fraction.

$$
2 \frac{1}{3}=\frac{(2 \times 3)+1}{3}=\frac{7}{3}
$$

Therefore, $2 \frac{1}{3}=\frac{7}{3}$.
$\mathrm{A}_{\mathrm{n} \text { improper fraction may be written as a mixed number. }}$
To express an improper fraction as a mixed number, divide the numerator by the denominator. Write the quotient as the whole number. Write the remainder over the denominator as the fraction.

$$
\begin{array}{ll}
\text { EXAMPLE } & \text { Express } \frac{7}{4} \text { as a mixed number. } \\
& 7 \div 4=1 \mathrm{R} 3 \text { or } 1 \frac{3}{4} \\
& \text { Therefore, } \frac{7}{4}=1 \frac{3}{4}
\end{array}
$$

EXERCISES Draw a model and express each mixed number as an improper fraction.

1. $1 \frac{3}{8}$
2. 2
3. $1 \frac{5}{6}$

Draw a model and express each fraction as a mixed number. See students' work.
4. $\frac{5}{2}$
5. $\frac{9}{5}$
6. $\frac{15}{4}$

Express each mixed number as an improper fraction.
7. $6 \frac{1}{2}$
8. $3 \frac{7}{8}$
9. $2 \frac{8}{9}$
10. $10 \frac{2}{3}$
11. $5 \frac{4}{7}$
12. $4 \frac{5}{6}$
13. $9 \frac{1}{4}$
14. $8 \frac{3}{5}$

Express each fraction as a mixed number.
15. $\frac{19}{6}$
16. $\frac{27}{4}$
17. $\frac{52}{9}$
18. $\frac{25}{2}$
19. $\frac{37}{5}$
20. $\frac{77}{8}$
21. $\frac{41}{3}$
22. $\frac{31}{7}$

APPLICATIONS

23. Suppose it snowed 5 inches in 2 days. The improper fraction $\frac{5}{2}$ tells the average daily snowfall. Write the improper fraction as a mixed number.
24. The Windsor Bay Deli sold $2 \frac{1}{8}$ apple pies on Wednesday. If each piece was $\frac{1}{8}$ of a pie, how many pieces of pie were sold?
\qquad

Ratios as Fractions

F
Four adults accompany Mr. Goetz's class on a field trip to the municipal court. There are 27 students going on the field trip.

EXAMPLES What is the ratio of adults to students?

$$
\frac{\text { number of adults }}{\text { number of students }}=\frac{4}{27}
$$

The ratio is $\frac{4}{27}$.

What is the ratio of students to the total number of people going on the field trip?

There are $4+27$ or 31 people going on the trip.
$\frac{\text { number of students }}{\text { total number }}=\frac{27}{31}$
The ratio is $\frac{27}{31}$.

EXERCISES Express each ratio as a fraction.

1. 30 out of 50 doctors
2. 22 players to 2 teams
3. 20 wins in 32 games
4. 4 boys to 6 girls
5. $\$ 8$ for 2 tickets
6. 14 wins to 35 losses
7. 6 hits to 14 times at bat
8. 8 out of 10 people
9. 8 out of 10 bicycles
10. 5 out of 14 weeks

APPLICATIONS $\begin{aligned} & \text { Ms. McClure's math class took a survey to } \\ & \text { determine what types of pets members of } \\ & \text { the class owned. There are } 28 \text { students in } \\ & \text { the class. Use the data at the right to } \\ & \text { answer Exercises 13-20. }\end{aligned}$
13. What ratio of the class members own a cat?
14. What ratio of the class members own a fish?

Number of Class Members Who Own Pets Cats 12	
Dogs	11
Fish	9
Birds	5
Other	3
None	2

15. What ratio of the class members own a bird?
16. What ratio of the class members do not own a dog?
17. What ratio of the class members own a dog or no pet at all?
18. What ratio of the class members do not own a bird?
19. What ratio of the class members own a pet?
20. Do some of the class members own more than one pet? Explain.

Changing Fractions to Decimals

Afraction is another way of writing a division problem. To change a fraction to a decimal, divide the numerator by the denominator.

EXAMPLE About $\frac{1}{20}$ of the heat in a house is lost through the doors. Write this fraction as a decimal.

$$
\begin{aligned}
& \frac{1}{20} \text { means } 1 \div 20 \text { or } 2 0 \longdiv { 1 . } \\
& 0.05 \\
& 2 0 \longdiv { 1 . 0 0 } \\
& \text { So, } \frac{1}{20}=0.05
\end{aligned}
$$

EXERCISES Express each fraction as a decimal. Use bar notation if necessary.

1. $\frac{4}{25}$
2. $\frac{3}{5}$
3. $\frac{7}{20}$
4. $\frac{3}{50}$
5. $\frac{9}{10}$
6. $\frac{7}{8}$
7. $\frac{1}{3}$
8. $\frac{14}{16}$
9. $\frac{20}{30}$
10. $\frac{5}{9}$
11. $\frac{19}{20}$
12. $\frac{5}{200}$
13. $\frac{10}{50}$
14. $\frac{13}{20}$
15. $\frac{5}{6}$
16. $\frac{4}{5}$
17. $\frac{7}{10}$
18. $\frac{13}{40}$
19. $\frac{39}{50}$
20. $\frac{2}{25}$
21. $\frac{7}{16}$
22. $\frac{34}{125}$
23. $\frac{16}{25}$
24. $\frac{99}{100}$
25. $\frac{17}{20}$
26. $\frac{3}{150}$
27. $\frac{3}{8}$
28. $\frac{2}{3}$

APPLICATIONS A mill is a unit of money that is used in assessing taxes. One mill is equal to $\frac{1}{10}$ of a cent or $\frac{1}{1,000}$ of a dollar.
29. Money is usually written using decimals. Express each fraction above as a decimal using the correct money symbol.
30. Find the number of cents and the number of dollars equal to 375 mills.
31. Find the number of cents and the number of dollars equal to 775 mills.
32. Find the number of cents and the number of dollars equal to 1,000 mills.

Changing Decimals to Fractions

EXAMPLE Change 1.65 to a fraction. Write the fraction in its simplest form.

First ask yourself, "Does the decimal have a whole number part?" Any numbers to the left of the decimal point stays the same when you convert a decimal to a fraction.
1.65

The fraction will also be 1 and something more.
Next, think about place value. The place value of the last digit to the right of the decimal tells you what the denominator of the fraction will be.
1.65

The last digit is in the hundredths place. So the fraction will be some number of hundredths.

How many hundredths does 0.65 represent?
The 6 in the tenths place represents 6 tenths, or 60 hundredths. The 5 in the hundredths place represents another 5 hundredths. So there are 65 hundredths all together.

Write the fraction. $1 \frac{65}{100}$

Check. Can the fraction be simplified?
65 and 100 are both divisible by 5, so $\frac{65}{100}$ can be simplified to $\frac{13}{20} .13$ and 20 do not share a common factor, so this is the simplest form of the fraction.

$$
1 \frac{13}{20}
$$

EXERCISES Write each decimal as a fraction in simplest form.

1. 0.17
2. 1.203
3. 0.45
4. 0.75
5. 1.07
6. 0.006
7. 1.30
8. 1.8
9. 0.091
10. 1.15
11. 0.125
12. 1.98

APPLICATIONS In Exercises 13-16, place each decimal approximately on the number line. Convert the decimals to fractions in orderto compare them to the fractions on the number lines. You may also need to find common denominators so that you can compare fractions to each other.
13. $0.53,1.05,0.98,0.78,0.85,0.70,0.59,0.67$

14. $0.4,1.01,0.25,1.13,0.85,0.6,0.57,0.1$

15. $0.6,0.71,0.53,0.64,0.79,0.55,0.67$

16. $1.05,0.5,0.15,0.9,1.2,0.3,0.65,1.45,0.8$

Comparing and Ordering Fractions

Aof 1992, the New York Yankees had won 22 of the 33 World Series games in which they had played. The St. Louis Cardinals had won 9 of the 15 World Series games in which they had played.

EXAMPLE Which team has a better record in the World Series?

To answer this question, compare $\frac{22}{33}$ and $\frac{9}{15}$.
One way to compare these fractions is to express them as decimals and then compare the decimals.
$\frac{22}{33}=0.6666666667 \quad \frac{9}{15}=0.6$
Since $0.6666666667>0.6, \frac{22}{33}>\frac{9}{15}$.
The New York Yankees have the better record.

EXERCISES \quad Fill in each \square with $<,>$, or $=$ to make a true sentence.

1. $\frac{2}{7} \square \frac{3}{8}$
2. $\frac{3}{11} \square \frac{1}{5}$
3. $\frac{11}{21} \square \frac{9}{16}$
4. $\frac{14}{21} \square \frac{10}{15}$
5. $\quad \frac{25}{27} \square \frac{17}{19}$
6. $\frac{3}{10} \square \frac{4}{9}$
7. $1 \frac{7}{8} \square 1 \frac{4}{5}$
8. $3 \frac{7}{9} \square 3 \frac{6}{7}$
9. $5 \frac{10}{19} \square 5 \frac{15}{24}$

Write each set of fractions in order from least to greatest.
10. $\frac{3}{5}, \frac{7}{9}, \frac{4}{5}, \frac{1}{2}$
11. $\frac{3}{8}, \frac{2}{7}, \frac{8}{11}, \frac{5}{16}$
12. $\frac{9}{14}, \frac{6}{7}, \frac{3}{4}, \frac{12}{19}$
13. $\frac{11}{23}, \frac{19}{27}, \frac{7}{10}, \frac{15}{17}$

APPLICATIONS The Pittsburgh Pirates have won 14 out of 21 games, and the New York Mets have won 15 out of 23 games. Use this information to answer Exercises 14-17.

14. Which team has the better record?
15. Suppose the Pirates win 2 of their next three games and the Mets win all of their next 3 games. Which team has the better record?
16. Suppose the Pirates went on to win 21 games after playing 30 games. Is their record better now than it was before? Explain.
17. Suppose the Mets went on to win 16 games after playing 30 games. Is their record better now than it was before? Explain.
18. Larry has $\frac{5}{6}$ yard of material. Does he have enough to make a vest that requires $\frac{3}{4}$ yard of material? Explain.

Look for a Pattern

Sergio starts a savings account by depositing $\$ 1.00$ into his account the first week, $\$ 3.00$ the second week, $\$ 5.00$ the third week, $\$ 7.00$ the fourth week, and so on.

EXAMPLE How much money will he have in his savings account on the

 twentieth week?Find the total amount Sergio will have in his account on each of the first four weeks.

Week	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Deposit	$\$ 1$	$\$ 3$	$\$ 5$	$\$ 7$
Total	$\$ 1$	$\$ 4$	$\$ 9$	$\$ 16$

Look for a pattern. The totals are squares of the numbers of the weeks.

$$
1^{2}=1 \quad 2^{2}=4 \quad 3^{2}=9 \quad 4^{2}=16
$$

Use the pattern to find the total on the twentieth week.

$$
20^{2}=400
$$

Sergio will have $\$ 400$ in his savings account on the twentieth week.

EXERCISES Write the next two numbers in each pattern.

1. $17,34,51,68, \ldots$
2. $3,6,12,24, \ldots$
3. $113,106,99,92, \ldots$
4. $20,22,25,29,34, \ldots$
5. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$
6. $8,0,8,0, \ldots$

Solve by finding a pattern.

7. What is the total number of rectangles in the figure at the right?
8. How many diagonals does a ten-sided polygon have?

APPLICATIONS

9. Isabel wants to work up to doing 40 sit-ups a day. She plans to do 7 sit-ups the first day, 10 the second day, 13 the third day, and so on. On what day will she do 40 sit-ups?
10. The NCAA men's basketball tournament starts with 64 teams. After the first round, there are 32 teams left; after the second round there are 16 teams left, and so on. Complete the pattern until there is only one team left. How many rounds does it take to determine a winner?
11. Alfua has a starting salary of $\$ 21,500$. She receives annual raises equal to $\frac{1}{10}$ of her current salary. How many years must she work to double her salary?
12. The bus leaves downtown for the mall at 7:35 A.M., 8:10 A.M., 8:45 A.M., and 9:20 A.M. If the bus continues to run on this schedule, what time does the bus leave between 10:00 A.M. and 11:00 A.M.?
13. Choose three different digits. Use these digits to make all possible two-digit numbers in which the tens digits and the ones digit are different (six different numbers). Add them. Add the three original digits. Divide the first sum by the second sum. What is the answer? Repeat this procedure three more times, each time using a different group of three digits. What is the pattern in the answers?

Prime Factorization

A prime number is a whole number greater than 1 that has exactly two factors, 1 and itself.

EXAMPLE Name two prime numbers.

7 factors: 1, 7
23 factors: 1, 23
Therefore, 7 and 23 are prime numbers.

A composite number is a whole number greater than 1 that has more than two factors. Every composite number can be written as the product of prime numbers. This is called the prime factorization of the number.

EXAMPLE Write the prime factorization of 420.

Write 420 as the product of two factors. Keep factoring until all of the factors are prime numbers.

EXERCISES Determine whether each number is composite or prime.

1. 34
2. 77
3. 37
4. 89
5. 31
6. 434
7. 97
8. 123

Write the prime factorization of each number.
9. 490
10. 225
11. 900
12. 1,105
13. 66
14. 306
15. 2,475
16. 1,024

Find the missing factor.
17. $3^{2} \times 5 \times$ \qquad $=315$
18. $2^{4} \times$ \qquad $\times 7=1,008$
19. $3^{3} \times$ \qquad $=135$
20. $2^{2} \times 3^{2} \times \ldots=252$
21. $5^{2} \times$ \qquad $=275$
22. $3^{3} \times 5^{2} \times$ \qquad $=7,425$

APPLICATIONS

23. The first prime number is 2 . What is the fourteenth prime number?
24. Two and 3 are consecutive prime numbers. Why aren't there any other pairs of consecutive prime numbers?
25. Evaluate $n^{2}+n+41$ for $n=0,1,2$, and 3 to find four prime numbers.
\qquad

Greatest Common Factor

Thhe greatest common factor ($\mathbf{G C F}$) of two or more numbers is the greatest number that is a factor of each number. One way to find the GCF is to list the factors of each number and then choose the greatest of the common factors.

EXAMPLE Find the GCF of 72 and 108.

factors of $72:$	$\mathbf{1}, 2,3,4,6,8,9,12,18,24,36,72$
factors of 108:	$1,2,3,4,6,9,12,18,27,36,54,108$
common factors:	$1,2,3,4,6,9,12,18,36$

The GCF of 72 and 108 is 36 .

A

nother way to find the GCF is to write the prime factorization of each number. Then identify all common prime factors and find their product.

EXAMPLE Find the GCF of 210 and 525.

common prime factors: $3,5,7$
The GCF of 210 and 525 is $3 \times 5 \times 7$, or 105 .

EXERCISES Find the GCF of each set of numbers by listing the factors of each number.

1. 12,18
2. 44,153
3. 16,30

List the common prime factors for each pair of numbers. Then

 write the GCF.4. $80=2^{4} \times 5$
$110=2 \times 5 \times 11$
5. $42=2 \times 3 \times 7$
$49=7 \times 7$
6. $16=2^{4}$
$48=2^{4} \times 3$

Find the GCF of each pair of numbers by writing the prime factorization of each number.
7. 35,85
8. 40,100
9. 42,23

Find the GCF of each set of numbers.
10. 18,30
11. 60,45
12. 24,72
13. 54,36
14. 120,200
15. 81,153
16. $60,24,72$
17. $32,48,80$
18. $90,120,180$
19. What is the GCF of $2^{3} \times 3^{2} \times 5$ and $2^{2} \times 3^{2} \times 5^{3}$?

APPLICATIONS

20. What is the GCF of all the numbers in the sequence $12,24,36$, 48, . . .?
21. There are 84 turkey and 63 ham sandwiches to be placed on trays. Each tray should have only one kind of sandwich, and all trays have the same number of sandwiches. What is the greatest number of sandwiches that can be placed on one tray?

SKILL

 Name
Least Common Multiple

Amultiple of a number is the product of that number and any whole number. The least nonzero multiple of two or more numbers is the least common multiple (LCM) of the numbers.

EXAMPLE Find the least common multiple of 15 and 20.

positive multiples of 15 : $15,30,45,60,75,90,105,120, \ldots$
positive multiples of 20 : $20,40,60,80,100,120,140, \ldots$
The LCM of 15 and 20 is 60 .

P

rime factorization can also be used to find the LCM.

EXAMPLE Find the LCM of 8, 12, and 18.

The LCM of 8,12 , and 18 is 72 .

Find prime factors of each number.

Circle all sets of common factors.

Multiply the common factors and any other factors.

EXERCISES Find the LCM of each set of numbers by listing the multiples of each number.

1. 12,16
2. 15,24
3. 7,9

Find the LCM of each set of numbers by writing the prime factorization.
4. 18,27
5. 30,21
6. 20,50

Find the LCM of each set of numbers.
7. 250,30
8. 8,54
9. 30,65
10. $6,10,15$
11. $2,16,24$
12. $7,8,14$
13. $6,8,36$
14. $18,30,50$
15. 14,22
16. Find the GCF and LCM for 12 and 24 .
17. Find the two smallest numbers whose GCF is 9 and whose LCM is 54.
18. List the first four multiples of $2 n$.

APPLICATIONS

19. James goes to the zoo every six months, he goes to the art museum every 18 months, and he goes to the children's museum every July 1. This year on July 1, he went to all three places. When will be the next time that he happens to go to all three places?
20. On a store's 100th anniversary, every person who enters gets a pin. Every fourth person gets a mug. Every tenth person gets perfume. Every 25th person gets an umbrella, and every 75th person gets a free dinner. Which shopper will be the first to get all 5 gifts?

Metric Units of Measure

The meter is the basic unit of length in the metric system. Other metric units of length are millimeters, centimeters, and kilometers. Metric units of length are related in the following ways:

1 millimeter $(\mathrm{mm})=0.001$ meter (m)
1 centimeter $(\mathrm{cm})=0.01$ meter
1 kilometer $(\mathrm{km})=1,000$ meters

EXAMPLE The metric ruler shown below can be used to measure the

 length of the paper clip in centimeters and in millimeters.

Centimeters:

The distance between two numbered marks is a centimeter. Each centimeter is divided into tenths. Therefore, the paper clip is about 3.2 centimeters long.

Millimeters:
The distance between two smaller marks is a millimeter. There are 10 millimeters in one centimeter. Therefore, the paper clip is about 32 millimeters long.

EXERCISES Complete each sentence with the most reasonable unit. Write millimeters, centimeters, meters, or kilometers.

1. Jack rode 5 \qquad along the bike trail.
2. The length of the room is about 6 \qquad .
3. The width of a kite is about 85 \qquad .
4. The button from your coat is about 5 \qquad thick.

Circle the best estimate.

5. length of a river	500 cm	500 m	500 km
6. length of a quilt	2.5 cm	2.5 m	2.5 km
7. length of a cassette tape	10 mm	10 cm	10 m
8. thickness of a rope	9 mm	9 cm	9 m
9. diameter of a bicycle wheel	65 cm	65 m	65 km
10. length of a bolt	20 cm	20 m	20 mm
11. length of a bus route	15 cm	15 m	15 km

Find the length of each object in centimeters and millimeters.
12.

13.

14.

APPLICATIONS

16. Name three objects whose lengths are between 1 centimeter and 1 meter.
17. Estimate the length of your pencil in centimeters. Then measure to check your estimate.
18. Juan ran 0.5 kilometers and Maria ran 600 meters. Who ran farther?
19. Mrs. Miller bought 2.75 meters of blue ribbon and 3.75 meters of red ribbon. How many meters of ribbon did she buy in all?

Large Numbers

A
light-year is the distance that light travels in one year. It is a measurement used in astronomy. It is approximately equal to $9,460,000,000,000$ kilometers.

EXAMPLE Read the number of kilometers in a light-year.

Trillions			Billions			Millions			Thousands			Ones		
		$\frac{\tilde{0}}{\stackrel{\text { n }}{\bar{I}}}$			$\frac{\text { n }}{\stackrel{\text { n }}{\overline{0}}}$			$\begin{aligned} & \tilde{n} \\ & \frac{0}{\bar{\prime}} \\ & \Sigma \end{aligned}$			$\begin{aligned} & \text { n } \\ & \frac{C}{\widetilde{1}} \\ & \tilde{n} \\ & 0 \\ & \stackrel{C}{1} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{D}{0} \\ & \frac{1}{c} \\ & \frac{1}{x} \end{aligned}$	$\stackrel{n}{\stackrel{\sim}{\oplus}}$	$\stackrel{\text { ¢ }}{\substack{0}}$
		9,	4	6	0,	0	0	0,	0	0	0,	0	0	0

There are nine trillion, four hundred sixty billion kilometers in one light year.

EXERCISES Write each number in words.

1. 41,020
2. 3,066
3. $4,800,050$
4. $78,500,080,000$
5. $6,555,800,090,001$
6. $80,450,007,000,000$

APPLICATIONS

The chart below shows the distances from the sun to various planets. Use this information to answer Exercises 7-12.

	Distance from the Sun in Kilometers		
	Farthest	Nearest	Mean
Mercury	$69,000,000$	$46,000,000$	$57,900,000$
Venus	$109,000,000$	$107,500,000$	$108,230,000$
Earth	$152,106,000$	$147,103,000$	$149,597,870$
Mars	$249,100,000$	$206,500,000$	$227,900,000$
Jupiter	$816,000,000$	$716,000,000$	$778,000,000$
Saturn	$1,503,000,000,000$	$1,351,000,000,000$	$1,427,000,000,000$

7. Write Mercury's nearest distance from the sun in words.
8. Write Jupiter's mean distance from the sun in words.
9. Write Earth's farthest distance from the sun in words.
10. Write Saturn's nearest distance from the sun in words.
11. Write Saturn's farthest distance from the sun in words.
12. Write Jupiter's nearest distance from the sun in words.

Th he exponent in a power of ten is the same as the number of zeros in the number.

Powers of Ten	
10^{0}	1
10^{1}	10
10^{2}	100
10^{3}	1,000
10^{4}	10,000
10^{5}	100,000

To multiply by a power of ten, move the decimal point to the right the number of places shown by the exponent or the number of zeros. Annex zeros if necessary.

EXAMPLES Find each product.

$$
\begin{aligned}
& 0.08 \times 10^{4} \\
& 0.0800=800 \quad \text { Move the decimal point } 4 \text { places to the right. } \\
& \text { The product is } 800 . \\
& 6.25 \times 1,000 \quad \text { Move the decimal point } 3 \text { places to the right. } \\
& 6.250=6,250 \quad \\
& \text { The product is } 6,250 \text {. }
\end{aligned}
$$

EXERCISES Choose the correct product.

1. $2.48 \times 100 ; 0.0248$ or 248
2. 0.9×10^{0}; 9 or 0.9
3. $0.039 \times 10^{2} ; 3.9$ or 39
4. $1.5 \times 10^{4} ; 150,000$ or 15,000

Multiply.

5. 15.24×10
6. 0.702×100
7. $5.149 \times 1,000$
8. 0.52×100
9. 2.587×10^{0}
10. 0.2674×100
11. 6.8×10^{2}
12. 9.57×10^{4}
13. 6.2×10^{5}

Solve each equation.

14. $d=0.92 \times 100$
15. $12.43 \times 10^{3}=h$
16. $h=3.68 \times 10^{6}$
17. $a=0.004 \times 10^{2}$
18. $0.23 \times 1,000=j$
19. $1.89 \times 10^{0}=v$
20. $d=10,000 \times 7.07$
21. $0.014 \times 10^{2}=k$
22. $v=589 \times 10^{1}$

APPLICATIONS

23. What is the length of the Amazon river if it can be represented by 3.9×10^{3} miles long? How much longer is it than the Wood River which is 5.7×10^{2} ?
24. The United States spends 37.3×10^{9} dollars on research and development in the military. Germany spends 1.4×10^{9} dollars on research and development in the military. How much money do these two countries spend altogether?
25. The diameter of Neptune is about 4.95×10^{4} kilometers. The diameter of Venus is about 1.21×10^{4} kilometers. About how much greater is Neptune's diameter?
\qquad

Dividing by Powers of Ten

Th he exponent in a power of ten is the same as the number of zeros in the number.

Powers of Ten	
10^{0}	1
10^{1}	10
10^{2}	100
10^{3}	1,000
10^{4}	10,000
10^{5}	100,000

To divide by a power of ten, move the decimal point to the left the number of places shown by the exponent or the number of zeros.

EXAMPLES Find each quotient.

$8 \div 10^{4}=0.0008 \quad$ Move the decimal point 4 places to the left.
The quotient is 0.0008 .
$62.5 \div 1,000=0.0625 \quad$ Move the decimal point 3 places to the left.
The quotient is 0.0625 .

EXERCISES Choose the correct quotient.

1. $2.48 \div 100 ; 0.0248$ or 248
2. $0.9 \div 10^{\circ} ; 9$ or 0.9
3. $0.39 \div 10^{2} ; 0.039$ or 0.0039
4. $1.5 \div 10^{4} ; 0.00015$ or 15,000

Divide.

5. $15.24 \div 10$
6. $0.702 \div 100$
7. $514.9 \div 1,000$
8. $5.2 \div 100$
9. $2.587 \div 10^{0}$
10. $267.4 \div 100$
11. $68 \div 10^{2}$
12. $9.57 \div 10^{4}$
13. $6,245 \div 10^{5}$

Solve each equation.
14. $d=92 \div 100$
15. $12.43 \div 10^{3}=h$
16. $h=36.8 \div 10^{6}$
17. $a=0.004 \div 10^{2}$
18. $2,358 \div 1,000=j$
19. $1.89 \div 10^{0}=v$
20. $d=76.9 \div 10,000$
21. $8,714 \div 10^{2}=k$
22. $v=589 \div 10^{1}$

APPLICATIONS

23. Mr. Fraley bought 1,000 postage stamps for $\$ 290$ for use in his office. How much did each stamp cost?
24. Mary donated 100 cans of soup to the local food pantry. It cost her $\$ 23$ to buy the soup. How much did each can of soup cost?
25. George has $\$ 245.60$ that he wants to split evenly with his 10 nieces and nephews. How much money will each one receive?
26. The planet Saturn is an average distance of about $887,000,000$ miles from the sun. If a space ship could travel that distance in 10,000 hours, how fast would it be going?

Order of Operations

F
Fllow the order of operations to evaluate or find the value of an expression.

Order of Operations

1. Do all operations within grouping symbols. Start with the innermost grouping symbol.
2. Do all multiplication and division in order from left to right.
3. Do all addition and subtraction in order from left to right.

EXAMPLE Evaluate $15-2 \times 4-(6-3)$.

$$
\begin{aligned}
15-2 \times 4-(6-3) & =15-2 \times 4-3 \\
& =15-8-3
\end{aligned} \begin{aligned}
& \text { Do all the operations within } \\
& \text { grouping symbols. } \\
& \\
& =4
\end{aligned} \begin{aligned}
& \text { Do multiplication and } \\
& \text { division from left to right. } \\
& \text { Do addition and subtraction } \\
& \text { from left to right. }
\end{aligned}
$$

EXERCISES Evaluate each expression.

1. $(5+3) \div 2+2$
2. $7 \times 5-3 \times 4$
3. $3 \times 6+9 \div 3-6$
4. $5 \times 13-8 \times 5+6$
5. $(3+6) \div 3 \times 3$
6. $(8-3)(12 \div 4)-5$
7. $[36-(2+4) 2] 3$
8. $20 \div 4 \times 5 \times 2 \div 10$
9. $125 \div[5(2+3)]$
10. $2 \times 8-42 \div 7+4$
11. $150 \div 10-3 \times 5$
12. $4+(5-3) 5+7$
13. $(16+4) \div 4$
14. $56 \div[(5-3) \times 4]$
15. $15-2 \times 4-(6-3)$
16. $2+4 \times 9 \div 12$
17. $45-40+1 \times 2$
18. $(100-25) \times 2+25$
19. $(12-8) \div 4+6$

APPLICATIONS Use the prices at the right to write mathematical expressions for each total cost. Evaluate the expression to find the total cost.

Riverview	
Adult	$\$ 6.00$
Student	$\$ 3.00$
Senior Citizen	$\$ 5.00$

21. 3 adult tickets and 4 student tickets
22. 2 adult tickets, 1 senior-citizen ticket, and 3 student tickets
23. 5 adult tickets and 3 senior-citizen tickets
24. 1 senior-citizen ticket and 5 student tickets with a coupon for \$2 off the total purchase
25. 5 adult tickets and 2 student tickets with a coupon for $\$ 1$ off each adult ticket
26. 4 adult tickets and 6 student tickets on a night that offers the special deal that a free ticket is given with each ticket purchased

Variables and Expressions

Algebra is a language of symbols. In algeb
unknown quantities. A combination of one
operation is called an algebraic expression.

\[\)| $x-9 \text { means } x \text { minus } 9 .$ |
| :--- |
| $7 m \text { means } 7 \text { times } m .$ |
| $a b \text { means } a \text { times } b .$ |
| $\frac{h}{4} \text { means } h \text { divided by } 4 .$ |

\]

To evaluate an algebraic expression, replace the variable or variables with known values and then use the order of operations.

EXAMPLES Evaluate $2 c-7+d$ if $c=8$ and $d=5$.

$$
\begin{aligned}
2 c-7+d & =2(8)-7+5 & & \text { Replace } c \text { with } 8 \text { and } d \text { with } 5 . \\
& =16-7+5 & & \text { Multiply. } \\
& =9-5 & & \text { Subtract. } \\
& =14 & & \text { Add. }
\end{aligned}
$$

EXERCISES Evaluate each expression if $x=9, y=5$, and $z=2$.

1. $x+6$
2. $y-3$
3. $z+11$
4. $23-x$
5. $6 z$
6. $14+y$
7. $4 z+5$
8. $24-2 x$
9. $3 y-7$
10. $\frac{x}{3}$
11. $\frac{14}{z}$
12. $\frac{x y}{15}$
13. $4 x-2 y$
14. $6 z-x$
15. $18-2 x$
16. $6 y-(x+z)$
17. $3 x-z$
18. $5(y+7)$
19. $2 x+y-z$
20. $5 z-y$
21. $4 x-(z+2 y)$
22. $\frac{2 x+3 z}{12}$
23. $\frac{7 y-y}{x}$
24. $\frac{5 y-7}{x}$
25. $(11-3 z)+x+y$
26. $7(x-z)$
27. $6 y-9 z$
28. $\frac{x y}{3}-z$
29. $\frac{40}{y}+x$
30. $\frac{5 y-y}{z}$
31. $3 x-2(y-z)$
32. $(14-6 z)+x$
33. $10 z-(x+y)$

APPLICATIONS

34. The weekly production costs at Jessica's T-Shirt Shack are given by the algebraic expression $75+7 s+12 t$ where s represents the number of short-sleeve shirts produced during the week and t represents the number of long-sleeve shirts produced during the week. Find the production cost for a week in which 30 short-sleeve and 24 long-sleeve shirts were produced.
35. The perimeter of a rectangle can be found by using the formula $2 \ell+2 w$, where ℓ represents the length of the rectangle and w represents the width of the rectangle. Find the perimeter of a rectangular swimming pool whose length is 32 feet and whose width is 20 feet.
ranslating verbal phrases and sentences into algebraic expressions and equations is an important skill in algebra. Key words and phrases play an essential role in this skill.

The first step in translating a verbal phrase into an algebraic expression or a verbal sentence into an algebraic equation is to choose a variable and a quantity for the variable to represent. This is called defining a variable.

The following table lists some words and phrases that suggest addition, subtraction, multiplication, and division. Once a variable is defined, these words and phrases will be helpful in writing the complete expression or equation.

Addition	Subtraction	Multiplication	Division
plus	minus	times	divided
sum	difference	product	quotient
more than	less than	multiplied	per
increased by	subtract	each	rate
in all	decreased by	of	ratio
together	less	factors	separate

EXAMPLES Translate the phrase "three times the number of students per class" into an algebraic expression.

Words three times the number of students per class
Variable Let s represent the number of students per class.
Expression 3s
Translate the sentence "The weight of the apple increased by five is equal to twelve ounces." into an algebraic equation.

Words The weight of the apple increased by five is equal to twelve ounces.

Variable Let w represent the weight of the apple.
Equation $\quad w+5=12$

EXERCISES Translate each phrase into an algebraic expression.

1. seven points less than yesterday's score
2. the number of jelly beans divided into nine piles
3. the morning temperature increased by sixteen degrees
4. six times the cost of the old book
5. two times the difference of a number and eight

Translate each sentence into an algebraic equation.
6. The sum of four and a number is twenty.
7. Fourteen is the product of two and a number.
8. Nine less than a number is three.
9. The quotient of a number and five is eleven.
10. Fifteen less than the product of a number and three is six.

APPLICATIONS

11. Sierra purchased an ice cream cone for herself and three friends. The cost was $\$ 8$. Define a variable and then write an equation that can be used to find how much Sierra paid for each ice cream cone.
12. Nicholas weighed 83 pounds at his most recent checkup. He had gained 9 pounds since his last checkup. Define a variable and then write an equation to find Nicholas' weight at the previous checkup.
13. There are three times as many people at the amusement park today than there were yesterday. Today's attendance is 12,000 . Define a variable and then write an equation to find yesterday's attendance.

Ratio and Proportion

A
ratio is a comparison of two numbers by division.
EXAMPLES In a class of 25 students there are 12 girls and 13 are boys. Write the relationship of the number of girls to the number of boys as a ratio.

The ratio of girls to boys can be written as 12 to $13,12: 13$, or $\frac{12}{13}$.

A proportion is a statement that two ratios are equal. In symbols, this can be shown by $\frac{a}{b}=\frac{c}{d}$. The cross products of a proportion, $a d$ and $b c$, are equal.

EXAMPLES Determine if the ratios $\frac{3}{5}$ and $\frac{12}{20}$ form a proportion.
Find the cross products of $\frac{3}{5}=\frac{12}{20}$.

$$
\begin{aligned}
\frac{3}{5} & \stackrel{?}{=} \frac{12}{20} & & \text { Write the proportion. } \\
3(20) & \stackrel{?}{=} 5(12) & & \text { Cross multiply. } \\
60 & =60 & & \text { Simplify. }
\end{aligned}
$$

So, $\frac{3}{5}$ and $\frac{12}{20}$ form a proportion.

IIf one term of a proportion is not known, you can use the cross products to set up an equation to solve for the unknown term. This is called solving the proportion.

EXAMPLES Solve the proportion $\frac{8}{12}=\frac{x}{15}$.

$$
\begin{aligned}
\frac{8}{12} & =\frac{x}{15} & & \text { Write the proportion. } \\
8(15) & =12(x) & & \text { Cross multiply. } \\
120 & =12(x) & & \\
\frac{120}{12} & =\frac{12(x)}{12} & & \text { Divide each side by } 12 . \\
10 & =x & &
\end{aligned}
$$

EXERCISES Express each ratio as a fraction in simplest form.

1. 12 pennies to 18 coins

3. 32 footballs to 40 basketballs
4. 8 clarinets out of 15 instruments
5. 12 novels out of 27 books
6. 15 bananas out of 25 fruits
7. 6 cups to 14 pints
8. 16 tulips out of 24 flowers
9. 9 poodles to 12 beagles

Solve each proportion.
9. $\frac{a}{12}=\frac{3}{9}$
10. $\frac{8}{b}=\frac{12}{21}$
11. $\frac{24}{36}=\frac{c}{15}$
12. $\frac{27}{6}=\frac{18}{d}$
13. $\frac{7}{8}=\frac{e}{56}$
14. $\frac{27}{36}=\frac{6}{f}$

APPLICATIONS

15. If 8 gallons of gasoline cost $\$ 11.20$, how much would 10 gallons cost?
16. A recipe for punch calls for 4 cups of lemonade for every 6 quarts of fruit juice. How many quarts of fruit juice should Elizabeth use if she has already added 10 cups of lemonade?
17. On a map, the scale is 1 inch equals 160 miles. What is the actual distance if the map distance is $3 \frac{1}{2}$ inches?
18. One bag of jelly beans contains 14 red jelly beans. How many red jelly beans would be found in 4 bags of jelly beans?

Proportional Reasoning

S
uper Value Grocery has a special on oranges this week. The price is $99 \not \subset$ for 6 oranges.

EXAMPLES How many oranges can Daniel buy for \$3.30?

$$
\begin{aligned}
\frac{\text { oranges }}{\operatorname{cost}(\phi)} \longrightarrow \frac{6}{99}=\frac{x}{330} \longleftarrow \frac{\text { oranges }}{\operatorname{cost}(\phi)} & \text { Write a proportion. } \\
(6)(330)=(99)(x) & \text { Cross multiply. } \\
1,980=99 x & \text { Simplify. } \\
\frac{1,980}{99}=\frac{99 x}{99} & \text { Divide each side by } 99 . \\
20=x & \text { Simplify. }
\end{aligned}
$$

Daniel can buy 20 oranges.

EXERCISES Write a proportion to solve each problem. Then solve.

1. 32 ounces of juice are required to make 2 gallons of punch.

6 gallons of punch require n ounces of juice.
2. 29 students for every teacher.

348 students for t teachers.
3. 374 miles driven using 22 gallons of gasoline.

1,122 miles driven using g gallons of gasoline.
4. 21 bolts connect 3 panels.
b bolts connect 8 panels.
5. 32 pages for 2 sections of newspaper.
p pages for 5 sections of newspaper.
6. $\$ 2.49$ for 3 bottles of water.
$\$ 8.30$ for w bottles of water.
7. 3 girls for every 2 boys.

261 girls and b boys.
8. 8 packages in 2 cases. p packages in 7 cases.
9. $\$ 11.50$ earned in one hour. d earned in 6.5 hours.
10. 1.5 inches represents 10 feet.

5 inches represents x feet.
11. 18 candy bars in 3 boxes. 900 candy bars in x boxes.
12. $\frac{1}{2}$ gallon of paint covers 112 square feet.
n gallons of paint covers 560 square feet.

APPLICATIONS Farmers often express their crop yield in bushels per acre. The table at the right shows Mr. Decker's average yields. Use this data to answer Exercises 13-16.
13. How many bushels of corn should Mr. Decker harvest

Mr. Decker's Yield (Bushels per acre)	
Corn	98
Soybeans	48
Wheat	45

14. How many bushels of wheat should Mr. Decker expect from 105 acres?
15. If Mr. Decker plants soybeans on 90 acres, how many bushels can he expect to harvest?
16. Ms. Holleran harvested 3,815 bushels of corn from 35 acres. Is this yield more or less than Mr. Decker's yield?
17. Ms. Galvez paid $\$ 150$ for 600 square feet of roofing. If she needs 240 square feet more, what is the extra cost?
18. A picture measuring 25 centimeters long is enlarged on a copying machine to 30 centimeters long. If the width of the original picture is 15 centimeters, what is the width of the enlarged copy?

Multiplication Properties

he table shows the properties for multiplication.

Property	Examples
Commutative The product of two numbers is the same regardless of the order in which they are multiplied.	$\begin{aligned} 21 \cdot 2 & =2 \cdot 21 \\ 42 & =42 \end{aligned}$
Associative The product of three or more numbers is the same regardless of the way in which they are grouped.	$\begin{aligned} 5 \cdot(3 \cdot 6) & =(5 \cdot 3) \cdot 6 \\ 5 \cdot 18 & =15 \cdot 6 \\ 90 & =90 \end{aligned}$
Identity The product of a number and 1 is the number.	$81 \times 1=81$
Inverse (Reciprocal) The product of a number and its reciprocal is 1 .	$\frac{7}{8} \times \frac{8}{7}=1$
Distributive The sum of two addends multiplied by a number is equal to the sum of the products of each addend and the number.	$\begin{aligned} 2 \cdot(9+3) & =(2 \cdot 9)+(2 \cdot 3) \\ 2 \cdot 12 & =18+6 \\ 24 & =24 \end{aligned}$

EXERCISES Name the multiplicative inverse, or reciprocal, of each number.

1. $\frac{6}{11}$
2. $\frac{19}{3}$
3. $\frac{1}{8}$
4. 9

Name the property shown by each statement.
5. $67 \cdot 89=89 \cdot 67$
6. $1 \cdot 45=45$
7. $\frac{11}{12} \cdot 1=\frac{11}{12}$
8. $\left(\frac{1}{5} \cdot \frac{2}{3}\right) \cdot \frac{5}{9}=\frac{1}{5} \cdot\left(\frac{2}{3} \cdot \frac{5}{9}\right)$
9. $\frac{3}{4} \cdot \frac{5}{6}=\frac{5}{6} \cdot \frac{3}{4}$
10. $\frac{3}{5}\left(\frac{1}{3}+\frac{5}{7}\right)=\left(\frac{3}{5} \cdot \frac{1}{3}\right)+\left(\frac{3}{5} \cdot \frac{5}{7}\right)$
11. $\frac{1}{4} \cdot 4=1$
12. $45(23+3)=(45 \cdot 23)+(45 \cdot 3)$
13. $\frac{4}{9} \cdot \frac{9}{4}=1$
14. $\frac{4}{5} \cdot \frac{3}{4}=\frac{3}{4} \cdot \frac{4}{5}$

APPLICATIONS

15. Jill runs for $1 \frac{3}{4}$ as long as Eva. Find Jill's running time if Eva runs for 48 minutes.
16. A chihuahua is 6 inches tall. The height of a German shepherd is $3 \frac{2}{3}$ the height of the chihuahua. Find the height of the German shepherd.

Simplifying Fractions

Thhere are 30 students in the school chorale, and 12 of these students can stay after school today to help prepare the stage for the concert.

EXAMPLE What fraction of the students in chorale can stay after school today? Write the fraction in simplest form.

From the information, $\frac{12}{30}$ of the students can stay after school.
To simplify this fraction, find the greatest common factor of 12 and 30 . The GCF is 6 . Then divide the numerator and denominator by 6 .
$\frac{12 \div 6}{30 \div 6}=\frac{2}{5}$
Therefore, $\frac{2}{5}$ of the students can stay after school.

EXERCISES Write each fraction in simplest form.

1. $\frac{14}{20}$
2. $\frac{15}{35}$
3. $\frac{16}{20}$
4. $\frac{10}{40}$
5. $\frac{16}{36}$
6. $\frac{45}{48}$
7. $\frac{22}{55}$
8. $\frac{49}{56}$
9. $\frac{13}{26}$
10. $\frac{16}{32}$
11. $\frac{14}{49}$
12. $\frac{60}{80}$
13. $\frac{15}{25}$
14. $\frac{16}{18}$
15. $\frac{24}{36}$
16. $\frac{8}{32}$
17. $\frac{18}{81}$
18. $\frac{8}{56}$
19. $\frac{75}{100}$
20. $\frac{15}{25}$
21. $\frac{4}{44}$
22. $\frac{10}{65}$
23. $\frac{28}{63}$
24. $\frac{42}{52}$
25. $\frac{25}{150}$
26. $\frac{81}{90}$
27. $\frac{35}{105}$

APPLICATIONS Use the data below to answer Exercises 28-35. Write all answers in simplest form.

U.S. Television Ownership	
Equipment	Number of Households out of 100
Television	98
Color Television	97
VCR	80
Two or More Televisions	64
Basic Cable	62
One or More Pay Cable Channels	30
Satellite Dish	4

28. What fraction of U.S. households have a television?
29. What fraction of U.S. households have a color television?
30. What fraction of U.S. households have a VCR?
31. What fraction of U.S. households have two or more televisions?
32. What fraction of U.S. households have basic cable?
33. What fraction of U.S. households have at least one cable channel?
34. What fraction of U.S. households have a satellite dish?

Adding Fractions

T.
o add fractions with like denominators, add the numerators. Write the sum over the common denominator. Simplify the sum if possible.

EXAMPLE Find the sum of $\frac{7}{8}$ and $\frac{5}{8}$.

$$
\begin{array}{r}
\frac{7}{8} \\
+\frac{5}{8} \\
\hline \frac{12}{8}=\frac{3}{2} \text { or } 1 \frac{1}{2} \quad \text { simplify the sum. }
\end{array}
$$

The sum of $\frac{7}{8}$ and $\frac{5}{8}$ is $1 \frac{1}{2}$.

T.
o add fractions with unlike denominators, rename the fractions with a common denominator. Then add the fractions.

EXAMPLE Find the sum of $\frac{1}{9}$ and $\frac{5}{6}$.

$$
\begin{array}{r}
\frac{1}{9}=\frac{2}{18} \quad \text { Use } 18 \text { for the common denominator. } \\
+\frac{5}{6}=\frac{15}{18} \\
\hline \frac{17}{18}
\end{array}
$$

The sum of $\frac{1}{9}$ and $\frac{5}{6}$ is $\frac{17}{18}$.

EXERCISES Add.

1. $\frac{4}{7}$
2. $\frac{5}{9}$
$+\frac{2}{7}$
$+\frac{4}{9}$
3. $\frac{11}{15}$
$+\frac{2}{15}$
4. $\frac{11}{15}$
5. $\frac{6}{7}$
$+\frac{6}{7}$
6. $\frac{11}{12}$
$+\frac{5}{12}$
7. $\frac{1}{8}$
$+\frac{1}{9}$
8. $\frac{1}{3}$
$+\frac{1}{6}$
9. $\frac{3}{5}$
$+\frac{2}{7}$
10. $\frac{7}{16}+\frac{3}{8}$
11. $\frac{7}{10}+\frac{2}{5}$
12. $\frac{3}{14}+\frac{1}{7}$
13. $\frac{5}{12}+\frac{1}{3}$
14. $\frac{1}{6}+\frac{1}{8}$
15. $\frac{1}{6}+\frac{4}{9}$
16. $\frac{3}{8}+\frac{5}{8}+\frac{1}{8}$
17. $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$
18. $\frac{2}{3}+\frac{3}{4}+\frac{1}{6}$

APPLICATIONS

19. After running $\frac{7}{8}$ mile in a horse race, a horse ran an additional $\frac{3}{8}$ mile to cool down. How far did the horse run altogether?
20. In 1991, about $\frac{1}{5}$ of the crude oil produced was from North America, and about $\frac{2}{7}$ of the crude oil produced was from the Middle East. What fraction of the crude oil produced was from North America or the Middle East?
21. In 1991, about $\frac{3}{10}$ of the petroleum consumed was in North America, and about $\frac{1}{5}$ of the petroleum consumed was in Western Europe. What fraction of the petroleum consumed was in North America or Western Europe?

Subtracting Fractions

T o subtract fractions with like denominators, subtract the numerators. Write the difference over the common denominator. Simplify the difference if possible.

EXAMPLE Subtract $\frac{5}{12}$ from $\frac{7}{12}$.

$$
\begin{aligned}
& \frac{7}{12} \\
& -\frac{5}{12} \\
& \frac{2}{12}=\frac{1}{6} \quad \text { simplify the difference. } \\
& \text { The difference is } \frac{1}{6} \text {. }
\end{aligned}
$$

To
o subtract fractions with unlike denominators, rename the fractions with a common denominator. Then subtract the fractions.

EXAMPLE Subtract $\frac{5}{8}$ from $\frac{5}{6}$.

$$
\begin{aligned}
\frac{5}{6} & =\frac{20}{24} \quad \text { Use } 24 \text { for the common denominator. } \\
-\frac{5}{8} & =\frac{\frac{15}{24}}{\frac{5}{24}}
\end{aligned}
$$

The difference is $\frac{5}{24}$.

EXERCISES Subtract.

1. $\begin{array}{r}\frac{3}{4} \\ -\frac{1}{4} \\ \hline\end{array}$
2. $\frac{5}{7}$
3. $\frac{11}{15}$
$-\frac{3}{7}$
$-\frac{3}{12}$
4. $\frac{7}{16}$
5. $\frac{9}{10}$
6. $\frac{11}{12}$
$-\frac{3}{10}$
$-\frac{5}{12}$
7. $\frac{11}{12}$
8. $\frac{8}{15}$
$-\frac{2}{5}$
9. $\frac{4}{5}$
$-\frac{1}{10}$
10. $\frac{17}{18}-\frac{2}{9}$
11. $\frac{7}{8}-\frac{1}{3}$
12. $\frac{3}{4}-\frac{2}{5}$
13. $\frac{2}{5}-\frac{1}{6}$
14. $\frac{11}{12}-\frac{2}{3}$
15. $\frac{5}{6}-\frac{5}{8}$
16. $\frac{7}{12}-\frac{3}{10}-$
17. $\frac{7}{9}-\frac{1}{6}$
18. $\frac{4}{7}-\frac{1}{2}$
19. $\frac{3}{4}-\frac{2}{5}$
20. $\frac{7}{8}-\frac{1}{3}$
21. $\frac{2}{3}-\frac{3}{5}$

APPLICATIONS

22. A large orange weighs $\frac{11}{16}$ pounds. A small orange weighs $\frac{5}{16}$ pounds. How much more does the large orange weigh?
23. In 1991, North America produced $\frac{1}{4}$ of the world's coal. The only area that produced more coal was the Far East, Which produced $\frac{3}{8}$ of the coal. How much of the world's coal was produced by the Far East than North America?
24. In 1991, North America consumed about $\frac{1}{5}$ of the coal produced and Western Europe consumed about $\frac{1}{7}$ of the coal produced. How much more coal was consumed by North America than Western Europe?
25. A page of a book has a $\frac{1}{2}$-inch margin on the top and a $\frac{3}{4}$-inch margin on the bottom. How much deeper is the bottom margin than the top margin?
\qquad

Adding and Subtracting Fractions

$L_{\text {ina }}$ is making trail mix for a hiking trip. She has $2 \frac{1}{2}$ cups of peanuts, $3 \frac{1}{4}$ cups of raisins, and $2 \frac{2}{3}$ cups of carob chips.

EXAMPLE How many cups of trail mix will Lina have?

$$
\begin{aligned}
2 \frac{1}{2}= & 2 \frac{6}{12} \\
3 \frac{1}{4}= & 3 \frac{3}{12} \\
+2 \frac{2}{3}= & +2 \frac{8}{12} \\
7 \frac{17}{12}= & 7+\frac{12}{12}+\frac{5}{12} \\
= & 7+1+\frac{5}{12} \\
= & 8+\frac{5}{12} \\
= & 8 \frac{5}{12}
\end{aligned}
$$

Lina will have $8 \frac{5}{12}$ cups of trail mix.
If Lina wants 15 cups of trail mix, how many more cups of trail mix does she have to make?

$$
\begin{aligned}
& 15=14+1=14+\frac{12}{12}=14 \frac{12}{12} \\
& 15=14 \frac{12}{12} \\
& -8 \frac{5}{12}=\frac{-8 \frac{5}{12}}{6 \frac{7}{12}}
\end{aligned}
$$

She needs to make another $6 \frac{7}{12}$ cups of trail mix.

EXERCISES Add or subtract. Write each answer in simplest form.

1. $\frac{7}{12}+\frac{2}{12}$
2. $\frac{9}{10}-\frac{3}{10}$
3. $\frac{7}{9}+\frac{5}{9}$
4. $\frac{7}{16}-\frac{3}{16}$
5. $\frac{1}{6}+\frac{1}{2}$
6. $\frac{2}{3}-\frac{1}{2}$
7. $\frac{1}{4}+\frac{7}{8}$
8. $\frac{9}{10}-\frac{3}{5}$
9. $\frac{4}{5}+\frac{9}{12}$
10. $\frac{11}{15}-\frac{1}{3}$
11. $\frac{1}{9}+\frac{1}{6}$
12. $\frac{1}{2}-\frac{7}{16}$
13. $\frac{3}{10}+\frac{4}{5}$
14. $\frac{4}{5}-\frac{1}{6}$
15. $7 \frac{1}{10}+2 \frac{1}{5}$
16. $9 \frac{1}{2}-5 \frac{1}{6}$
17. $5 \frac{3}{4}+2 \frac{5}{8}$
18. $9 \frac{3}{4}-2 \frac{1}{6}$

APPLICATIONS

19. The route from Ramon's house to city hall and then to the school is $\frac{9}{10}$ mile. It is $\frac{3}{10}$ mile from city hall to the school. What is the distance from Ramon's house to city hall?
20. To make a salad, Henry used $\frac{3}{4}$ pound of Boston lettuce and $\frac{2}{3}$ pound of red lettuce. How much lettuce did he use?
21. Donna has $10 \frac{3}{4}$ yards of ribbon. She needs $3 \frac{1}{2}$ yards of ribbon to make a bow. How much ribbon will she have after she makes the bow?
22. Part of the daily diet of polar bears at the Bronx Zoo is $1 \frac{1}{4}$ pounds of apples and a $1 \frac{1}{2}$-pound mixture of oats and barley. What is the combined weight of these items?
23. Ani has two chores to do on Saturday. She has to wash the car which will take her $\frac{3}{4}$ hour and rake the leaves which will take her $1 \frac{1}{2}$ hours. How much time should she plan to spend on these chores?
24. Mr. Vazquez wants to put a fence around his rectangular vegetable garden. If the garden is $18 \frac{3}{4}$ feet long and $10 \frac{1}{2}$ feet wide, how much fence will he need?

Multiplying Fractions

To multiply fractions, multiply the numerators. Then multiply the denominators. Simplify the product if possible.

EXAMPLES Multiply $\frac{4}{7}$ times $\frac{5}{9}$.

$$
\begin{aligned}
\frac{4}{7} \times \frac{5}{9} & =\frac{4 \times 5}{7 \times 9} & & \text { Multiply the numerators. } \\
& =\frac{20}{63} & &
\end{aligned}
$$

The product of $\frac{4}{7}$ and $\frac{5}{9}$ is $\frac{20}{63}$.
Multiply $\frac{5}{6}$ times $\frac{3}{5}$.
$\frac{5}{6} \times \frac{3}{5}=\frac{5 \times 3}{6 \times 5} \quad$ Multiply the numerators. Multiply the denominators.
$=\frac{15}{30}$ or $\frac{1}{2}$ Simplify.
The product of $\frac{5}{6}$ and $\frac{3}{5}$ is $\frac{1}{2}$.

EXERCISES Multiply.

1. $\frac{2}{3} \times \frac{1}{4}$
2. $\frac{3}{7} \times \frac{1}{2}$
3. $\frac{1}{3} \times \frac{3}{5}$
4. $\frac{1}{2} \times \frac{6}{7}$
5. $\frac{7}{10} \times \frac{5}{7}$
6. $\frac{1}{4} \times \frac{1}{4}$
7. $\frac{1}{3} \times \frac{1}{5}$
8. $\frac{5}{8} \times \frac{1}{2}$
9. $\frac{4}{9} \times \frac{3}{4}$
10. $\frac{2}{3} \times \frac{3}{8}$
11. $\frac{1}{7} \times \frac{1}{7}$
12. $\frac{2}{9} \times \frac{1}{2}$
13. $\frac{3}{5} \times \frac{5}{6}$
14. $\frac{2}{7} \times \frac{1}{3}$
15. $\frac{5}{12} \times \frac{3}{5}$
16. $\frac{1}{2} \times \frac{1}{5}$
17. $\frac{6}{7} \times \frac{8}{15}$
18. $\frac{8}{9} \times \frac{9}{10}$
19. $\frac{4}{5} \times \frac{5}{14}$
20. $\frac{7}{8} \times \frac{4}{9}$
21. $\frac{5}{8} \times \frac{3}{4}$

APPLICATIONS Use the recipe for lemon chicken saute

 below to answer Exercises 22-25.| 6 boneless chicken breasts, rolled in flour | $\frac{1}{3}$ cup teriyaki sauce |
| :--- | :--- |
| $1 / 4$ cup butter | $\frac{1}{2}$ teaspoon sugar |
| 3 tablespoons lemon juice | $\frac{1}{8}$ teaspoon pepper |
| 1 teaspoon garlic | |

22. If Julie wants to make half of this recipe, how much pepper should she use?
23. If Julie wants to make one-third of this recipe, how much teriyaki sauce should she use?
24. If Julie wants to make two-thirds of this recipe, how much sugar should she use?
25. If Julie wants to make two-thirds of this recipe, how much butter should she use?
26. If about $\frac{1}{3}$ of Earth is able to be farmed and $\frac{2}{5}$ of this land is planted in grain crops, what part of Earth is planted in grain crops?
27. Two fifths of the students at Main Street Middle School are in seventh grade. If half of the students in seventh grade are boys, what fraction of the students are seventh grade boys?
\qquad
\qquad
Multiplying Whole Numbers by Fractions
Mr. Quin's class has 28 students. He has enough computers for $\frac{3}{4}$ of the class members to work on the computers at any given time.

EXAMPLE How many students can use the computers at a time?

$$
\begin{aligned}
\frac{3}{4} \times 28 & =\frac{3}{4} \times \frac{28}{1} \\
& =\frac{84}{4} \\
& =21
\end{aligned}
$$

Twenty-one students can use the computers at a time.

EXERCISES Multiply. Write each product in simplest form.

1. $\frac{1}{2} \times 50$
2. $\frac{1}{5} \times 30$
3. $\frac{1}{3} \times 6$
4. $\frac{1}{2} \times 9$
5. $7 \times \frac{1}{7}$
6. $15 \times \frac{1}{5}$
7. $\frac{2}{3} \times 9$
8. $\frac{3}{5} \times 10$
9. $16 \times \frac{3}{4}$
10. $\frac{5}{6} \times 8$
11. $14 \times \frac{1}{3}$
12. $24 \times \frac{7}{6}$
13. $\frac{4}{5} \times 25$
14. $18 \times \frac{1}{5}$
15. $16 \times \frac{3}{2}$
16. $20 \times \frac{\mathrm{w}}{4}$
17. $\frac{1}{2} \times 11$
18. $\frac{5}{7} \times 28$

APPLICATIONS

A Native-American recipe for hickory nut corn pudding is given at the right. Use the recipe to answer Exercises 19-21.
19. How many cups of hickory nuts should be used if the recipe is tripled?
20. How many cups of raisins should be used if the recipe is to be multiplied by 6 ?
21. How much corn meal should be used if the recipe is to be cut by one third?

Hickory Nut Corn Pudding $1 \frac{1}{2}$ cups cooked corn
$\frac{1}{2}$ cup shelled dried hickory nuts, chopped

2 tablespoons nut butter
1 cup boiling water
2 eggs, beaten
2 tablespoons honey
2 tablespoons corn meal
$\frac{1}{4}$ cup raisins
Combine all ingredients into a well-greased casserole dish. Bake at $350^{\circ} \mathrm{F}$ for 1 hour. Serve hot.
22. A meteorologist in a midwestern city checked the weather records for the first 90 days of the year for the past several years. She observed that each year about $\frac{2}{3}$ of these days were sunny. How many of the first 90 days of this coming year should she expect to be sunny?
23. In 1936, Franklin D. Roosevelt won the presidential election with about $\frac{3}{5}$ of the popular vote. There were about $46,000,000$ votes cast in that election. About how many popular votes did F.D.R. receive?
24. About $\frac{1}{3}$ of the people living in Africa live in urban areas. In 1992, there were about 681,700,000 people living in Africa. About how many people lived in urban areas?

Dividing Fractions

To divide by a fraction, multiply by its reciprocal. Simplify the quotient if possible.

EXAMPLES Divide $\frac{2}{3}$ by $\frac{5}{7}$.

$$
\begin{aligned}
\frac{2}{3} \div \frac{5}{7} & =\frac{2}{3} \times \frac{7}{5} & & \text { Multiply by the reciprocal of } \frac{5}{7} . \\
& =\frac{2 \times 7}{3 \times 5} & & \begin{array}{l}
\text { Multiply the numerators. } \\
\text { Multiply the denominators. }
\end{array} \\
& =\frac{14}{15} & &
\end{aligned}
$$

The quotient is $\frac{14}{15}$.
Divide $\frac{3}{4}$ by $\frac{9}{10}$.

$$
\begin{aligned}
\frac{3}{4} \div \frac{9}{10} & =\frac{3}{4} \times \frac{10}{9} & & \text { Multiply by the reciprocal of } \frac{9}{10} . \\
& =\frac{3 \times 10}{4 \times 9} & & \text { Multiply the numerators. } \\
& =\frac{30}{36} \text { or } \frac{5}{6} & & \text { Sultiply the denominators. }
\end{aligned}
$$

The quotient is $\frac{5}{6}$.

EXERCISES Divide.

1. $\frac{3}{4} \div \frac{1}{2}$
2. $\frac{4}{5} \div \frac{1}{3}$
3. $\frac{1}{5} \div \frac{1}{4}$
4. $\frac{4}{7} \div \frac{8}{9}$
5. $\frac{3}{8} \div \frac{3}{4}$
6. $\frac{9}{7} \div \frac{3}{14}$
7. $\frac{4}{5} \div \frac{2}{5}$
8. $\frac{7}{8} \div \frac{1}{4}$
9. $\frac{2}{5} \div \frac{5}{8}$
10. $\frac{1}{3} \div \frac{1}{6}$
11. $\frac{5}{8} \div \frac{5}{12}$
12. $\frac{4}{5} \div \frac{2}{7}$
13. $\frac{2}{5} \div \frac{3}{10}$
14. $\frac{5}{7} \div \frac{3}{4}$
15. $\frac{2}{3} \div \frac{4}{9}$
16. $\frac{4}{7} \div \frac{4}{5}$
17. $\frac{5}{6} \div \frac{1}{9}$
18. $\frac{4}{5} \div \frac{2}{3}$

APPLICATIONS

19. About $\frac{1}{20}$ of the population of the world lives in South America. If about $\frac{1}{35}$ of the population of the world lives in Brazil, what fraction of the population of South America lives in Brazil?
20. Three fourths of a pizza is left. If the pizza was originally cut in $\frac{1}{8}$ pieces, how many pieces are left?

The area of each rectangle is given. Find the missing length for each rectangle.

23.

24.

Multiplying Whole Numbers and Decimals

EXAMPLES Multiply 182 by 51.

182
$\times 51$
182
910
9,282

The product is 9,282 .
Multiply 8.4 by 0.62 .

8.4	$\leftarrow 1$ decimal place	The sum of the decimal $\times 0.62$ 168
places in the factors		
$\frac{504}{5.208}$	$\leftarrow 3$ decimal places	is 3, so the product
has 3 decimal places.		

The product is 5.208 .

EXERCISES Multiply.

1. 147
$\times 6$
2. 63
$\times 51$
3. 182
$\times 51$
4. 62
5. $\quad 5.84$
6. 0.33
$\begin{array}{r}5.08 \\ \hline\end{array}$
$\begin{array}{r}6.5 \\ \hline\end{array}$
7. 2.48
8. 0.55
$\times 1.7$
9. 1.2
$\times 0.003$
10. 0.52
$\times 0.03$
11. 29.1
0.29
12. 0.0054
$\times 6.1$

APPLICATIONS Tonya is reading a map. Use the scale below to answer Exercises 13-15.

Map Scale
1 centimeter $=34$ kilometers

13. What is the distance represented by 16 centimeters on the map?
14. What is the distance represented by 7.4 centimeters on the map?
15. What is the distance represented by 12.8 centimeters on the map?
16. On the average, 130 words are listed on one page of a dictionary. How many words would you expect to be listed on 520 pages?
17. During his professional basketball career, Wilt Chamberlain averaged about 30.06 points per game for 1,045 games. How many points did he score in his career?
18. Stewart buys 2.8 pounds of steak. If the steak costs $\$ 5.70$ per pound, what is the total cost of the steak?
19. The speed of the spinetailed swift has been measured at 106.25 miles per hour. At that rate, how far can it travel in an hour and a half?

Dividing Decimals

EXAMPLE Divide 54.4 by 17.

3.2 Divide as with whole numbers, placing the 17 $\frac{51}{34.4}$ decimal point above the decimal point in the dividend.	
$\frac{34}{0}$	

The quotient is 3.2 .
Divide 0.5194 by 0.49 .
Change 0.49 to 49 by moving the decimal
point two places to the right.

EXERCISES Divide.

1. $5 \longdiv { 1 2 5 }$
2. $8 \longdiv { 9 9 2 }$
3. $2 4 \longdiv { 4 3 . 2 }$
4. $1 1 \longdiv { 3 . 0 9 1 }$
5. $0 . 3 \longdiv { 1 2 9 }$
6. $3 \longdiv { 3 . 0 6 6 }$
7. $2 . 4 \longdiv { 0 . 1 9 2 }$
8. $0 . 4 4 \longdiv { 5 2 . 8 }$
9. $4 . 5 \longdiv { 4 0 . 0 5 }$
10. $0 . 3 \longdiv { 3 . 0 6 6 }$
11. $4 . 5 \longdiv { 4 0 . 0 5 }$
12. $1 1 \longdiv { 3 0 . 9 1 }$
13. $1 . 4 \longdiv { 1 2 1 . 8 }$
14. $8 \longdiv { 0 . 0 0 9 2 }$
15. $0 . 3 8 \longdiv { 7 6 0 . 3 8 }$

APPLICATIONS Herman's Farm Market lists its prices

 below. Use this information to answer Exercises 16-18.| Herman's Farm Market | |
| :--- | :--- |
| Tomatoes | 3 pounds for $\$ 2.16$ |
| Corn | 1 dozen for $\$ 4.20$ |
| Potatoes | 5 pounds for $\$ 2.15$ |

16. What is the price of tomatoes per pound?
17. What is the price of the potatoes per pound?
18. What is the price for one ear of corn?
19. Sue earns $\$ 195.20$ in a week in which she works 30.5 hours. What is Sue's hourly pay rate?
20. Three friends plan to divide the cost of a birthday gift for another friend. If the cost of the gift is $\$ 16.38$, what is each person's share of the cost?
21. What is the cost of a gallon of gasoline at a gasoline station where a sale of 6.8 gallons costs a customer $\$ 9.18$?
22. A dolphin can swim at a speed of about 37 miles per hour. The fastest human swimmer can reach a speed of about 5.2 miles per hour. About how many times faster than humans are dolphins?

Mean, Median, Mode

Y
ou can analyze a set of data by using three measures of center: mean, median, and mode.

EXA MPLE Hakeem Olajuwon, 1994's Most Valuable Player in the National Basketball Association, helped the Houston Rockets win the NBA championship. In winning the 7-game series, Olajuwon scored 28, 25, 21, 32, 27, 30, and 25 points. Find the mean, median, and mode of his scores.

Mean: $\quad \frac{28+25+21+32+27+30+25}{7} \approx 26.857$
The mean is about 27 points.
Median: $21,25,25,27,28,30,32$
\uparrow
median
The median is 27 .
Mode: The mode is 25 since it is the number that appears the most times.

EXERCISES Find the mean, median, and mode for each set of data.

1. $5,4,7,2,2,1,4,3$
2. $25,18,14,27,25,16,18,25$
3. $13,11,7,9,12,5$
4. $234,163,634,267,545,874$
5. $23,36,48,95,36,28,24$
6. $299,100,237,492,333,263,295$
7. $2,500,2,366,1,939,1,933,1,835,2,498,2,943$
8. $9,2,5,7,8,9,4,4,6,4$
9. $29,48,20,43,33,20,40,69,48$
10. 7,899, 4,395, 9,090, 9,588, 4,880, 9,587, 4,756

APPLICATIONS The data at the right

 shows the record high temperatures for several states in the U.S. Use the data to answer Exercises 11-15.11. What is the mode?
12. What is the median?
$\left.\begin{array}{|c|c|}\hline \text { State } & \begin{array}{c}\text { Record High } \\ \text { Temperature (}\end{array} \\ \hline \text { F) }\end{array}\right]$
13. What is the mean?
14. If each of the high temperatures increased by $1^{\circ} \mathrm{F}$, would it change
a. the mode? Why or why not?
b. the median? Why or why not?
c. the mean? Why or why not?
15. If the high temperature for Vermont increased to $112^{\circ} \mathrm{F}$, would it change
a. the mode? Why or why not?
b. the median? Why or why not?
c. the mean? Why or why not?
16. Find the hand spans of ten people. Ask each person to spread apart the little finger and thumb of his or her right hand as far as possible. Then measure and record the distance from tip to tip to the nearest centimeter. Find the mean, median, and mode for the data you collected.

Line Plots

Darrell surveyed some kennels to find the cost of grooming his dog. The prices are: $\$ 25.00, \$ 27.00, \$ 32.00, \$ 22.00, \$ 43.00, \$ 28.00, \$ 18.00, \$ 24.00$, $\$ 25.00, \$ 27.00, \$ 30.00, \$ 24.00, \$ 22.00, \$ 30.00, \$ 12.00, \$ 25.00$, and $\$ 20.00$.

EXAMPLE Organize this information using a line plot.

The lowest price is $\$ 12.00$, and the highest price is $\$ 43.00$. Draw a number line that includes the numbers 12 to 43 . Place an X above the number line to represent each price.

EXERCISES Make a line plot for each set of data.

1. $23,20,23,32,35,26,35,35,44$
2. $133,139,133,139,132,132,132,132$
3. $400,600,600,200,400,1,000,400$
4. $5.3,5.1,5.0,5.0,6.0,5.5,5.3$
5. $212,215,200,203,230,227,221,218,224$
6. $\$ 4.30, \$ 4.30, \$ 4.10, \$ 4.30, \$ 4.30, \$ 4.60, \$ 4.10$

APPLICATIONS Make a line plot for each set of data.

7. The prices of appetizers at Ralph's Restaurant are listed below \$3.95, \$6.95, \$4.95, \$3.95, \$5.95, \$3.95, \$4.95, \$3.95, \$4.95, \$4.95, \$5.95, \$4.95, \$3.95, \$4.95, \$4.95, \$5.95
8. Miss Allen asked her students during which half-hour they usually wake up on school days. The results are listed below. 5:30, 7:00, 6:30, 6:00, 6:30, 7:00, 6:30, 6:30, 6:30, 7:00, 7:00, 6:30, 6:30, 7:30, 7:00, 6:30, 6:00, 7:00
9. The weights of the junior varsity wrestlers are listed below.
$170,160,135,135,160,122,188,154$,
135, 140, 122, 103, 190, 154, 108, 150
10. The scores on a sixty-point history test are listed below.
$55,52,49,53,38,46,52,60,55,49$,
$32,47,55,48,60,51,47,44,37,51$
11. Ask your classmates to rate a certain television program from 1 to 10 with 10 being the best. Write down their responses and organize this information into a line plot.

EXAMPLE Mr. Lee's car burned 6 gallons of gas when he

 drove 120 miles. Ms. Mendoza drove her car 100 miles and used 4 gallons of gas. Which car gets more miles per gallon of gas?Miles per gallon is a unit rate. This unit rate means how many miles a car can drive using 1 gallon of gas.

To find the unit rate for each, set up a ratio.
miles driven/gallons of gas

Mr. Lee's Car
120 miles/6 gallons

Ms. Mendoza's Car
100 miles/4 gallons

Divide the numerator by the denominator to find how many miles the car can drive on 1 gallon of gas.

Mr. Lee's Car
120 miles/ 6 gallons
$120 \div 6=20 \mathrm{miles} /$ gallon

Ms. Mendoza's Car
100 miles/4 gallons
$100 \div 4=25$ miles/gallon

Now you can compare the unit rates. Ms. Mendoza's car gets 25 miles per gallon, while Mr. Lee's car gets only 20 mile per gallon. So Ms. Mendoza's car gets more miles per gallons than Mr. Lee's.

EXERCISES Calculate a unit rate for each situation.

1. 5 pounds of apples cost $\$ 7.25$. How much do apples cost per pound?
2. 245 busses carried 8575 students to school. How many students were there per bus?
3. An airplane flew 1692 miles in 3 hours. What was the plane's speed in miles per hour?
4. T -shirts are on sale at 5 for $\$ 33$. What is the unit rate per shirt?

EXERCISES Use unit rates to solve each problem.

5. The SuperLaser printer prints 13 pages in 3 minutes. The PhotoFlash printer prints 26 pages in 5 minutes. Find the unit rate per page. Which printer prints faster?
6. At QuickShop, 6 cans of cat food cost $\$ 10$. At Hopper's Grocery, cat food costs $\$ 7.50$ for 4 cans. Find the price per can at each store. Which store gives you a better deal?
7. Jane walked 3 miles in 45 minutes. Alexis walked 5 miles in 1 hour and 40 minutes. Find the rate for each walker. Who walked faster?
8. SonicBoom is having a sale on CD's. Buy any 8 CDs for $\$ 46$. What is the unit rate of each CD?

APPLICATIONS

At Sheffield Farms, you can pick your own fruit. Strawberries cost \$3/quart, raspberries cost \$4.50/quart, and blueberries cost \$2.50/quart. Mark picked 4 quarts of each kind of berry.
9. Which cost more: 4 quarts of strawberries, or 4 quarts of raspberries?
10. How much did all 12 quarts cost together?
11. What was the average (mean) price per quart that Mark paid for his berries?

Mark mixed all the berries together and put them in the blender with milk and ice to make smoothies. Each quart of berries made 1.5 quarts of smoothie. He sold the smoothies at his town's Summer Fair. He wanted to make a profit, so he sold the smoothies for more than it cost to make them.
12. How much did it cost Mark to make 1 quart of smoothie?
13. What price should Mark charge for the smoothies in order to make a profit?
14. If Mark sells 3 quarts of smoothie for $\$ 7.35$, will he make or lose money? Explain your reasoning.

Proportions

A proportion is an equation that shows that two ratios are equivalent. The cross products of a proportion are equal.

EXAMPLE Determine if the ratios $\frac{2}{3}$ and $\frac{12}{18}$ form a proportion.

Find the cross products of $\frac{2}{3}=\frac{12}{18}$.

$$
\begin{aligned}
& 2 \times 18=36 \\
& 3 \times 12=36
\end{aligned}
$$

So, $\frac{2}{3}=\frac{12}{18}$ is a proportion.

If one term of a proportion is not known, you can use cross products to find the term. This is called solving the proportion.

EXAMPLE Solve $\frac{r}{24}=\frac{7}{8}$.

$$
\begin{array}{rlrl}
\frac{r}{24} & =\frac{7}{8} & & \\
r \times 8 & =24 \times 7 & & \text { Find the cross products. } \\
8 r & =168 \\
\frac{8 r}{8} & =\frac{168}{8} & & \\
r & =21 & & \\
\text { Divide each side by } 8 .
\end{array}
$$

Therefore, r equals 21.

EXERCISES Solve each proportion.

1. $\frac{2}{n}=\frac{5}{10}$
2. $\frac{5}{8}=\frac{m}{24}$
3. $\frac{12}{20}=\frac{k}{15}$
4. $\frac{3.5}{m}=\frac{16}{32}$
5. $\frac{6}{30}=\frac{n}{50}$
6. $\frac{75}{r}=\frac{6}{2}$
7. $\frac{f}{0.8}=\frac{2}{8}$
8. $\frac{15}{120}=\frac{t}{16}$
9. $\frac{7}{9}=\frac{c}{36}$

APPLICATIONS

10. Holly was absent from school 8 out of 36 days. Juan was absent 9 out of 45 days. Do these ratios form a proportion?
11. Denise needed 4 hours to paint 1,280 square feet of wall space. How much time would she need to paint 1,600 square feet of space?
12. On a map, the scale is 1 inch: 125 miles. What is the actual distance if the map distance is $4 \frac{1}{2}$ inches?
13. If you spend 1.5 hours per day doing homework, how many hours would you spend doing homework in 8 days?
14. Jenny got 3 hits in her first 8 at-bats this season. How many hits must she get in her next 40 at-bats to maintain this ratio?
15. Josh spends 40 cents out of every dollar on snacks and 14 cents out of every dollar on school supplies. He puts the rest in a savings account. If Josh earns $\$ 32.00$ per week cutting lawns, how much does he save per week?

Percent of Change

Apercent of change tells the percent an amount has increased or decreased. When an amount increases, the percent of change is a percent of increase.

EXAMPLE

According to the U.S. Department of Labor, there were approximately 126,708,000 people employed in 1996. In 2002, there were about 136,485,000 people employed. Find the percent of increase in the number of people employed.

To find the percent of increase, you can follow these steps.

1. Subtract to find the amount of change.
136,485,000 - 126,708,000 = 9,777,000 new - original
2. Write a ratio that compares the amount of change to the original amount. Express the ratio as a percent.
percent of change $=\frac{\text { amount of change }}{\text { original amount }}$

$$
\begin{aligned}
& =\frac{9,777,000}{126,708,000} \quad \text { Substitution } \\
& \approx 0.0772
\end{aligned}
$$

The number of people employed increased about 7.72\%.

When the amount decreases, the percent of change is a percent of decrease. Percent of decrease can be found using the same steps.

EXAMPLE A handheld computer that originally sells for $\$ 249$ is on sale for $\$ 219$. What is the percent of decrease of the price of the computer?

$$
249-219=30
$$

percent of change $=\frac{\text { amount of change }}{\text { original amount }}$

$=\frac{30}{249}$	Substitution
≈ 0.12	

The percent of decrease in the price of the handheld computer is about 12%.

EXERCISES Find the percent of change. Round to the nearest tenth.

1. old: $\$ 14.50$
new: \$13.05
2. old: 27.4 inches of snow new: 22.8 inches of snow
3. old: 2.3 million bushels new: 3.1 million bushels
4. old: $\$ 7,082$
new: $\$ 10,189$
5. old: 74.8 million acres
new: 67.5 million acres
6. old: 237 students new: 312 students
7. old: 12,000 cars per hours
new: 14,300 cars per hour
8. old: $\$ 119.50$
new: \$79.67
9. old: 37.5 hours
new: 42.0 hours
10. old: 5.7 liters
new: 4.8 liters

APPLICATIONS

11. At the beginning of the day, the stock market was at $10,120.8$ points. At the end of the day, it was at 10,058.3 points. What was the percent of change in the stock market value?
12. An auto manufacturer suggests a selling price of $\$ 32,450$ for its sport coupe. The next year it suggests a selling price of $\$ 33,700$. What is the percent of change in the price of the car?
13. The U.S. Consumer Price Index in 1990 was 391.4. By 2000 the Consumer Price Index was 515.8. Find the percent of change.
14. During the past school year, there were 2,856 students at Main High School. The next year there were 3,042 students. What was the percent of change?
15. During a clearance sale, the price of a television is reduced from $\$ 1,099$ to $\$ 899$ the first week. The next week, the price of the television is lowered to $\$ 739$. What is the percent of change each week? What is the percent of change from the original price to the final price?

Similar Triangles

T he triangles below are similar.

EXAMPLE Measure each side of the triangles to the nearest centimeter. Write the ratios of the corresponding sides of the similar triangles. What do you no tice about the ratios of the corresponding sides?

The measures of the sides are marked next to the triangles.
$\frac{\text { side of the first triangle }}{\text { side of the second triangle }} \quad \frac{3}{6}=\frac{1}{2} \quad \frac{2}{4}=\frac{1}{2} \quad \frac{4}{8}=\frac{1}{2}$
The ratios of the corresponding sides all equal $\frac{1}{2}$.

EXERCISES Use the similar triangles below to answer Exercises 1-3.

1. Measure each side of each triangle to the nearest centimeter.
2. Find the ratios of the corresponding sides.
3. What do you notice about the ratios of the corresponding sides?

Determine if each pair of triangles is similar.
4.

5.

Find the value of x in each pair of similar triangles.
6.

7.

APPLICATIONS

8. A lamppost casts a shadow 16 feet. A girl standing nearby casts a shadow of 4 feet. The two triangles formed are similar. If the girl is 5 feet tall, how tall is the lamppost?

9. Use similar triangles to find the distance across the pond.

Similar Figures

Figures that have the same shape but not necessarily the same size are similar. You can use ratios to determine whether two figures are similar.

EXAMPLE Determine if the triangles are similar.

Write ratios comparing the sides of one triangle to the corresponding sides of the other triangle.
$\frac{\text { side measure of first triangle }}{\text { side measure of second triangle }} \quad \frac{4.25}{17}=\frac{1}{4} \quad \frac{7}{28}=\frac{1}{4} \quad \frac{7.5}{30}=\frac{1}{4}$
The ratios of the corresponding sides all equal $\frac{1}{4}$.
Therefore, the triangles are similar.
roportions can be used to determine the measures of the sides of similar figures.

EXAMPLE The pentagons are similar. Find the value of x.

EXERCISES Determine if each pair of figures is similar.
1.

2.

Find the value of x in each pair of similar figures.
3.

4.

APPLICATIONS

5. A flagpole casts a shadow 5.6 meters long. Isabel is 1.75 meters tall and casts a shadow 0.8 meter long. How tall is the flagpole?
6. Will and Kayla want to know how far it is across a pond. They made
 the sketch at the right. How far is it across the pond?

\qquad

Congruent Figures

wo or more figures that are the same shape and same size are congruent figures.

EXAMPLE Determine if each pair of figures is congruent.

The figures are the same size and the same shape. The figures are congruent.

The figures are the same shape, but not the same size. The figures are not congruent.

The figures are the same size, but not the same shape. The figures are not congruent.

EXERCISES Detemine if each pair of figures is congruent. Explain.
1.

2.

3.

6.

7. List the congruent figures.
a.

b.

c.

d.

e.

f.

In Exercises 8-11, use the grid to draw a figure that is congruent to the given figure.
8.

10.

9.

11.

APPLICATIONS

12. Suni is dividing her back yard into two equal-sized gardens with a walkway dividing them. If she wants to put a fence around the outside of Garden 2, how much fencing material will she need.

13. A pattern for a roof truss is shown at the right. Use the labels in the figures and name all the sets of triangles that appear to be congruent.

Percents as Fractions and Decimals

To write a percent as a fraction, write a fraction with the percent in the numerator and with a denominator of $100, \frac{r}{100}$. Then write the fraction in simplest form.

EXAMPLES Express each percent as a fraction.

a. 40%
b. $87 \frac{1}{2} \%$

$$
\begin{aligned}
40 \% & =\frac{40}{100} \\
& =\frac{2}{5}
\end{aligned}
$$

$$
87 \frac{1}{2} \%=\frac{87 \frac{1}{2}}{100}
$$

$$
=\frac{\frac{175}{2}}{100}
$$

Therefore, $40 \%=\frac{2}{5}$.

$$
\begin{aligned}
& =\frac{175}{2} \times \frac{1}{100} \\
& =\frac{175}{200} \\
& =\frac{7}{8}
\end{aligned}
$$

Therefore, $87 \frac{1}{2} \%=\frac{7}{8}$.

To
To express a percent as a decimal, first express the percent as a fraction with a denominator of 100 . Then express the fraction as a decimal.

EXAMPLES Express each percent as a decimal.

a. 51%
b. 90.2%

$$
\begin{aligned}
51 \% & =\frac{51}{100} \\
& =0.51
\end{aligned}
$$

$$
\begin{aligned}
90.2 \% & =\frac{90.2}{100} \\
& =\frac{90.2}{100} \times \frac{10}{10} \\
& =\frac{902}{1,000} \\
& =0.902
\end{aligned}
$$

Therefore, $90.2 \%=0.902$.

EXERCISES Express each percent as a fraction.

1. 75%
2. 84%
3. 90%
4. $18 \frac{1}{2} \%$
5. 38%
6. $33 \frac{1}{3} \%$
7. 56%
8. 60%

Express each percent as a decimal.

9. 82%
10. 61.5%
11. 8.9%
12. $48 \frac{1}{2} \%$
13. 70%
14. $27 \frac{1}{4} \%$
15. 3%
16. 0.25%

Write each percent as a fraction in simplest form and write as a decimal.
17. 18%
19. $82 \frac{1}{2} \%$
21. $91 \frac{2}{3} \%$
23. 0.5625%
18. 22%
20. $\frac{5}{8} \%$
22. 19.6%
24. 4.9%

APPLICATIONS

25. The average household in the United States spends 15% of its money on food. Express 15% as a decimal.
26. Bananas grow on plants that can be 30 feet tall. A single banana may be 75% water. Express 75% as a fraction and as a decimal.
27. In the United States, showers usually account for 32% of home water use. Express this percent as a fraction and as a decimal.
28. Only 2% of earthquakes in the world occur in the United States. Express this percent as a fraction and as a decimal.
\qquad

Percent of a Number

T.find the percent of a number, you can either change the percent to a fraction and then multiply, or change the percent to a decimal and then multiply.

EXAMPLE

The old Yankee Stadium in New York had a capacity of about 57,500. If attendance for one baseball game was about 90\%, approximately how many people attended the game?

Change the percent to a decimal.
$90 \%=\frac{90}{100}$ or 0.9
Multiply the number by the decimal.
$57,500 \times 0.9=51,750$
About 51,750 people attended the game.

EXERCISES Find the percent of each number.

1. 50% of 48
2. 25% of 164
3. 70% of 90
4. 60% of 125
5. 55% of 960
6. 35% of 600
7. 15% of 120
8. 6% of 50
9. 200% of 13
10. 55% of 84
11. 16% of 48
12. 150% of 60
13. 45% of 80
14. 60% of 40
15. 18% of 300
16. 5% of 16
17. 15% of 50
18. 100% of 47
19. 12.5% of 60
20. 0.02% of 80
21. 0.5% of 180
22. 0.1% of 770
23. 1.4% of 40
24. 1.05% of 62
25. $12 \frac{1}{2} \%$ of 70
26. $5 \frac{3}{8} \%$ of 200
27. $2 \frac{1}{4} \%$ of 150
28. $33 \frac{1}{3} \%$ of 45

APPLICATIONS Sarah has a part-time job. Each week she budgets her money as shown in the table. Use this data to answer Exercises 29-31.
29. If Sarah made $\$ 90$ last week, how much can she

Sarah's Budget	
Savings	40%
Lunches	25%
Entertainment	15%
Clothes	20%

30. If Sarah made $\$ 105$ last week, how much should she plan to save?
31. If Sarah made $\$ 85$ last week, how much can she plan to spend on lunches?
32. The population of the U.S. was about 290 million people in 2004. The population of the New York Metropolitan area was about 7.3% of the total. About how many people lived in the New York area in 2004?
33. Ninety percent of the seats of a flight are filled. There are 240 seats. How many seats are filled?
34. Of the people Joaquin surveyed, 60% had eaten lunch in a restaurant in the past week. If Joaquin surveyed 150 people, how many had eaten lunch in a restaurant in the past week?
35. A car that normally sells for $\$ 25,900$ is on sale for 84.5% of the usual price. What is the sale price of the car?
\qquad

Percent Proportion

You can use the percent proportion to solve problems involving percents.

$$
\frac{a}{b}=\frac{p}{100} \quad a=\text { part } \quad b=\text { base } \quad p=\text { percent }
$$

EXAMPLES

23.4 is what percent of $65 ?$

The part is 23.4 and the base is 65 .

$$
\begin{aligned}
\frac{a}{b} & =\frac{p}{100} \\
\frac{23.4}{65} & =\frac{p}{100} \\
23.4 \cdot 100 & =65 \cdot p \\
2,340 & =65 p \\
36 & =p
\end{aligned}
$$

23.4 is 36% of 65 .
55% of what number is $33 ?$
The part is 33 and the percent is 55% or $\frac{55}{100}$.

$$
\begin{aligned}
\frac{a}{b} & =\frac{p}{100} \\
\frac{33}{b} & =\frac{55}{100} \\
33 \cdot 100 & =55 \cdot b \\
3,300 & =55 b \\
60 & =b
\end{aligned}
$$

55% of 60 is 33 .

EXERCISES Tell whether each number is the part, base, or percent.

1. What number is 25% of 20 ?
2. What percent of 10 is 5 ?
3. 14% of what number is 63 ?
4. 7 is what percent of 28 ?
5. 78% of what number is 50 ?
6. 72 is 24% of what number?

Write a proportion for each problem. Then solve. Round answers to the nearest tenth.
7. What percent of 25 is 5 ?
8. 9.3% of what number is 63 ?
9. 30% of what number is 27 ?
11. 61.6 is what percent of 550 ?
13. What percent of 84 is 20 ?
15. 29.7 is 55% of what number?
17. 61.5 is what percent of 600 ?
19. What number is 31% of 13 ?
10. 126 is 39% of what number?
12. 108 is 18% of what number?
14. What percent of 400 is 164 ?
16. 18% of 350 is what number?
18. 72.4 is 23% of what number?
20. $33 \frac{1}{3} \%$ of what number is 15 ?
21. Use a proportion to find $12 \frac{2}{3} \%$ of 462 . Round to the nearest hundredth.
22. Use a proportion to determine what percent of 512 is 56 . Round to the nearest hundredth.
23. Use a proportion to determine 23% of what number is 81.3 . Round to the nearest hundredth.

APPLICATIONS

24. There are 18 girls and 15 boys in Tyler's homeroom. What percent of Tyler's homeroom are boys? Round to the nearest tenth.
25. If 32% of the 384 students in the eighth grade walk to school, about how many eighth graders walk to school?
26. At North Middle School, 53% of the students are girls. There are 927 students at the school. How many of the students are girls?

Area of Rectangles, Squares, and Parallelograms

Area is the number of square units needed to cover a surface.

Figure	Rectangle	Square	Parallelogram
Area Formula	$\begin{aligned} & A=(\ell)(w) \\ & (\ell=\text { length }) \\ & (w=\text { width }) \end{aligned}$	$\begin{aligned} & A=s^{2} \\ & (s=\text { side }) \end{aligned}$	$\begin{aligned} & A=(b)(h) \\ & (b=\text { base }) \\ & (h=\text { height }) \end{aligned}$
Example	$\begin{aligned} A & =(\ell)(w) \\ A & =(20)(18) \\ A & =360 \end{aligned}$ The area is 360 square inches.	\square $s=4.5 \mathrm{ft}$ $\begin{aligned} & A=s^{2} \\ & A=4.5^{2} \\ & A=20.25 \end{aligned}$ The area is 20.25 square feet.	$\begin{aligned} & A=(b)(h) \\ & A=(12)(2) \\ & A=24 \end{aligned}$ The area is 24 square meters.

EXERCISES In Exercises 1-9, find the area of each figure shown or described.
1.

2.

3. $2 \frac{1}{2} \mathrm{in}$.

4. parallelogram
$b=15 \mathrm{ft}$
$h=21 \mathrm{ft}$
5. rectangle
$\ell=7.5 \mathrm{~cm}$
$w=12 \mathrm{~cm}$
6. parallelogram
$b=4.7 \mathrm{~m}$
$h=2.2 \mathrm{~m}$
7.

8.

9.

10. Find the area of a regulation-size volleyball court with a length of 59 feet and a width of 29.5 feet.
11. Find the length of a rectangle with an area of 84 square inches and a width of 7 inches.
12. Find the height of a parallelogram with a base of 12 yards and an area of 39 square yards.

APPLICATION

13. The figure at the right is the floor plan of a family room. The plan is drawn on grid paper, and each square of the grid represents one square foot. The floor is going to be covered completely with tiles.
a. What is the area of the floor?
b. Suppose each tile is a square with a side that measures one foot. How many tiles will be needed?

c. Suppose the cost of a 1 foot by 1 foot tile is $\$ 3.50$. How much would it cost to tile the entire floor?
d. Suppose the 1 foot by 1 foot tile had a cost of two tiles for $\$ 6.99$. How much would it cost to tile the entire floor?

Area of Circles

Th
he area of a circle is given by the formula $A=\pi r^{2}$ where A is the area and r is the radius.

EXAMPLE Gwen is making a circular rug with a radius of 3 feet. What will the area of the rug be that she is making?

$$
\begin{aligned}
& A=\pi r^{2} \\
& A \approx 3.14 \cdot 3^{2} \quad \text { Substitute } 3.14 \text { for } \pi \text { and } 3 \text { for } r . \\
& A \approx 3.14 \cdot 9 \\
& A \approx 28.26
\end{aligned}
$$

The area of the rug is about 28.26 square feet.

EXERCISES In Exercises 1-12, find the area of each circle shown

 or described. Use 3.14 for π.1.

2.

3.

4.

5.

6.

7. The radius is 5 m .
8. The radius is 10 ft .
9. The radius is 3.6 cm .
11. The radius is 8.4 km .
12. The diameter is 4.6 yd .

APPLICATIONS Joani is preparing a circular garden with a

 diameter of 24 feet. Use this information to answer Exercises 13-16.13. What is the area of the garden?
14. She wants to cover the entire area with peat moss. If each bag of peat moss covers 160 square feet, how many bags of peat moss will she need?
15. Next year, she plans on increasing the diameter of the garden by 2 feet. What will the area of the new garden be?
16. How many bags of peat moss will she need to cover the new garden?
17. A large pizza from The Pizza Place has a diameter of 16 inches. A small pizza has a diameter of 10 inches. Which has the reater area, 1 large pizza or 2 small pizzas?

Area of Triangles

Th he area of a triangle is equal to one half the product of its base (b) and height (h).

$$
A=\frac{1}{2} b h
$$

EXAMPLE Find the area of the triangle

 shown at the right.$$
\begin{aligned}
& A=\frac{1}{2} b h \\
& A=\frac{1}{2} \times 15 \times 26 \\
& A=195
\end{aligned}
$$

The area of the triangle is 195 square feet.

EXERCISES Find the area of each triangle.

1. base, 12 inches height, 7 inches
2. base, 8 feet height, 24 feet
3. base, 6 kilometers height, 13 kilometers
4. base, 20 centimeters height, 12 centimeters
5. base, 17 meters height, 6 meters
6. base, 10 yards height, 20 yards

7.

9.

10.

11.

12.

13.

14.

15.

APPLICATIONS

16. Tom Wise has an A-frame cabin. What is the area of the front of the home?

17. Use a geoboard or dot paper to make the triangle at the right. What is the area of the triangle?

18. Use a geoboard or dot paper to make the triangle at the right. What is the area of the triangle?
19. Make a triangle on a geoboard or dot paper. Find the area of the triangle.

20. Make a triangle on a geoboard or dot paper that has an area of 8 square units.

Area of Trapezoids

A trapezoid is a quadrilateral with exactly one pair of parallel sides. The area of a trapezoid is equal to the product of half the height and the sum of the bases.

$$
A=\frac{1}{2} h(a+b)
$$

EXAMPLE Find the area of the trapezoid shown at the right.
$A=\frac{1}{2} h(a+b)$
$A=\frac{1}{2}(8)(15+12)$

$A=\frac{1}{2}(8)(27)$
$A=108$
The area of the trapezoid is 108 square centimeters.

EXERCISES In Exercises 1-6, find the area of each figure shown or described.

1.

2.

3.

4. bases: $6 \mathrm{~m}, 9 \mathrm{~m}$
height: 4 m
5. bases: $10 \mathrm{ft}, 15 \mathrm{ft}$ height: 20 ft
6. bases: $7.6 \mathrm{~cm}, 10 \mathrm{~cm}$ height: 8 cm
7. Find the area of the figure at the right.

APPLICATIONS

8. Jose received a new entertainment center for his bedroom. It holds his TV, VCR, stereo, CD player, and tapes. It sits on a pedestal base that is the shape of a trapezoid. The two bases of the trapezoid are 36 inches and 28 inches long, and the height is 12 inches. What is the area of the front of the base?
9. Use the figure at the right to determine the area of the three trapezoidal-shaped spaces between the steps of the 4-foot ladder. The bottom base lengths are given for each space. The top base lengths are 2 inches shorter than the bottom base lengths. Each step between the spaces is 4 inches high and the spaces (including the bottom space) are all the same height.

10. Columbus, Montana has a football stadium that is shaped like the figure at the right. The center part is the field, and the outside part is the seats. The longest field length is 140 yards, and the longest field width is 100 yards. Find the area of the field.

Area of Circle Sectors

Acircle sector is the piece of the circle enclosed by two radii and the part of the circumference that connects them. It looks like a slice of pizza. The radius of the sector is the same as the radius of the circle. The sector's central angle is the angle formed by the two edges (radii) of the sector.

The formula to calculate the area of a circle sector is: $A=\frac{m}{360} \times \pi r^{2}$
In this formula, A represents the area of the circle sector, m represents the central angle measured in degrees, and r represents the radius.

EXAMPLE Calculate the area of the circle sector. Express your answer in terms of π, and as a decimal rounded to the nearest hundredth of a square unit.

Use the formula to calculate the area. The formula is: $A=\frac{m}{360} \times \pi r^{2}$
A represents the area of the circle. This is the value you do not know and want to find. The variable m represents the central angle of the circle, measured in degrees. You know the value of m is 60°. You also know the value of r is 35 cm .

Rewrite the formula using the values you know:
$A=\frac{60^{\circ}}{360^{\circ}} \times \pi(35 \mathrm{~cm})^{2}$.
Use the formula to calculate the area. Because all of the steps are either multiplication or division, you can perform the operations in whatever order is most convenient. For example:
$A=\frac{1}{6} \times \pi \times(35 \mathrm{~cm})^{2} \quad$ (divide 60 by 360)
$A=\frac{1}{6} \times 1225 \pi \mathrm{~cm}^{2} \quad$ (square 35 cm)
$A=204.17 \pi \mathrm{~cm}^{2} \quad$ (multiply $\frac{1}{6}$ by $1225 \pi \mathrm{~cm}^{2}$)
Remember that when you square 35 cm , the units change from centimeters to square centimeters.

EXERCISES Calculate the area of each circle sector. Use the units given in each figure. Express your answers in terms of π. Round to the nearest hundredth of a square unit.
1.

2.

3.

4.

APPLICATIONS

At Penelope's Pizza Parlour, a small pizza has a radius of 6 inches and is cut into 6 slices. The radius of a large pizza is 9 inches and is cut into 8 slices.
5. What is the area of one slice of a small pizza?
6. What is the area of one slice of a large pizza?
7. Penelope cut a slice from a large pizza that had the same area as one slice of a small pizza.
a. What was the central angle of that slice?

Surface Area of Rectangular Prisms

Th
he surface area of a rectangular prism is equal to the sum of the areas of its faces.

EXAMPLE Find the surface area of the rectangular prism.
Find the area of each face.

Front	$5 \times 10=50$
Back	$5 \times 10=50$
Top	$5 \times 4=20$
Bottom	$5 \times 4=20$
Right Side	$4 \times 10=40$
Left Side	$4 \times 10=40$

Add the areas.
$50+50+20+20+40+40=220$
The surface area of the rectangular prism is 220 square inches.

EXERCISES Find the surface area of each rectangular prism.

4.

5.

6.

7.

8.

9.

10.

11.

12.

APPLICATIONS

13. A cereal box is 19 centimeters long, 6 centimeters wide, and 28 centimeters high. An artist is trying to create a design for the box. What is the surface area the artist needs to cover?
14. Jackson Middle School has a large storage box that is used for storing balls and other supplies for the physical education classes. Ms. Hubbard wants to paint the outside of the box one of the school colors. If the box is 4 feet long, 3 feet wide, and 2 feet high, what is the total area that needs to be painted?
15. Howard is wallpapering a room that is 18 feet long, 14 feet wide, and 8 feet high. How much wallpaper is needed to cover the walls, not taking into account doorways or windows?
16. One gallon of paint covers about 400 square feet of wall. If paint costs $\$ 17.99$ a gallon and the sales tax is 5%, how much will it cost to put two coats of paint on the walls of your classroom?

Surface Area of Cylinders

To find the surface area of a cylinder, find the sum of the areas of the two circular bases and the area of the rectangular face.

$$
\begin{aligned}
\text { area of each circle } & =\pi r^{2} \\
\text { area of both circles } & =2 \pi r^{2}
\end{aligned}
$$

The length of the rectangle is equal to the circumference of the circle. So the area of the rectangle is $2 \pi r \times h$.

The surface area of a cylinder is $2 \pi r^{2}+2 \pi r h$.

EXAMPLE Find the area of the cylinder shown at the right.

$$
\begin{aligned}
& A=2 \pi r^{2}+2 \pi r h \\
& A \approx\left(2 \times 3.14 \times 3^{2}\right)+(2 \times 3.14 \times 3 \times 7) \\
& A \approx 56.52+131.88 \\
& A \approx 188.40
\end{aligned}
$$

The surface area of the cylinder is 188.40 square feet.

EXERCISES Find the surface area of each cylinder.

Use 3.14 for p.
1.

2.

3.

4.

5.

6.

7.

8. 3 in.

9.

APPLICATIONS

10. A wheel of cheese is sealed in a wax covering. The wheel of cheese is in the shape of a cylinder that has a diameter of 10 inches and a height of 5 inches. What is the surface area of the cheese that needs to be covered in wax?
11. A storage tank is in the shape of a cylinder that has a radius of 2 feet and a height of 8 feet. The tank needs to be painted. What is the surface area of the tank?
12. A biologist is conducting an experiment to determine the amount of beetle infestation in the bark of elm trees. She believes that the beetles are fairly evenly distributed throughout the lower portions of the tree's bark. A sample of one square foot of bark from one tree two feet in diameter had 20 beetles. Consider the tree trunk to be a cylinder and determine how many beetles are probably in the first 10 feet of the tree's bark.

Volume of Rectangular Prisms

Thhe volume of an object is the amount of space that a solid contains. Volume is measured in cubic units. The volume (V) of a rectangular prism is equal to the product of the length (ℓ) times the width (w) times the height (h).

$$
V=\ell_{w h}
$$

EXAMPLE Find the volume of the rectangular

 prism at the right.The length of the rectangular prism is 10 meters, the width is 12 meters, and the height is 15 meters.

$$
\begin{aligned}
& V=\ell w h \\
& V=10 \times 12 \times 15 \\
& V=1,800
\end{aligned}
$$

The volume of the rectangular prism is 1,800 cubic meters.

EXERCISES Find the volume of each rectangular prism.

1.

2.

3.

4.

5.

6.

7.

8.

9.

APPLICATIONS

10. The Pomerantz family have a small rectangular pond in their flower garden. The pond is 6 feet long and 4 feet wide. If the water in the pond is 2 feet deep, what is the volume of the water?
11. Water weighs about 62 pounds per cubic foot. What is the weight of the water in the pond in Exercise 10?
12. Janine keeps her jewelry in a jewelry box that measures 9 inches by 4.5 inches by 3 inches. What is the volume of the jewelry box?
13. The diagram at the right shows the dimensions of concrete stairs. What is the volume of the concrete?

14. Use 20 cubes to form rectangular prisms. How many different rectangular prisms can you make if you use all of the cubes for each prism?

Volume of Cylinders

Thhe volume of a cylinder is found by multiplying the area of the base $\left(\pi r^{2}\right)$ times the height (h).

$$
V=\pi r^{2} h
$$

EXAMPLE Find the volume of the cylinder at the right.

This cylinder has a radius of 6 inches and a height of 20 inches.

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi(6)^{2}(20) \\
& V=\pi(36)(20) \\
& V \approx 3.14(36)(20) \quad \text { Use } 3.14 \text { for } \pi . \\
& V \approx 2,260.8
\end{aligned}
$$

The volume of the cylinder is about 2,260.8 cubic inches.

EXERCISES Find the volume of each cylinder. Use 3.14 for π.

1.

2.

3.

4. 0.8 cm

5. 8 ft

6.

7. 14 cm

8.

9.

APPLICATIONS

10. A cylindrical water tank on the Okida family farm is 30 feet in diameter and 20 feet high. Find the volume of the tank.
11. The Okida family has 250 cows, and each cow drinks about 8 gallons of water per day. How many days will the tank in Exercise 10 provide the cows with water? (Hint: One cubic foot is about 7.5 gallons.)
12. The Okida family stores their wheat in cylindrical grain elevators that are each 20 feet in diameter and 60 feet high. What is the volume of each grain elevator?
13. The Okida family harvested 900 acres of wheat that yielded 40 bushels per acre. How many of the grain elevators in Exercise 12 are needed for the harvest? (Hint: One cubic foot of wheat is about 0.8 bushels.)
14. A coffee can is 6.5 inches high and has a diameter of 5 inches. Find the volume of the can.

Capacity

his table shows the relationship among different units of capacity in the U.S. Customary system.

	Cups	Pints	Quarts	Gallons
$\mathbf{1}$ cup	1 cup	$\frac{1}{2}$ pint	$\frac{1}{4}$ quart	$\frac{1}{16}$ gallon
$\mathbf{1}$ pint	2 cups	1 pint	$\frac{1}{2}$ quart	$\frac{1}{8}$ gallon
$\mathbf{1}$ quart	4 cups	2 pints	1 quart	$\frac{1}{4}$ gallon
$\mathbf{1}$ gallon	16 cups	8 pints	4 quarts	1 gallon

This table shows the relationship among different units of capacity in the metric system.

	Milliliters	Centiliters	Deciliter	Liter	Decaliter	Hectoliter	Kiloliter
1 milliliters	1 milliliters	0.1 centiliter	0.01 deciliter	$\begin{aligned} & 0.001 \\ & \text { Liter } \end{aligned}$	0.0001 decaliter	0.00001 hectoliter	0.000001 kiloliter
1 centiliter	10 milliliters	1 centiliter	$\begin{aligned} & 0.1 \\ & \text { deciliter } \end{aligned}$	$\begin{aligned} & \hline 0.01 \\ & \text { Liter } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.001 \\ \text { decaliter } \end{array}$	$\begin{aligned} & 0.0001 \\ & \text { hectoliter } \end{aligned}$	$\begin{aligned} & 0.00001 \\ & \text { kiloliter } \end{aligned}$
1 deciliter	$\begin{array}{\|l\|} \hline 100 \\ \text { milliliters } \end{array}$	10 centiliters	1 deciliters	$\begin{aligned} & 0.1 \\ & \text { Liter } \end{aligned}$	0.01 decaliter	0.001 hectoliter	0.0001 kiloliter
1 Liter	$\begin{array}{\|l\|} \hline \text { 1,000 } \\ \text { milliliters } \end{array}$	100 centiliters	10 deciliters	$\begin{array}{\|l\|} \hline 1 \\ \text { Liter } \end{array}$	0.1 decaliter	0.01 hectoliter	0.001 kiloliter
1 decaliter	$\begin{array}{\|l\|} \hline 10,000 \\ \text { milliliters } \end{array}$	$\begin{array}{\|l\|} \hline 1,000 \\ \text { centiliters } \end{array}$	100 deciliters	10 Liters	1 decaliter	0.1 hectoliter	0.01 kiloliter
1 hectoliter	$\begin{array}{\|l\|} \hline 100,000 \\ \text { milliliters } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10,000 \\ \text { centiliters } \end{array}$	$\begin{aligned} & \hline \text { 1,000 } \\ & \text { deciliters } \end{aligned}$	$\begin{aligned} & \hline 100 \\ & \text { Liters } \end{aligned}$	10 decaliters	1 hectoliter	0.1 kiloliter
1 kiloliter	$\begin{array}{\|l} 1,000,000 \\ \text { milliliters } \end{array}$	100,000 centiliters	$\begin{array}{\|l\|} \hline 10,000 \\ \text { deciliters } \end{array}$	$\begin{aligned} & 1000 \\ & \text { Liters } \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ \text { decaliters } \end{array}$	10 hectoliters	$\begin{array}{\|l\|} \hline 1 \\ \text { kililoter } \end{array}$

EXAMPLES Convert each capacity into the units given.

1. 3 gallons $=$ cups $=$ pints
2. 2 quarts $=$ pints $=\frac{1}{2}$ gallons
3. 6 cups $=$ pints $=\frac{1}{2}$ quarts
4. 5 pints $=2 \frac{1}{2}$ quarts $=$ cups
5. $3 \frac{3}{4}$ quarts $=\quad$ cups $=7 \frac{1}{2}$ pints
6. $1 \frac{1}{2}$ gallons $=$ quarts $=$ cups

EXERCISES Convert each capacity into the units given.

1. $4 \frac{1}{2}$ pints =__cups $=$ ___quarts
2. 27 cups = \qquad gallons $=$ \qquad pints
3. 5,000 milliliters $=$ \qquad centiliters $=$ _ Liters
4. 33 Liters $=$ \qquad centiliters $=$ \qquad kiloliters
5. 750 milliliters $=$ \qquad deciliters $=$ \qquad Liters
6. 253 kiloliters $=$ \qquad Liters $=$ \qquad hectoliters
7. 549,000 centiliters $=$ \qquad hectoliters $=$ \qquad Liters
8. 9 kiloliters = \qquad Liters $=$ \qquad milliliters

APPLICATIONS Use the conversion tables on the front to solve the following exercises.

9. Kerri bought 60 Liters of dish soap from a wholesale catalogue. She poured it into 500 -milliliter bottles. How many bottles did she fill?
10. Bill mixed some juice from concentrate. The instructions on the concentrate said to use one cup of concentrate for every quart of water. Bill used one gallon of concentrate. How many gallons of water did he use?
a. How many gallons of juice (water + concentrate) did he end up with?
b. How many guests could he serve if each guest drank 2 cups of juice?
11. The showers at Jackie's Gym use 5.5 Liters of water each minute they are turned on.
a. How many Liters of water are used for a 10-minute shower?
b. During the month of May, customers at the gym took a total of 3,500 10-minute showers. How many kiloliters of water were used?
12. Maria bought an 18 -gallon fish tank. She used a jug to carry water from the sink to the fish tank. The capacity of the jug was 3 pints. How many trips did she make to fill the fish tank all the way?

The Coordinate System

Th
he coordinate system is used to graph points in a plane. The horizontal line is the \mathbf{x}-axis. The vertical line is the y -axis. Their intersection is called the origin.

Points are located using ordered pairs. The first number in an ordered pair is the x-coordinate; the second number is the y-coordinate.

EXAMPLES Name the ordered pair for point P.

Start at the origin.
Move 3 units to the left along the x-axis.
Move 2 units up on the y-axis.
The ordered pair for point P is $(-3,2)$.
Graph the point $M(2,-2)$.
Start at the origin.
Move 2 units to the right along the x-axis.
Move 2 units down on the y-axis.

Draw a point and label it M.

EXERCISES Name the ordered pair for each point on the coordinate plane.

1. A
2. B
3. C
4. D
5. E
6. F

Graph and label each point on the coordinate plane.
7. $N(-1,3)$
8. $V(2,-4)$
9. $M(-2,0)$
10. $K(-1,5)$
11. $A(5,-1)$
12. $T(-3,3)$

APPLICATIONS

Chicago was planned in such a way that a rectangular coordinate system can describe locations very well. If a block is the distance between major streets, then the Sears Tower, the world's largest building, is located at the coordinates $(-5,-2)$.
13. Start at the Sears Tower and graph the point where you would be if you walked 3 blocks north and 1 block east. Label the point "13." What are its coordinates?

For Exercises 14-18, start at point 13. Label each point and name its coordinates.

14. 4 blocks east and 2 blocks south
15. 2 blocks north and 1 block east
16. 7 blocks west and 6 blocks north
17. 3 blocks north
18. How many blocks would you need to walk to get back to the Sears Building without cutting corners?

Locate these Chicago landmarks by naming their coordinates.
19. Shedd Aquarium
20. Buckingham Fountain
21. Standard Oil Building
22. Merchandise Mart

Ordered Pairs and the Coordinate Plane

A
horizontal number line and a vertical number line meet at their zero points to form a coordinate plane. The horizontal line is the x-axis and the vertical line is the y-axis.
Points are located using ordered pairs. The first number in an ordered pair is the x-coordinate, and the second number is the y-coordinate.

EXAMPLES Name the ordered pair for point A.

EXERCISES Name the ordered pair for each point.

1. A
2. B
3. C
4. D
5. E
6. F
7. G
8. H
9. J
10. K

Start at O. Move along the x-axis until you are under point A. Then move up until you reach point A. Since you moved 3 units to the left and 4 units up, the ordered pair for point A is $(-3,4)$.

Graph point (1, -4).
Start at O. Move 1 unit to the right on the x-axis. Then move 4 units
down parallel to the y-axis to locate on the x-axis. Then move 4 units
down parallel to the y-axis to locate the point.

11. $M(-4,2)$
12. $N(3,-3)$
13. $P(2,2)$
14. $Q(-3,-4)$
15. $R(0,-4)$
16. $S(-1,3)$
17. $T(-1,-1)$
18. $U(3,4)$
19. $W(1,-2)$
20. $Z(-4,0)$

APPLICATIONS Maps often use a grid system to help

 locate places on the map. Use the map of Washington D.C. to answer Exercises 21-24.21. What is located at $(B, 1)$?
22. What is located at $(A, 2)$?
23. Where is the Supreme Court Building located?
24. In which section is Union Station Plaza located?

25. Use a local map to find an ordered pair to represent each of the following.
a. your house
b. your school
c. a friend's house
d. your favorite store

SKILL

Name

Ordered Pairs

A
horizontal number line and a vertical number line meet at their zero points to form a coordinate system. The horizontal line is the x-axis. The vertical line is the y-axis. The location of a point in the coordinate system can be named using an ordered pair of numbers.

EXAMPLES Name the ordered pair for point P.

Start at O. Move along the x-axis until you are above point P. Then move down until you reach point P. Since you moved 4 units to the right and 3 units down, the ordered pair for point P is $(4,-3)$.

Graph point (-2, 4).

Start at O. Move 2 units left on the x-axis.
Then move 4 units up parallel to the y-axis to locate the point.

EXERCISES Name the ordered pair for each point.

1. G
2. H
3. J
4. K
5. M
6. N

Graph and label each point.
7. $A(-5,5)$
8. $B(2,4)$
9. $C(0,5)$
10. $D(-4,0)$
11. $E(2,2)$
12. $F(4,-3)$

APPLICATIONS A botanist is interested in what part of a

 certain leaf is being infested by an insect that leaves black spots. She places a clear coordinate plane over several leaves that are about the same size and shape. Complete each of the following.13. Find the coordinates of the black spots on the leaf at the right.

14. Draw and label the spots having the following coordinates on the leaf at the right.
$A(2,-3) \quad B(3,-2) \quad C(0,-4) \quad D(-4,0)$
$E(-5,3) \quad F(10,2) \quad G(2,7) \quad H(0,5)$

\qquad

Numbers greater than zero are called positive numbers. Numbers less than zero are called negative numbers. The set of numbers that includes positive and negative numbers, and zero are called integers.

EXAMPLE Emily recorded the temperature at noon for a

 week. The temperatures she recorded were 9° F, $8^{\circ} \mathrm{F},-6^{\circ} \mathrm{F},-3^{\circ} \mathrm{F},-1^{\circ} \mathrm{F}, 2^{\circ} \mathrm{F}$, and $1^{\circ} \mathrm{F}$. What was the lowest and highest temperature recorded?To answer the question, locate the temperatures on a number line.

On a number line, values increase as you move to the right.
Since -6 is furthest to the left, $-6^{\circ} \mathrm{F}$ is the coldest temperature. 9 is the farthest number to the right, so $9^{\circ} \mathrm{F}$ is the highest temperature. number is from zero on a number line.

EXAMPLE Refer to the table.

 Which city's population changed the most?Find the absolute value of each number.
$|+22,457|=22,457$
$|-84,860|=84,860$
$|+78,560|=78,560$
$|-76,704|=76,704$
$|+49,974|=49,974$
$|-68,027|=68,027$

Population Change, 1990-2000	
Atlanta, GA	$+22,457$
Baltimore, MD	$-84,860$
Columbus, OH	$+78,560$
Detroit, MI	$-76,704$
Indianapolis, IN	$+49,974$
Philadelphia, PA	$-68,027$

Since the absolute value of $-84,860$ is the greatest, Baltimore, Maryland, had the greatest population change.

EXERCISES Fill in each blank with $<_{,}>$, or $=$to make a true sentence.

1. 5 -5
2. -6 \qquad -12
3. -4 3
4. $0 _-2$
5. 34 \qquad 21
6. -35
\qquad -16
7. $19 _-22$
8. -45 \qquad -52

Write each set of integers in order from least to greatest.
10. $\{45,-23,55,0,-12,-37\}$
11. $\{56,-22,34,-34,12,-12\}$
12. $\{-450,-100,254,564,-356\}$
13. $\{1,276,-3,456,-943,-237,-467\}$

Find the absolute value.
14. $|-3|$
15. $|-5|$
16. $|16|$
17. $|27|$
18. $|156|$
19. $|-359|$
20. $|-821|$
21. $|1,436|$

APPLICATIONS Write an integer to describe each situation.

22. Julio finished the race 3 seconds ahead of the second place finisher.
23. Matthew ended his round of golf 4 under par.
24. Denver is called the Mile High City because its elevation is 5,280 feet above sea level.

For Exercises 25-27, refer to the table.
25. Use a number line to order the temperatures from least to greatest.

26. The record low temperature for Michigan is $-51^{\circ} \mathrm{F}$. Which states have higher record low temperatures?
27. Indiana's record low temperature is $-36^{\circ} \mathrm{F}$. Which states

Record Low Temperatures	
California	$-45^{\circ} \mathrm{F}$
Illinois	$-36^{\circ} \mathrm{F}$
Maine	$-48^{\circ} \mathrm{F}$
Nevada	$-50^{\circ} \mathrm{F}$
New York	$-52^{\circ} \mathrm{F}$
Pennsylvania	$-42^{\circ} \mathrm{F}$
Washington	$-48^{\circ} \mathrm{F}$

Classify Information

Some problems may contain too much information. Other problems may not contain the information you need to solve them.

$$
\begin{array}{cl}
\text { EXAMPLE } & \text { Hartford, New Britain, Middletown, and Bristol } \\
\text { form a large metropolitan area in Connecticut. } \\
\text { In 1990, the population of Hartford was } 767,841, \\
\text { the population of New Britain was 148, 188, the } \\
\text { population of Middletown was } 90,320 \text { and the } \\
\text { population of Bristol was } 79,488 \text {. What was the } \\
\text { combined population of Middletown and Bristol } \\
\text { in 1990? }
\end{array}
$$

What is the question?
What was the combined population of
Middletown and Bristol in 1990?
What information is needed?
The populations of Middletown and
Bristol in 1990 are needed.
What information is not needed?
The populations of Hartford and New
Britain are not needed.
Solve the problem.
90,320

+ 79,488
169,808
In 1990, the combined population of Middletown and Bristol was 169,808.

EXERCISES Solve, if possible. Classify information in each problem by writing "not enough information" or "too much information."

1. If the difference of 135 and 98 is 37 , what is the sum of the numbers?
2. If the sum of two numbers is 35 , what is their product?
3. Find the sum of 57,84 , and another number.
4. If the product of a number and 10 is 150 and the sum of the number and 10 is 25 , what is the number?

APPLICATIONS

5. Walt has 84 stamps to share with his friends. How many should he give each one?
6. Movie tickets cost $\$ 5.00$ at night and $\$ 3.50$ in the afternoon. Popcorn costs $\$ 2.75$ and a fruit drink costs $\$ 1.75$. How much does it cost to see a movie at night and buy popcorn and a fruit drink?
7. Dana's father saved $\$ 3,496$ for a down payment for a new car. He bought a 6-cylinder, 4-door sedan with power steering, air conditioning, cruise control, and a stereo cassette player. The car costs an additional $\$ 9,379$. What is the cost of the car?
8. There are 250 different kinds of sharks. The smallest is the black and white shark, which grows to only 6 inches long. The largest is the whale shark, which can grow to more than 40 feet long. The mako shark can swim up to speeds of 40 miles per hour. How much faster is the mako shark than the black and white shark?
9. Yosemite National Park is 759,000 acres. Zion National Park is 143,000 acres. Kings Canyon National Park is 462,000 acres. How much larger is Yosemite National Park than Kings Canyon National Park?
10. One kind of greeting card costs $\$ 2.50$, while a second kind costs $\$ 1.00$. If Phil bought 5 greeting cards, how much did he spend?

Determine Reasonable Answers

$\mathbf{N e s t o r ~ h a s ~ a ~}^{\text {48-meter by }}$ 61-meter plot of land in which he wants to plant grass. He needs about one pound of seed for each 100 square meters.

EXAMPLE Should Nestor buy 3 or 30 pounds of seed?
To find the amount of seed Nestor needs to buy, first estimate the area of the plot of land. The area of a rectangle is found by multiplying the length by the width.

48
rounds to
$\times 61$
---:
$\times 61$
3,000

The area is about 3,000 square meters. Divide 3,000 by 100 to find the approximate number of pounds of seed needed for the plot of land.

$$
3,000 \div 100=30
$$

Nestor should buy 30 pounds of seed.

EXERCISES Determine whether the answers shown are reasonable.

1. $45+76=121$
2. $73-19=44$
3. $18 \times 33=494$
4. $972 \div 27=46$
5. $475+856=1,031$
6. $782-686=96$
7. $204 \times 57=11,628$
8. $3,708 \div 36=83$
9. $946+789=1,735$
10. $1,030-789=341$
11. $77 \times 499=38,423$
12. $767 \div 13=59$
13. $879+65=944$
14. $807-455=452$
15. $904 \times 66=49,664$

APPLICATIONS Solve by determining reasonable answers.

16. There are 25 paper plates in a package. If 160 students are expected to attend a picnic, should the picnic committee buy 7 or 9 packages of plates?
17. The 20 members of the drama club are taking a trip to see a play. The cost of the trip is $\$ 450$. They want to share the cost equally. Should each member contribute $\$ 20$ or $\$ 23$?
18. How many audio cassettes at $\$ 8.88$ each can Ken expect to buy with a $\$ 50$ bill?
19. Pauline buys 6 boxes of tissues containing 75 tissues each, and Mike buys 2 boxes containing 175 tissues each. Pauline guesses that she has about twice as many tissues as Mike. Is her guess reasonable?
20. A telephone call costs $\$ 0.40$ for the first minute and $\$ 0.31$ for each additional minute. Is $\$ 5.00$ enough to pay for a 12-minute call?
21. The Parker family drove an average of 220 miles per day on their 2-week vacation. Did they travel about 3,000 miles or about 30,000 miles on their vacation?
22. Daisuke took $\$ 20.00$ to the store to buy school supplies. He wants to buy 4 notebooks at $\$ 1.98$ each, 2 pens at $\$ 0.89$ each, 5 packages of notebook paper at $\$ 1.50$ each, an eraser at $\$ 0.39$, and 4 pencils at $\$ 0.10$ each. Does he have enough money to buy all of these items?
\qquad

Work Backward

Some problems start with the end result and ask for something that happened earlier. The strategy of working backward, or backtracking, can be used to solve problems like this. To use this strategy, start with the end result and undo each step.

EXAMPLE A number is decreased by 12. The result is multiplied by 5, and 30 is added to the new result. The final result is 200 . What is the number?

Use a flowchart to show the steps in the computation.

Find the solution by starting with the output.

Since 30 was added to get 200 , subtract $30.200-30=170$

Next, divide 170 by $5.170 \div 5=34$

Then, add 12 to $34.34+12=46$

Thus, the number is 46 .

1. A number is added to 12 , and the result is multiplied by 6 . The final answer is 114 . Find the number.
2. A number is divided by 3 , and the result is added to 20 . The result is 44 . What is the number?
3. A number is divided by 8 , and the result is added to 12 . The final answer is 78 . Find the number.
4. Twenty five is added to a number. The sum is multiplied by 4, and 35 is subtracted from the product. The result is 121 . What is the number?
5. A number is divided by three, and 14 is added to the quotient. The sum is multiplied by 7 . The product is doubled. The result is 252. What is the number?

APPLICATIONS

6. A bacteria population doubles every 8 hours. If there are 1,600 bacteria after 2 days, how many bacteria were there at the beginning?
7. Each school day, Alexander takes 35 minutes to get ready for school. He takes 5 minutes to walk to Jaaron's house. The two boys take 15 minutes to walk from Jaaron's house to school. School starts at 8:10 A.M. If the boys want to get to school at least 10 minutes before school starts, what is the latest Alexander must get out of bed?
8. A fence is put around a dog pen 10 feet wide and 20 feet long. Enough fencing is left over to also fence a square garden with an area of 25 square feet. If there are 3 feet left after the fencing is completed, how much fencing was available at the beginning?

Solve Equations Involving Addition

T
solve an equation means to find a value for the variable that makes the equation true. To solve an equation, you need to get the variable by itself.

Subtraction Property of Equality: If you subtract the same number from each side of an equation, the two sides remain equal.

EXAMPLE

$$
\text { Solve } t+12.2=25.1
$$

$$
\begin{aligned}
t+12.2 & =25.1 & & \\
t+12.2-12.2 & =25.1-12.2 & & \text { Subtract } 12.2 \text { from each side. } \\
t & =12.9 & & \\
\text { Check: } t+12.2 & =25.1 & & \\
12.9+12.2 & \stackrel{?}{=} 25.1 & & \text { Replace } t \text { with } 12.9 .
\end{aligned}
$$

The solution is 12.9.

EXERCISES Solve each equation. Check your solution.

1. $b+7=22$
2. $r+0.4=11.5$
3. $45=t+17$
4. $17+k=62$
5. $146+j=199$
6. $17.2=h+4.9$
7. $n+2 \frac{1}{3}=4 \frac{2}{3}$
8. $5 \frac{2}{5}+v=7 \frac{1}{2}$
9. $x+7 \frac{1}{2}=20$
10. $18.42+t=63$
11. $e+12.2=40$
12. $m+18=78$

APPLICATIONS

13. Cicely is saving money to buy a computer printer that costs $\$ 399$. She has already saved $\$ 150$. If y stands for the amount she still needs to save, which equation could you solve to find the amount she still needs to save?
a. $150+399=y$
b. $399+y=150$
c. $150+y=399$
d. none of these
14. The George Washington Carver National Monument is 263 acres smaller than the 473-acre Casa Grande National Monument. Solve the equation $g+263=473$ to find the size of the George Washington Carver National Monument.
15. Wayne bought a share of stock at $29 \frac{3}{4}$. A year later, the stock was selling for $42 \frac{1}{8}$. How much would Wayne have gained if he had sold his stock then?
16. Jamal delivers 60 papers each day after school. Today he has already delivered 22 papers. Find how many more papers he must deliver by writing an equation and solving it.
17. For Jane's girl scout troop, she needs to volunteer a total of 150 hours in order to earn her Community Service patch. She has volunteered 67 hours already. Find how many more hours she must volunteer by writing an equation and solving it.
18. There are 28 students in art class. Seven students in the class wear glasses or contact lenses. How many students do not wear glasses or contact lenses?

Solve Equations Involving Subtraction

T
O solve an equation means to find a value for the variable that makes the equation true. To solve an equation, you need to get the variable by itself.

Addition Property of Equality: If you add the same number to each side of an equation, the two sides remain equal.

EXAMPLE Solve $\boldsymbol{t}-12.2=25.1$.

$$
\begin{array}{rlrl}
t-12.2 & =25.1 & \\
t-12.2+12.2 & =25.1+12.2 \quad \text { Add } 12.2 \text { to each side. } \\
t & =37.3 & & \\
\text { Check: } t-12.2 & =25.1 & & \\
37.3-12.2 & \stackrel{?}{=} 25.1 & \text { Replace } t \text { with } 37.3 . \\
25.1 & =25.1 \quad \checkmark &
\end{array}
$$

The solution is 37.3.

EXERCISES Solve each equation. Check your solution.

1. $8.9=p-3.3$
2. $j-4.5=1.7$
3. $y-9=29$
4. $p-23 \frac{4}{5}=35 \frac{7}{10}$
5. $w-6 \frac{1}{2}=18$
6. $f-19=77$
7. $m-9.4=15.7$
8. $153=k-23$
9. $u-27=12$
10. $p-58=73$
11. $x-4.9=12.2$
12. $105=y-17$

APPLICATIONS

13. Madaline was filling balloons with helium for a party. She filled 24 balloons. While she was filling those, she filled 7 others too full and they burst. If t stands for the total number of ballons that she filled, which equation could you solve to find the total number of balloons that she filled?
a. $24-7=t$
b. $\quad 24-t=7$
c. $\quad t-7=24$
d. none of these
14. Joe and José have a painting business. Joe spent 3.75 hours painting three rooms of the Dutton's house. This was 6.75 hours less than the total time it took to do the job. Find how much time it took to paint the three rooms by writing an equation and solving it.
15. Ryan and Nick went to the fair. When they rode the carousel, Ryan counted 10 horses that were stationary. This was 24 less than the total number of horses on the carousel. Find how many total horses were on the carousel by writing an equation and solving it.
16. Ben has an insect and spider collection. Fifteen of the bugs are spiders. This is 8 less than the total number of bugs that he has. Find how many bugs Ben has in his collection by writing an equation and solving it.
17. Pat spent $\$ 575$ buying blankets for the homeless shelter. Cash Mart said that they would match the number of blankets that all of Pat's friends brought to the shelter. Pat's friends brought 23 blankets, but Cash Mart actually gave 45 blankets. A total of 100 blankets were donated. How many blankets were donated by people other than Cash Mart and Pat's friends?

Solve Equations Involving Multiplication

You can use equations to solve multiplication problems. When a variable is multiplied by a number, divide each side of the equation by that number to set the variable by itself.

Division Property of Equality: If you divide each side of an equation by the same nonzero number, the two sides remain equal.

EXAMPLE Solve $48.6=6 c$.

$$
\text { Check: } \quad 48.6 \bar{?} 6 c
$$

$$
\begin{array}{rlr}
48.6 & =6 c & \\
\frac{48.6}{6} & =\frac{6 c}{6} & \text { Divide each side by } 6 . \\
8.1 & =c & \\
48.6 & \bar{?} 6 c & \\
48.6 & =6 \times 8.1 & \text { Replace } c \text { with 8.1. } \\
48.6 & =48.6
\end{array}
$$

The solution is 8.1.

EXERCISES Solve each equation. Check your solution.

1. $5 r=45$
2. $180=9 v$
3. $17 v=289$
4. $5.1 p=61.2$
5. $6.4 t=64$
6. $\quad 91=13 k$
7. $2.4(1.8)=w$
8. $\$ 8.46 h=\$ 54.99$
9. $504=2.8 m$
10. $9 n=-45$
11. $5 m=-35$
12. $-72=6 r$

Write an equation for each of the following.

13. A bingo prize of $\$ 125$ had to be split evenly among five people. How much did each person receive?
14. There are twice as many dogs as there are cats on Sheila's street. If there are six dogs, how many cats are there?
15. Each household on Tremont Street has two cameras. There are 370 cameras on this street. How many houses are there?
16. One hundred fifty six students in Barrington School own a moped. This is four times as many students as owned one three years ago. How many students owned one three years ago?

APPLICATIONS

17. The sum of the measures of the interior angles of a pentagon is 540°. The five angles all have the same measure. Solve the equation $5 x=540$ to find the measure of each angle.
18. At one gas station, one fourth of the customers buy premium gasoline. In one hour, 12 customers bought premium gasoline. What was the total number of customers for the hour?
19. Manuel's weekly pay check is $\$ 450$. What is his annual salary?
20. A triangle has a base of 6 feet and an area of 9 square feet. What is its height? Remember the area of a triangle is half the base times the height.
21. What is the length of a rectangle with an area of 40 square feet and a width of 5 feet?

Name
Date

Solve Equations Involving Division

You can use equations to solve division problems. When a variable is divided by a number, multiply each side of the equation by that number to get the variable by itself.

Multiplication Property of Equality: If you multiply each side of an equation by the same number, the two sides remain equal.

EXAMPLE Solve $\frac{w}{5}=2.3$.

$$
\begin{array}{rlrl}
\frac{w}{5} & =2.3 & \\
\frac{w}{5} \times 5 & =2.3 \times 5 & & \text { Multiply each side by } 5 . \\
w & =11.5 & & \\
\frac{w}{5} & =2.3 & & \\
\frac{11.5}{5} & =2.3 & & \text { Replace } w \text { with 11.5. } \\
2.3 & =2.3 \quad & &
\end{array}
$$

Check:

The solution is 11.5 .

EXERCISES Solve each equation. Check your solution.

1. $\frac{1}{2} y=7$
2. $30=\frac{1}{5} k$
3. $\frac{x}{7}=3$
4. $24=\frac{r}{2.5}$
5. $\frac{W}{6}=0.6$
6. $\frac{1}{3} c=\frac{3}{4}$
7. $\frac{y}{5}=3.5$
8. $\frac{f}{1.1}=7$
9. $\frac{1}{2}=\frac{1}{8} c$
10. $3.5=\frac{m}{4}$
11. $\frac{y}{5}=2.4$
12. $\frac{s}{8}=9.6$
13. Solve $z \div \frac{1}{3}=\frac{6}{7}$.
a. $\frac{6}{21}$
b. $\frac{18}{7}$
c. $\frac{11}{21}$
d. $\frac{2}{7}$
14. Solve $w \div \frac{1}{5}=\frac{3}{4}$.
a. $\frac{1}{2}$
b. $\frac{15}{4}$
c. $\frac{3}{20}$
d. $\frac{2}{12}$
15. The quotient when the number e is divided by 18 is 8 .

Find the number.
16. The quotient when the number x is divided by 19 is 7 .

Find the number.

APPLICATIONS

17. Hisako can stay in the sun for 0.5 hours without burning. If she uses NEW LONGER TAN, that has a sun-protection factor of 30 , she can safely bask in the sun three times as long. Use the equation $m \div 0.5=3$ to determine the number of hours Hisako can stay in the sun using NEW LONGER TAN.
18. One-half of the students who participated in the Walk-a-Thon got a T-shirt. If 28 T-shirts were given out, how many students participated in the Walk-a-Thon?
\qquad

Guess and Check

T
here are 33 members of the Kennedy Middle School Math Club. There are 7 more girl members than boy members.

EXAMPLE How many boys and girls are members of the club?

Use the guess-and-check strategy to solve this problem. Suppose your first guess is 10 boys and 17 girls.

$$
10+17=27
$$

This guess is too low. Try 15 boys and 22 girls.

$$
15+22=37
$$

This guess is too high. Try 13 boys and 20 girls.

$$
13+20=33
$$

The club has 13 boys and 20 girls.

EXERCISES Solve by using the guess-and-check strategy.

1. A number plus half the number is 33 . Find the number.
2. What is the only number you can multiply by itself and get a product of 1,296 ?
3. Fill in the boxes at the right with the digits $2,3,4,5,6$, and 8 to make this multiplication work. Use each digit exactly once.
4. The length of a rectangle is 4 more meters than the width. The perimeter is 40 meters. Find the length.

\times

5. The sum of two numbers is 56 . The difference is 22 . What are the two numbers?

APPLICATIONS

6. In the 1992 Summer Olympic Games, the Unified Team, the United States, and Germany won 115 gold medals. The Unified Team won 45 gold medals, and the United States won 4 more gold medals than Germany. How many gold medals did the United States win? How many did Germany win?
7. The Sanchez family bought tickets to the Science Museum. Admission is $\$ 8$ for adults and $\$ 5$ for children under 12. They spent $\$ 49$ for admission. How many adult tickets and how many student tickets did the Sanchez family buy?
8. Zachary and Aimee are in a teen bowling league. The total of their bowling averages is 172 . Zachary's average is 14 points higher than Aimee's average. What is Zachary's bowling average?
9. Andy has $\$ 2.80$ worth of quarters and dimes in his pocket. If the number of quarters equals the number of dimes, how many quarters does he have?
10. Mei-yu bought some pens for $\$ 0.89$ each and some pencils for $\$ 0.19$ each. She spent $\$ 5.02$. How many pens and how many pencils did she buy?
\qquad

Statistical Graphs

Thhere are different types of statistical graphs. Three types of statistical graphs are bar graphs, circle graphs, and line graphs. A bar graph is used to compare quantities. A circle graph is used to compare parts to the whole. A line graph is used to show change.

EXAMPLE What type of graph should you use to compare the seating capacity of various aircraft?

A bar graph is used to compare quantities, so a bar graph should be used. The graph at the right compares the capacity of the B747, the DC-10, the L-1011 and the MD-80. From the graph, it is easy to see that the B747 has the most seating capacity of these aircraft and the MD-80 has the least.

EXERCISES Determine whether you would use a bar graph, a circle graph, or a line graph to show the information.

1. average temperature in Sacramento for each month of the year
2. average temperature in January of five California cities
3. land area of the continents
4. percentages of the total land area each continent represents
5. number of CD players sold each year from 1981 to 1994
6. weight of a baby in each month from birth to one year of age
7. percentages of sources of fuel in the United States
8. height of the five tallest buildings in the world
9. Zawodniak family budget
10. average weekly attendance at five different theaters

APPLICATIONS The following graphs show the weekly sales at Bennie's Bakery for the month of February. Use the graphs to answer Exercises 11-13.

February Sales at

Bennie's Bakery

11. Which graph best shows how the sales for each week compare to each other?
12. Which graph best shows the changes in the sales over the four weeks?
13. Which graph best shows what part of February's sales each week represents?
\qquad

Line Graphs

A
line graph is usually used to show the change and direction of change over time. All line graphs should have a graph title, a vertical-axis label, and a horizontal-axis label.

EXAMPLE Make a line graph for the data on the number of space flights carrying people during the 1960's.

EXERCISES Make a line graph for each set of data.
1.

Sid's Daily Jogging Time for Three Miles	
	Time in Minutes
Day	32
1	29
2	28
3	26
4	28
5	33
6	27
7	

2.

Traffic on Maple Drive	
Day	Number of Vehicles
Monday	7,200
Tuesday	8,050
Wednesday	10,500
Thursday	5,900
Friday	9,990
Saturday	3,400
Sunday	900

3.

Recorded Number of Hurricanes	
Month	Number
June	23
July	36
August	149
September	188
October	95
November	21

4.

Evans Family Electric Bill	
Month	Amount
March	$\$ 129.90$
April	$\$ 112.20$
May	$\$ 105.00$
June	$\$ 88.50$

5.

Home Runs by Hank Aaron 1967 to 1976	
Year	Number
1967	39
1968	29
1969	44
1970	38
1971	47
1972	34
1973	40
1974	20
1975	12
1976	10

\qquad

Bar Graphs

B
ar graphs are used to compare numbers. All bar graphs should have a graph title, a vertical-axis label, and a horizontal-axis label.

EXAMPLE Make a bar graph for the data on women's NCAA gymnastics championships between 1982 and 1993.

NCAA Women's Gymnastics	
Year	Champion
1982	Utah
1983	Utah
1984	Utah
1985	Utah
1986	Utah
1987	Georgia
1988	Alabama
1989	Georgia
1990	Utah
1991	Alabama
1992	Utah
1993	Georgia

Make a tally.

EXERCISES Make a bar graph for each set of data.
1.

Preference for Brands	
Brand	Number of Students
A	15
B	35
C	30
D	25

2.

NCAA Women's Volleyball	
Year	Champion
1981	Southern 1982
Hawaifornia	
1983	Hawaii
1984	UCLA
1985	Pacific
1986	Pacific
1987	Hawaii
1988	Texas
1989	California State,
	Long Beach
1990	UCLA
1991	UCLA
1992	Stanford

3.

NCAA Women's Cross Country	
Year	Champion
1981	Virginia
1982	Virginia
1983	Oregon
1984	Wisconsin
1985	Wisconsin
1986	Texas
1987	Oregon
1988	Kentucky
1989	Villanova
1990	Villanova
1991	Villanova
1992	Villanova

APPLICATIONS

4. Survey the students in your math class to find out their favorite movie. Use this data to make a bar graph.
5. Survey your friends to find out their favorite television show. Use this data to make a bar graph.
\qquad

Ahistogram is a bar graph with no spaces between the bars. It shows data that has been organized into equal intervals.

EXAMPLE Make a histogram for the test scores

 on the Spanish exam.The scores range from 62 to 100 . One possible interval that can be used to make the histogram is an interval of 10. Divide the data into

Test Scores on a Spanish Exam						
72	84	88	86	88	72	70
90	98	82	80	86	90	76
100	86	88	84	88	78	96
68	62	82	88	86	80	92

Make a frequency chart.

Scores	Frequency
$61-70$	III
$71-80$	$\mathbb{W} \mid$
$81-90$	$\mathbb{W} \mathbb{W}$
$91-100$	IIII

Draw a histogram.

EXERCISES List possible intervals that could be used in making a histogram for each set of data.

1. $782,544,729,327,489,472,634,473,379,399,732,744,799$, 356, 724, 566, 532, 688, 679, 465
2. $77.3,75.6,76.4,77.9,75.8,75.2,76.9,76.0,77.3,77.6,76.1,76.5$, $77.5,75.3,75.0,76.4,76.2,77.8$
3. $12,4,6,8,15,9,2,3,16,14,7,9,3,13,14,17,1$

APPLICATIONS Plan the scales and intervals for each set of

 data. Then make a histogram.4.

Height in Inches of Sells Middle School Volleyball Team							
68	69	72	64	74	56	62	58
69	65	70	59	71	67	66	64
73	78	70	52	61	68	67	66

5.

Scores on a 70 -Point Science Quiz									
50	48	58	67	60	56	54	46	52	56
50	56	62	68	65	57	64	62	58	55

6.

Ages of People Visiting the Museum							
23	35	26	37	24	38	29	27
22	35	30	28	19	20	26	30
25	18	22	27	16	17	20	23

Venn Diagrams

Create a Venn diagram to categorize these shapes based on their similarities and differences.
\square

EXAMPLE Identify all the categories you need to represent in the Venn diagram. The shapes have three attributes: shape (circle or square), color (white or gray), and pattern (clear or dotted).

Draw a circle to represent each category. Each circle represents one value of one of the attributes. Make sure the circles overlap. Label each circle with the attribute value it represents.

Put the items into the appropriate section of the Venn diagram. All the objects inside a circle must have the characteristic indicated by the label of that circle. If an object has characteristics that belong to more than one of the circles, it goes into the area where those circles overlap.

EXERCISES

1. Kate's Hair Salon offers haircuts, hair coloring, and perms. This table shows which services customers received at the salon this week. Use the data from the table to complete the Venn diagram.

Cut	Color	Perm	Cut + Color	Cut + Perm	Color + Perm	All 3
21	13	6	17	8	3	4

APPLICATIONS Draw a Venn diagram to represent the data in the following problem.
2. Murphy's Cars sells cars with three optional features. This table shows how many cars they sold this month with the various features.

Power Windows	Navigation System	Heated Seats	Windows Navigation	Windows \& Seats	Navigation \& Seats	All 3	None
8	9	5	12	5	0	0	5

Make a Table

Th
he employees of Lake Products Corporation earn the following yearly salaries.

$\$ 14,500$	$\$ 26,000$	$\$ 43,200$	$\$ 23,700$	$\$ 33,400$
$\$ 15,500$	$\$ 28,900$	$\$ 31,100$	$\$ 56,300$	$\$ 41,000$
$\$ 35,000$	$\$ 24,700$	$\$ 16,300$	$\$ 20,000$	$\$ 63,000$
$\$ 8,100$	$\$ 22,800$	$\$ 9,700$	$\$ 32,200$	$\$ 19,300$

EXAMPLE Organize this information in a frequency table.

Use intervals of $\$ 10,000$ to make the frequency table.

Employee Salaries			
Salary	Tally	Frequency	
$\$ 60,000-\$ 69,999$	I	1	
$\$ 50,000-\$ 59,999$	I	1	
$\$ 40,000-\$ 49,999$	$\\|$	2	
$\$ 30,000-\$ 39,999$	IIII	4	
$\$ 20,000-\$ 29,999$	ㅐI I	6	
$\$ 10,000-\$ 19,999$	IIII	4	
$0-\$ 9,999$	II	2	

EXERCISES Organize the information in a frequency table.

1. Number of subscriptions sold on the first day of the club's fund-raising campaign:
$3,0,4,2,1,0,1,1,2,4,2,3,5,0,2,1,3,1,1,2$
2. The Stanley Cup champions from 1977-1994:

1977 Montreal Canadiens	1986 Montreal Canadiens
1978 Montreal Canadiens	1987 Edmonton Oilers
1979 Montreal Canadiens	1988 Edmonton Oilers
1980 New York Islanders	1989 Calgary Flames
1981 New York Islanders	1990 Edmonton Oilers
1982 New York Islanders	1991 Pittsburgh Penguins
1983 New York Islanders	1992 Pittsburgh Penguins
1984 Edmonton Oilers	1993 Montreal Canadiens
1985 Edmonton Oilers	1994 New York Rangers

APPLICATIONS

3. The results of your survey of your classmates' favorite movies
4. The results of your survey of your classmates' favorite pizza toppings
\qquad

Probability

Th
he probability of an event is the ratio of the number of ways an event can occur to the number of possible outcomes.

$$
\text { Probability of an event }=\frac{\text { number of ways the event can occur }}{\text { number of possible outcomes }}
$$

EXAMPLE On the spinner below, there are ten equally likely outcomes. Find the probability of spinning a number less than 5.

Numbers less than 5 are 1, 2, 3 and 4. There are 10 possible outcomes.

Probability of number less than $5=\frac{4}{10}$ or $\frac{2}{5}$.
The probability of spinning a number less than 5 is $\frac{2}{5}$.

> EXERCISES A box of crayons contains 3 shades of red, 5 shades of blue, and 2 shades of green. If a child chooses a crayon at random, find the probability of choosing each of the following.

1. a green crayon
2. a blue crayon
3. a red or blue crayon
4. a red crayon
5. a crayon that is not red
6. a red or green crayon

A card is chosen at random from a deck of 52 cards. Find the probability of choosing each of the following.
7. a red card
8. the jack of diamonds
9. an ace
10. a black 10
11. a heart
12. not a club
A cooler contains 2 cans of grape juice, 3 cans of grapefruit juice, and 7 cans of orange juice. If a person chooses a can of juice at random, find the probability of choosing each of the following.
13. grapefruit juice
15. grape juice
17. not orange juice
14. orange juice
16. orange or grape juice
18. not grape juice

APPLICATIONS

Businesses use statistical surveys to predict customers' future buying habits. A department store surveyed 200 customers on a Saturday in December to find out how much each customer spent on their visit to the store. Use the results at the right to answer Exercises 19-21.
19. What is the probability that a customer will spend less than $\$ 2.00$? Will spend less than \$2.00?

Amount Spent	Number of Customers
Less than $\$ 2$	14
$\$ 2-\$ 4.99$	36
$\$ 5-\$ 9.99$	42
$\$ 10-\$ 19.99$	32
$\$ 20-\$ 49.99$	32
$\$ 50-\$ 99.99$	22
$\$ 100$ or more	22

20. What is the probability that a customer will spend less than
\$10.00?
21. What is the probability that a customer will spend between $\$ 20.00$ and \$100.00?
\qquad

Counting Outcomes

Fundamental Counting Principle

If an event M can occur in m ways and it is followed by event N that can occur in n ways, then the event M followed by event N can occur in $m n$ ways.

EXAMPLE Use three different methods to find the number of outcomes if a penny and a dime are tossed.

Make a list.
Make a tree diagram.
penny, dime
tails, heads
tails, tails

Use the Fundamental Tails Heads Counting Principle.
outcomes for penny \times outcomes for dime $=$ possible outcomes $2 \times 2=4$
There are 4 possible outcomes if a penny and a dime are tossed.

EXERCISES Make a list to find the number of outcomes for each situation.

1. A coin and a number cube are tossed.
2. This spinner is spun twice.

Draw a tree diagram to find the number of outcomes for each situation.
3. Three coins are tossed.
4. A coin is tossed and the spinner in Exercise 2 is spun.

Use the Fundamental Counting Principle to find the number of outcomes for each situation.
5. Shirts come in 4 colors and 3 sizes.
6. Donna has a choice of 6 entrees and 4 beverages.

APPLICATIONS

7. The nursery has 14 different-colored tulip bulbs. Each color comes in dwarf, average, or giant size. How many possible selections are there?
8. The type of bicycle Elena wants comes in 12 different colors with 12 different colors of trim. There is also a choice of curved or straight handle bars. How many possible selections are there?
9. At a banquet, guests were given a choice of 4 entrees, 3 vegetables, soup or salad, 4 beverages, and 4 desserts. How many different selections were possible?
10. Ms. Nitobe is setting the combination lock on her briefcase.

If she can choose any digit 0-9 for each of the 6 digits in the combination, how many possible combinations are there?
he breakfast special at Dion's Place is a choice of cereal, eggs, or French toast with a choice of milk or juice for $\$ 1.99$.

EXAMPLE If someone wishes to order a breakfast special at Dion's Place, how many choices does he or she have?

To answer this question, make a tree diagram.

There are 6 choices for the breakfast special.

EXERCISES For each situation, draw a tree diagram to show all the outcomes.

1. A number cube is rolled and a coin is tossed. What is the number of possible outcomes?
2. A penny, a nickel, and a dime are tossed. What is the number of possible outcomes?

APPLICATIONS

3. Ernie can order a small, medium, or large pizza with thick or thin crust. How many possible ways can he order the pizza?
4. Tina has a choice of a sports jersey in blue, white, gray, or black in sizes small, medium, or large. How many choices does she have?
5. José, Kara, and Beth are running for class president. Tony, Lou, and Fay are running for vice-president. How many different pairs of officers can be elected?
6. A snack food company makes chewy fruit shapes of lions, monkeys, elephants, and giraffes in red, green, purple, and yellow. How many different fruit shapes are made?
he odds for an event can be found using the following ratio.

$$
\text { odds for an event }=\frac{\text { number of ways the event can occur }}{\text { number of ways the event cannot occur }}
$$

EXAMPLE Carol picks a marble out of a bag containing 2 red marbles, 3 blue marbles, and 5 white marbles. What are the odds that she will choose a blue marble? What are the odds against choosing a blue marble?

The number of ways a blue marble can be chosen is 3 . The number of ways a blue marble cannot be chosen is 7 .

$$
\begin{array}{r}
\text { odds of choosing a blue marble }=\frac{3}{7} \\
\text { odds against choosing a blue marble }=\frac{7}{3}
\end{array}
$$

The odds of choosing a blue marble are $\frac{3}{7}$.
The odds against choosing a blue marble are $\frac{7}{3}$.

EXERCISES A coin is tossed. Find the odds for each of the following.

1. tails
2. against tails
3. heads
4. against heads

A number cube is rolled. Find the odds for each of the following.
5. 1
6. 5
7. against a 1
8. against a 5
9. a prime number
11. a number greater than 3
12. an odd number
13. not an odd number
14. a number less than 6

APPLICATIONS Brenda estimates that the probability that she will pass her next test is $\frac{9}{10}$. She also estimates that the probability that she will fail the course is $\frac{1}{100}$.
15. What are the odds for Brenda passing the test?
16. What are the odds against Brenda passing the test?
17. What are the odds for Brenda passing the course?
18. What are the odds against Brenda passing the course?
19. Do you think probability or odds tell you more about how likely Brenda is to pass the test and the course? Explain.

Theoretical and Experimental Probability

The theoretical probability of an event is the ratio of the number of ways the event can occur to the number of possible outcomes.

The experimental probability of an event is the ratio of the number of successful trials to the number of trials.

EXAMPLE Sean wants to determine the probability of getting a sum of 7 when rolling two number cubes. The sample space, or all possible outcomes, for rolling two number cubes is shown below.

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6
6,1	6,2	6,3	6,4	6,5	6,6

What is the theoretical probability of rolling a sum of 7? What is the experimental probability of rolling a sum of 7 if Sean rolls the number cubes 20 times and records 4 sums of 7 ?

There are 6 sums of 7 shown in the sample space above. So, the theoretical probability of rolling a sum of 7 is $\frac{6}{36}$ or $\frac{1}{6}$.
Since Sean rolled 4 sums of 7 on 20 rolls, the experimental probability is $\frac{4}{20}$ or $\frac{1}{5}$.

EXERCISES Find the theoretical probability of each of the following.

1. getting tails if you toss a coin
2. getting a 6 if you roll a number cube
3. getting a sum of 2 if you roll two number cubes
4. getting a sum less than 6 if you roll two number cubes
5. Amanda rolled one number cube 30 times and got 8 sixes.
a. What is her experimental probability of getting a six?
b. What is her experimental probability of not getting a six?
6. Ramón rolled two number cubes 36 times and got 3 sums of 11 .
a. What is his experimental probability of getting a sum of 11 ?
b. What is his experimental probability of not getting a sum of 11 ?

APPLICATIONS While playing a board game, Akira rolled a pair of number cubes 48 times and got doubles 10 times.
7. What was his experimental probability of rolling doubles?
8. How does his experimental probability compare to the theoretical probability of rolling doubles?
9. How do you think the experimental probability compares to the theoretical probability in most experiments?
10. Do you think the experimental probability is ever equal to the theoretical probability? Explain?

