This Notebook Helps You:

- Preview the chapter
- Build your mathematics vocabulary knowledge
- Organize and take notes using graphic organizers
- Improve your writing skills
- Reflect on mathematical concepts
- Prepare for chapter tests

Name: \qquad

Period: \qquad

How to Use This Book:

Your Investigation Notebook and Reflection Journal will help you succeed in IMPACT Mathematics by providing:

- organizational tools to record your notes.
- opportunities to reflect on key mathematical concepts.

For each Chapter Opener, you will find questions relating to the chapter's Real-Life Math connection, key chapter vocabulary, and Family Letter home activities.

To help you master Investigation concepts, this study guide provides opportunities to:

- review key vocabulary terms.
- summarize main ideas.
- reflect on Explore and Think \& Discuss topics.
- use a variety of graphic organizers, including Venn diagrams and tables.

Each lesson ends with a What Did You Learn? section to help you summarize key lesson ideas.

The McGraw Hill Companies

Glencoe

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without prior permission of the publisher.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240-4027

ISBN: 978-0-07-889754-2
MHID: 0-07-889754-8

Printed in the United States of America.

3 Table of Contents

Chapter 1
Chapter Opener 2
Lessons 1.1-1.3 4
Chapter 2
Chapter Opener 12
Lessons 2.1-2.3 14
Chapter 3
Chapter Opener 21
Lessons 3.1-3.2 23
Chapter 4
Chapter Opener 27
Lessons 4.1-4.3 29
Chapter 5
Chapter Opener 38
Lessons 5.1-5.3 40
Chapter 6
Chapter Opener 49
Lessons 6.1-6.3 51
Chapter 7
Chapter Opener 60
Lessons 7.1-7.3 62
Chapter 8
Chapter Opener 71
Lessons 8.1-8.5 73
Chapter 9
Chapter Opener 86
Lessons 9.1-9.4 88
Chapter 10
Chapter Opener 99
Lessons 10.1-10.2 101
Chapter 11
Chapter Opener 108
Lessons 11.1-11.2 110
Chapter 12
Chapter Opener 115
Lessons 12.1-12.2 117

Linear Relationships

Real-Life Math

Contents in Brief

1.1 Direct Variation	4
1.2 Slope	24
1.3 Write Equations	35
Review \& Self-Assessment	60

Leonardo da Vinci used ratios to describe what he called a perfect human body. These ratios can be described by linear equations.

Think About It

Suppose a student found the length of his hand to be eight inches and the length of his arm to be two feet. Does Leonardo da Vinci's relationship $a=3 h$ hold true for this student? Tell why or why not.
\qquad
\qquad

Leonardo da Vinci also believed that a person's height should be six times the length of his or her foot. What variables could you use to write an equation that expresses the relationship between a person's height and foot length?

Write an equation to express this relationship.

What is the ratio of your left arm to your right arm? Why?

Write an equation to express this relationship. Be sure to tell what your variables represent.

Connections to the Past

(Course 1, Chapter 8 and Course 2, Chapter 8)

In this chapter, you will plot points and graph lines. Describe one way you know how to graph a line given its equation.

Vocabulary

Complete each statement with one of the following words. You can use a word more than once.

coefficient	direct	slope
constant	direct variation	slope-intercept form

- The equation for any \qquad variation can be written in the form $y=m x$, where x and y are variables and m is a \qquad
\qquad is the steepness of a line.

In the equation $y=m x+b, m$ is the \qquad of x, and b is the \qquad term.

In a \qquad there is a direct relationship between the variables. The ratio is \qquad it never changes.

- The \qquad of a line, $y=m x+b$ is so named because the slope m and y-intercept b are easily identified.

Family Letter

What linear real-world situations did you find that involve time?
\qquad
\qquad

What linear real-world situations did you find that involve money?
\qquad
\qquad
\qquad

What other types of linear real-world situations did you find?
\qquad
\qquad
\qquad

Direct Variation

In Lesson 1.1, I expect to learn:
\qquad
\qquad

Explore
Why did the human graphs form straight lines?
First team:
\qquad
\qquad
\qquad

Second team:
\qquad
\qquad
\qquad
\qquad
\qquad .

Vocabulary Relationships with straight-line graphs are called

Investigation (1)

1. Complete the table and graph for the equation $y=4 x$.

x	1		3	
y		8		16

\qquad _.
2. Vocabulary Two variables are \qquad if when you multiply the value of one variable by a quantity, the other variable is multiplied by the same quantity. A linear relationship in which two variables are directly proportional is a

I found this on page

\qquad —.
\qquad -.

Develop \& Understand: B

Fill in the blank with always, sometimes, or never.
3. A direct variation is \qquad a linear relationship.
4. A linear relationship is \qquad a direct relationship.
5. The graph of a direct variation passes through the origin.
6. The graph of a linear relationship passes through the origin.

Investigation

Develop \& Understand: A

7. How are decreasing linear relationships the same as increasing linear relationships? How are they different?
\qquad .

Develop \& Understand: B

8. Use a solid line to sketch a graph of a decreasing relationship that is a direct variation.
9. Use a dashed line to sketch a graph of a decreasing linear relationship that is not a direct variation.

10. Describe how you can identify each type of relationship from
\qquad the following representations.

	From an Equation	From a Graph	From a Table
Linear			
Direct Variation			

What Did You Learn?
I need to remember the following about:
linear relationships: \qquad
\qquad
direct variation: \qquad
\qquad

Draw a sample linear graph and a direct variation graph.

Linear graph:

Direct variation graph:

In Lesson 1.2, I expect to learn:
\qquad .

Think \& Discuss

Describe one way to measure the steepness of a roof.

Investigation (1) Develop \& Understand: A

1. What is meant by rise?

I found this on page

\qquad $-$
2. What is meant by run?
3. How can the real world meanings of rise and run help you remember their mathematical meanings?
\qquad
\qquad 4. Vocabulary The $\frac{\text { rise }}{\text { run }}$ ratio represents the —_of the line.

Develop \& Understand: C

5. Use the grids to draw lines with slopes of $\frac{2}{3}, \frac{4}{3}$, and $\frac{1}{2}$.

6. Order the slopes from Exercise 5 from least to greatest (flattest to steepest).
7. Draw examples of lines with the following slopes in the boxes below.

Positive slope	Slope of 0	Negative slope

8. What is the slope of the line that passes through $(6,2)$ and $(4,5)$?

Investigation (2) Example

9. Suppose you graph two lines on different coordinate planes. What is the benefit of using the same scale on each axis?
\qquad
\qquad
10. Consider graphs A and B drawn on congruent grids. The x-axis for graphs A and B is numbered from 0 to 10 . The y-axis for graph A is numbered from 0 to 50 , but the y-axis for graph B is numbered from 0 to 100 .
The line $y=2 x$ is graphed on both. On which graph will the slope appear steeper? Why?

What Did You Learn?

I need to remember the following about:
slope: \qquad
\qquad
\qquad
\qquad
scales on axes: \qquad
\qquad
\qquad

Think \& Discuss

Of a description, equation, graph, or table, which would you least prefer to use to determine if the relationship is linear? Why?

Investigation (1) Develop \& Understand: A

1. Find the missing values for each linear relationship. Find the I found this on page \qquad . slope for each set of values.

x	0	1	2	3	
y	4	6			12

slope $=$ \qquad

\mathbf{x}	-3	-2	-1	0	1
\boldsymbol{y}	15				

slope $=$ \qquad

Example

2. Write the equation for each x-coefficient and constant term.

Coefficient of \boldsymbol{x}		Constant Term	Equation
a.	3	-10	
b.	-1	0	
c.	0	7	

Develop \& Understand: A

3. Identify the quadrants through which each line will pass.

4. Vocabulary The formula $y=m x+b$, or $y=a x+b$, is called the \qquad of a linear equation.

Develop \& Understand: A

This cartoon is found on page 42.
5. Complete Maya and Darnell's sentences.

Investigation (4) Develop \& Understand: A

6. Tell how to find the equation of a line when you know the slope of the line and one point on the line.
\qquad .
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: B

7. What additional step is needed to find the equation of a line when you know two points on the line?

Develop \& Understand: C

8. Suppose you need to find the equation of the line that contains points at $(3,6)$ and $(0,9)$. After finding that the slope is -1 , you write the equation $y=-x+b$. Which point would you choose for finding the y-intercept? Why? What is the equation of the line in slope-intercept form?
9. Vocabulary The linear equation $4 x+2 y=46$ is written in
\qquad -.

Develop \& Understand: C

I found this on page \qquad 10. Complete the graphic organizer.

Inquiry

Investigation 6

11. Complete the table to provide information about the equations that produce each type of graph.
I found this on page \qquad -.

The Lines ...	The equations ...	Possible Equations
pass through the origin.		
are parallel.		
are perpendicular.		

What Did You Learn?

I need to remember the following about:
slope-intercept form: \qquad
\qquad
\qquad
writing a linear equation: \qquad
\qquad

Lines and Angles

Real-Life Math

You can estimate the outside temperature by counting the number of times a cricket chirps in 15 seconds. The approximate temperature is represented by $y=x+37$, where x is the number of chirps and y is the temperature in degrees Fahrenheit.

Think About It

What is the approximate temperature when a cricket chirps 41 times in 15 seconds? \qquad

Suppose a cricket chirps 132 times in one minute. What would be the value of x ? Why?

On a different night, Tony used cricket chirps to estimate the temperature to be $82^{\circ} \mathrm{F}$. How many cricket chirps did he count in 15 seconds? Tell how you know.

Connections to the Past (Chapter 1)

The equation $y=x+37$ describes a linear relationship. Complete the table.

Equation	Dependent Variable	Independent Variable	Slope	\boldsymbol{y}-intercept

Write $y=x+37$ in standard form.

Vocabulary

Circle true or false for each statement.

- Points that are collinear lie on the same line. true false
- Outliers are points that are close to each other on a graph. true false
- Complementary angles add up to 180°. true false
- When two parallel lines are crossed by a transversal, the angles formed inside the parallel lines are called interior angles. true false
- To bisect a line segment is to cut the line exactly into thirds.
true false
- A transversal is a line that crosses two others. true false

Family Letter

For the first home activity on page 65, tell how the graph changes when the amount with which you start changes.

List some of the places where you found intersections of lines. Tell the type of angles that were formed.
\qquad
\qquad
\qquad
\qquad

What are some angles formed by walls in buildings or at home?

Lines

In Lesson 2.1, I expect to learn:
\qquad
\qquad

Explore

I found this on page \qquad
Identify the common characteristics in each group, or family, of lines.
\qquad
\qquad
\qquad

Investigation(1) Develop \& Understand: A

1. Just by looking at their equations, how can you determine if lines are parallel?
\qquad
\qquad
2. Give examples of three lines that would be parallel if you graphed them.
\qquad .

3. Vocabulary

 points all lie on the same line.
Develop \& Understand: B

4. Explain how you can tell that the points $(3,11),(1,3)$, and $(0,-1)$ are collinear without graphing them.
\qquad
\qquad
\qquad

I found this on page

\qquad -.
5. How can writing linear equations in slope-intercept form help you determine if they are in the same family?
\qquad
\qquad
\qquad

Develop \& Understand: B

6. Explain how to write $2 y-2=2 x$ in slope-intercept form.
7. Give three examples each of equations in slope-intercept form and in standard form.

Slope-Intercept Form	Standard Form

Inquiry

8. Explain how a graph can be used to make a prediction.
\qquad
\qquad
\qquad
\qquad
9. Fill in the blanks for a standard viewing window on a calculator.

10. Vocabulary \qquad is a line that fits all of the data points as closely as possible.
I found this on page \qquad .

Develop \& Understand: B

I found this on page \qquad -.
11. When a data point seems very different from the others, it is called an \qquad .
12. On the grid below, graph 10 data points of your choosing that are close to forming a line but have two outliers. Circle the outliers. Sketch a line of best fit for your points.

What Did You Learn?

I need to remember the following about:
equations of parallel lines: \qquad Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
a technique I can use to improve the fit of a line when I know the data points in the graph: \qquad
\qquad

Angle Relationships

In Lesson 2.2, I expect to learn:

Investigation

Think \& Discuss

1. Vocabulary When two lines intersect, two angles that are

I found this on page

\qquad .
opposite one another are \qquad .
2. Write always, sometimes, or never.

Vertical angles are \qquad equal.

Vertical angles are \qquad right angles.

Vertical angles \qquad have a side in common.

Example

I found this on page \qquad 3. Complete the table with words and figures. Draw pairs of angles that do and do not share sides.

	Words	Figures
Complementary angles		
Supplementary angles		

\qquad .
4. An angle measures 95°. Explain why the angle has a supplement but not a complement.
\qquad
\qquad

Investigation 2

5. Vocabulary When parallel lines are intersected by a third line,

I found this on page \qquad -. the third line is called a \qquad _.

Develop \& Understand: A

6. Complete the table below by writing the definition, marking a pair of angles in the diagram, and telling how the angle measures are related.

	Definition	Example	How Measures Relate
Alternate interior angles			
Alternate exterior angles			

What Did You Learn?

I need to remember the following about:
vertical angles: \qquad
complementary and supplementary angles: \qquad
\qquad

Constructions

In Lesson 2.3, I expect to learn:
\qquad
\qquad

Explore

Name some items, other than a ruler, that you can use to make a line.

I found this on page __ Vocabulary An __ is a curve that is part of a circle. A \qquad is an object that has a hard edge and can be used to draw a straight line.

Investigation (1)

I found this on page \qquad _.

1. In your own words, tell how to draw a congruent line segment without using a ruler.
\qquad
2. Vocabulary A \qquad is any line that cuts a line segment exactly in half. \qquad lines form right angles.

Develop \& Understand: B and C

I found this on page
3. How many bisectors does a segment have? How many perpendicular bisectors? Explain how you know.
\qquad
\qquad
\qquad
4. Place the numbers $1,2,3$, and 4 next to each dashed arc or ray to tell in which order the marks were made to bisect the angle.

Develop \& Understand: B

5. The first step in copying an angle is to draw a straight line

I found this on page segment. Does it matter how the long line segment is that you draw? Why or why not?
6. If you bisect a 60° angle, what should be the measure of each new angle formed? Why?
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
straightedge: \qquad
\qquad
perpendicular bisector: \qquad
how bisecting an angle is like bisecting a line segment and how bisecting an angle is different than bisecting a line segment: \qquad

Percents and Proportions

Real-Life Math

Percents are used to describe many situations, including athletic performances by both individuals and teams.

Contents in Brief

3.1 Understand Percents 112

3.2 Work with Percents

Review \& Self-Assessment 140

Think About It

What is a team's winning percentage when the team's wins equal the team's losses? \qquad

What would it mean if a team's winning percentage was 0% ?

What would it mean if a team's winning percentage was 100% ?

Suppose that the football team played ten games instead of eight. If they had won five of the games in Year 1, would the percent shown in the table need to be changed? Explain.

In 2007, the New York Giants won 62.5% of their football games during the regular season. If they play 16 games in 2008 and win the same percentage of games, how many games would you expect them to win?

Connections to the Past (Chapter 1)

Percents can be used to describe the steepness of roads, just as slope can. Recall that slope is $\frac{\text { rise }}{\text { run }}$. Describe the slope of a road whose steepness (or grade) is described as 4%.

Vocabulary

For each statement, tell if you would calculate a percent increase or a percent decrease. Write I or D.

Statement	I or D
Zoe made 20 phone calls during her first week of vacation and 5 phone calls during her second week.	
A baseball card was worth $\$ 4$ in 1990 and $\$ 26$ in 2008.	
In 2005, a new company had 14 employees.	
Now it has 21 employees.	

Family Letter

List at least two items that you found on sale while shopping. Give the original price, percent of discount, and sale price.
\qquad
\qquad

List at least three examples of percents that you calculated from the statistics in the sports section of a newspaper.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Understand Percents

In Lesson 3.1, I expect to learn:

Investigation

I found this on page \qquad -.

1. How do you estimate a percent when given the part and the whole?
2. Write an amount at the top of the chart. Then, tell how you would estimate the amount that is each percent of the number.

Amount:	
12%	
42%	
155%	

Develop \& Understand: B

3. Tell how you know when a percent will be greater than 100%. Give an example.
\qquad
\qquad
\qquad
\qquad
4. When using the percent proportion, you will know two of the
\qquad values.

I found this on page \qquad .
6. Fill in each blank with part, whole, or percent.

7. Use the percent proportion in Exercise 6 to compare the values of a, b, and n.

If \ldots	Then, the value of \boldsymbol{n} is \ldots
b is less than a	
a is less then b	
a equals b	

Develop \& Understand: B

8. Show the steps that you would use to find what percent 42 is of 120 .

What Did You Learn?

I need to remember the following about:
estimating percents: \qquad
writing a proportion: \qquad

EXAMPLE: \qquad
how do you determine which value to substitute for a and which value to substitute for b when using a proportion to solve a percent problem: \qquad for b when using a proportion to solve a percent problem: \quad
\qquad

Work with Percents

In Lesson 3.2, I expect to learn:

Investigation
 1

I found this on
pages \qquad -.

Develop \& Understand: A

1. Shade the second bar of each group to any height that you wish. It can be greater or less than 100%. Then estimate the percent of increase or decrease you have shown.

\qquad
\qquad

Develop \& Understand: C

I found this on page \qquad _.
2. Describe how you find a percent increase or percent decrease. Give an example.
\qquad
\qquad
\qquad
\qquad

Investigation

Develop \& Understand: A

3. Give an example of a percent of a percent situation where there are two 10% decreases, each worth a different amount.
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: A
4. Give an example of a part-to-whole and of a part-to-part ratio.
\qquad .

Inquiry

Investigation (4)

5. List different ways that sale information can be given. Then create your own example of each.

I found this on page \qquad

Way to give sale information	Example

What Did You Learn?

I need to remember the following about:
percent increase: \qquad

EXAMPLE: the percent increase for selling a $\$ 100$ necklace for $\$ 350$ is \qquad percent decrease: \qquad
\qquad
EXAMPLE: the percent decrease for a car worth $\$ 20,000$ losing $\$ 8,000$ of its value the first year is: \qquad
percent of a percent: \qquad
\qquad
\qquad

Exponents and Exponential Variation

Real-Life Math

This chapter begins by discussing the scenario of passing on a computer virus warning. One person forwards an e-mail to each of ten friends, and then each of them forwards the e-mail to each of their friends, and so on.

Think About It

There were ten e-mails sent in the first hour. Then, each person forwarded the e-mail to ten people in the second hour. How many e-mails were sent in the second hour? The third hour? Tell how you know.

Look at the number of e-mails sent during the first, second, and third hours. What pattern do you see? How does this pattern show why $10,000,000$ households will receive the message after seven hours?

Connections to the Past (Chapter 3)

There are approximately 115 million households in the United States. If 10 million households received the e-mail, about what percent of U.S. households received the e-mail?

Vocabulary

State if you Agree (A) or Disagree (D) with each statement.

A or D	Statement
	The cube root, or third root, of 27 is 9.
	The number 4.32×10^{7} is written in scientific notation.
	-4 is a square root of 16.
	If the number 15 is repeatedly multiplied by 0.9, the situation can be described as exponential growth.
	The radical sign is a symbol indicating that a root is being taken of the number under the sign. A small number, called the index, may appear outside and above the symbol. The index tells which root is to be taken. If no index is shown, it is assumed to be 2 and the square root should be taken.

Family Letter

Real-world numbers, such at the national debt, may be very large. However, they are often reported in standard, rather than scientific notation. Why do you think this is?
\qquad
\qquad
\qquad

What type of real-world references would you expect to see expressed in scientific notation? Why?
\qquad
\qquad
\qquad
\qquad

State one of the real-world examples that you found and describe where you found the information.
\qquad
\qquad
\qquad

Exponents

In Lesson 4.1, I expect to learn:

Explore

Find the differences between consecutive numbers in the list. What do you notice? Why does this happen?

Investigation
 (1)

1. What is the exponent for a base when no exponent is shown?

Develop \& Understand: B

I found this on page \qquad .
2. Complete the table. Assume a is a positive integer.

Power	Example	Positive or Negative?
$(-a)^{n}$, where n is an odd integer		
$(-a)^{n}$, where n is an even integer		
$-a^{n}$, where n is a positive integer		

I found this on page \qquad .
3. Vocabulary A number is written in \qquad notation when it is expressed as the product of a \qquad and a number greater than or equal to 1 but less than 10 .

Develop \& Understand: A

4. Give an example of each for each situation.

Negative Exponent, Integer Base	Negative Exponent, Fractional Base	Zero Exponent

\qquad . 5. Explain why $a \cdot b^{-8}$ is the same as $a \div b^{8}$.

Investigation

3

Example

6. Describe each law in your own words. Give an example.

Law	Example	Description
$a^{b} \cdot a^{c}=a^{b+c}$		
$a^{c} \cdot b^{c}=(a b)^{c}$		
$\frac{a^{b}}{a^{c}}=a^{b-c}$		
$\frac{a^{c}}{b^{c}}=\left(\frac{a}{b}\right)^{c}$		
$\left(a^{b}\right)^{c}=a^{b c}$		

Investigation (4) Develop \& Understand: A

7. How are the Product and Quotient Laws of Exponents used when multiplying and dividing numbers written in scientific notation?
\qquad
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: B

I found this on page \qquad .
8. Look at the cartoon on page 156. Replace parts of Lucita's and Tala's conversation to one about multiplying $\left(3 \times 10^{5}\right) \times\left(5 \times 10^{2}\right)$.

Lucita	Tala

Inquiry

Investigation

9. How did you determine the spacing between the planets in your prediction?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
negative integer exponents: \qquad

Product Laws and Quotient Laws of Exponents		
when bases are the same	\qquad the exponents \qquad the exponents	examples:
when exponents are the same	\qquad the bases \qquad the bases	examples:

Exponential Relationships

In Lesson 4.2, I expect to learn:

I found this on page

\qquad .

Explore

How much quicker would it take for 1,000 new people to hear the joke if you told it to three classmates and everyone continued to tell three new people?

Investigation (1) Develop \& Understand: A

1. Sketch sets of ordered pairs for each expression. Assume a is an
\qquad integer greater than 1 .

Develop \& Understand: B

2. If a is an integer greater than 0 , for what value(s) of x does $a x=a^{x}$? \qquad
3. If a is an integer greater than 0 , for what value(s) of x does $a x=x^{a}$? \qquad
4. For 2^{x} and x^{2} as x increases from 0 to 5 , how would you find which expression's values increase more quickly?

Investigation
 2

5. Vocabulary Quantities that are repeatedly multiplied by a number greater than \qquad are said to show
\qquad .

Think 82 Discuss

6. In the definition of exponential growth, it is said that x must be greater than 1 . What happens if x equals 1 ?

What happens if x is between 0 and 1 ?
7. Give an equation that represents a growth equation and then show a table of values.

Equation: \qquad

\boldsymbol{x}					
\boldsymbol{y}					

8. Give an equation that represents a decay equation and then show a table of values.

Equation: \qquad

\mathbf{x}					
\mathbf{y}					

Investigation 3

Develop \& Understand: A

9. Complete the diagram with examples of the form $y=a \cdot b^{x}$.

\qquad .

Develop \& Understand: B

10. Suppose the scientist studying bacteria on page 177 extended the experiment for Cultures 1 and 4 three more days. Make a table showing the additional results.

Days	Culture 1	Culture 2

What Did You Learn?

I need to remember the following about:
exponential growth: \qquad
exponential decay: \qquad
graphs that express an exponential relationship:

graphs that do not express an exponential relationship: \qquad

Radicals

In Lesson 4.3, I expect to learn:

Explore

Without using a calculator, how do you know that the side length of a square with an area of 12.5316 square units is between 3 and 4 units?

Investigation

I found this on page \qquad .

I found this on page \qquad .

1. Vocabulary When you undo the process of a squaring a number, you find the \qquad of the number.
2. What does the radical sign indicate?
3. How do you indicate the negative square root of a number?

Develop \& Understand: B

4. Give examples of squares of square roots that you can find without a calculator.
5. Why are absolute value symbols needed to write $\sqrt{n^{2}}$ as a single expression that has no radical signs?
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: C

\qquad .
6. The solution to a radical equation is shown below. Fill in the reasons for each step.

$$
\begin{aligned}
\sqrt{x+3} & =8 \\
(\sqrt{x+3})^{2} & =8^{2} \\
x+3 & =64 \\
x & =61
\end{aligned}
$$

Investigation (2) Example

\qquad 7. When is a radical expression considered simplified?
\qquad
\qquad
\qquad

Develop \& Understand: B

8. What are the square root factors of 48 ? Which would you use to simplify $\sqrt{48}$? Why?

Develop \& Understand: C

9. Complete the diagram with examples.

10. Give another expression equivalent to your simplified expression above.

Investigation (3) Think \& Discuss

11. Give an example of a cubic number, or perfect cube. Explain how you know it is cubic.
\qquad

Develop \& Understand: A and B

I found this on page \qquad 12. Complete the table about the nth roots of x.

When \boldsymbol{n} is	and \boldsymbol{x} is	for example,	then...
even	positive,		
odd	positive,		
	negative,		

What Did You Learn?

I need to remember the following about:
the radical sign: \qquad
simplifying radical expressions and like terms: \qquad
\qquad
\qquad
solving radical equations: \qquad
\qquad
how the laws of exponents are related to radical expressions: \qquad
\qquad
\qquad
\qquad

Algebraic Expressions

Real-Life Math

Levers allow us to lift heavy objects. The longer the lever, the more we can lift. You can think of the situation as a see-saw. You cannot lift the other person if you sit very close to the middle, or the fulcrum. As you move further back, it becomes easier to lift the person on the other side.

Think About It

What would happen to the amount of force needed to lift the elephant if the longest lever you could find was less than 368 feet long? Why?

Contents in Brief

5.1 Rearrange Algebraic Expressions 206
5.2 Monomials, Binomials, and Trinomials224
5.3 Special Products 244
Review \& Self-Assessment 254

Vocabulary

Draw one line under the expressions that are monomials, two lines under binomials, and three lines under trinomials.
$5 x \quad 2 p^{2}+7 p-4 \quad 1-14 y \quad 3 x^{3} \quad 4 g b$

$$
x+y \quad-2+w^{5}+v^{4} \quad-18 \quad 6 d-3
$$

Underline all of the like terms in each expression below.
a. $6 x-4 y+2 x$
b. $5 k^{3}-2 k^{2}+k^{2}-1$
c. $12-4 z+10-8-5 z^{2}$
d. $5 x y-4 x+y+2 x y$

Family Letter

Describe two geometric models that you could use to multiply x and $x+3$.

Model 1:	Model 2:

Which type of geometric model did you find most helpful in understanding how to expand products? Why?
\qquad
\qquad
\qquad
\qquad

Name a strategy that you learned in this chapter.
\qquad
\qquad
\qquad

Rearrange Algebraic Expressions

In Lesson 5.1, I expect to learn:

I found this on page \qquad .

Vocabulary When you use the distributive property to write $2(x+1)$ as $2 x+2$, you are \qquad the expression.

Investigation (1) Develop \& Understand: A

1. Add a strip of any length to the square. Explain how the new figure shows the distributive property used over addition.

\qquad
\qquad
\qquad
\qquad
2. Remove a strip of any length from the square. Explain how the new figure shows the distributive property used over subtraction.

\qquad
\qquad
\qquad
\qquad

Develop \& Understand: B

3. Use the distributive property to match each product.

$4(6 x-2)$	a. $24 x-8$
$x(8-2 x)$	b. $2 x^{2}+8 x$
$2 x(x+4)$	c. $8 x-2 x^{2}$

Investigation

I found this on page \qquad -.

I found this on page \qquad _.
4. Describe how to find the amount of carpet needed for the living room.

5. Vocabulary

\qquad have the same variable raised to the same power.
6. Which of the following expressions is equivalent to the expression for the area of the floor: $m^{2}+4 m+5 m+m^{2}+4 m+3.5 m+0.5 m^{2}$? Which equivalent expression is in simplest form?
You can choose more than one answer. \qquad
A $3.5 m^{2}+9.5 m$
B $2.5 m^{2}+16.5 m$
C $1.5 m^{2}+12.5 m$
D $4 m+2.5 m^{2}+9 m+3.5 m$
7. Tell how to simplify an expression with like terms. Give an example.
8. How did you determine the algebraic expression for the area of the H-shape?
\qquad
\qquad
\qquad

\qquad
9. Using the number 8 , give two different expressions that result in 16 .
10. Rewrite the expressions in Exercise 9 using n to represent 8 .

Investigation (4) Develop \& Understand: B

11. Explain how to find the value of x.

12. What are the measures of the angles in the triangle above? Write two other expressions, using x, where x has the same value, that could be used for the measures of the angles.

What Did You Learn?
I need to remember the following about:
the distributive property: \qquad

EXAMPLE: \qquad
like terms: \qquad
\qquad

Monomials, Binomials, and Trinomials

In Lesson 5.2, I expect to learn:

Vocabulary Complete the table.

I found this on page \qquad

Term	Words	Example
monomial		
binomial		
trinomial		

Investigation (1) Develop \& Understand: A

1. The area of a rectangle with sides h and $b+1$ can be shown by I found this on page \qquad -. the model below.

Express the area as a product and as a sum.
2. Sketch a model of the area represented by the product $(x+2)(x+4)$.

Develop \& Understand: C

\qquad .
3. Give an example to show how you divide a binomial by a monomial. Then explain how to divide a binomial by a monomial.
\qquad
\qquad
\qquad

Investigation 2

Develop \& Understand: A

4. The rectangle diagram that models $(x+3)(x+4)$ has four parts. Why does the final expression for the area of the rectangle have . three, instead of four, terms?
5. What is the same about all of the area expressions that represent rectangles with dimensions $x+a$ and $x+b$ where a and b are constants?
\qquad
\qquad

Investigation
 3

6. Find each of the following products.
a. $7 x(2 x+4)$ \qquad
b. $(7 x+3)(2 x+4)$
7. How is multiplying a monomial by a binomial like multiplying a binomial by a binomial? How is it different?

I found this on pages \qquad
\qquad
\qquad
\qquad

Develop \& Understand: A and B

8. Find each of the following products.
a. $4 x(3 x-2)$ \qquad
b. $(3 x-1)(5 x+4)$ \qquad
9. How is the expanded form of $(x+a)(x-b)$ like the expanded form of $(x+a)(x+b)$? How is it different?
\qquad
\qquad
\qquad
\qquad

Investigation (5) Develop \& Understand: A

10. Would you rewrite $(3 x+5)(3+2 x)$ before multiplying? Why?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
binomials: \qquad
distributive property: \qquad
\qquad
\qquad
showing a product of two binomials: \qquad

Special Products

In Lesson 5.3, I expect to learn:

I found this on page

\qquad .

Explore

What is true about the constant term in each of the simplifed expressions?

Investigation (1) Develop \& Understand: A

1. Why do you think $m^{2}+18 m+81$ is called a perfect square trinomial?
\qquad
\qquad
\qquad

I found this on page \qquad .
2. Complete the table to show how to find each product.

	Simplified Expanded Form	Simplified Expanded Form	
$(x+2)^{2}$	$x^{2}+\ldots+\ldots$	$(x-2)^{2}$	$x^{2}-\ldots+\ldots$
$(x+3)^{2}$		$(x-3)^{2}$	
$(a+b)^{2}$		$(a-b)^{2}$	

3. Describe the patterns shown in the tables above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. How will you remember that $(a+b)^{2}$ is not equal to $a^{2}+b^{2}$?
\qquad
\qquad
\qquad

Investigation (2)

Develop \& Understand: A

5. Why do you think $x^{2}-100$ is called a difference of squares?
\qquad
\qquad
\qquad
6. How can you tell if the product of two binomials will be a difference of squares?
7. Complete the tables.

| | Simplified
 Expanded Form | Simplified
 Expanded Form
 $(a+b)^{2}$
 $(a-b)^{2}$
 $(5 y+2)^{2}$
 $(3 k-4)^{2}$
 $(a-b)(a+b)$
 $(v+4)(v-4)$
 $(3 r-8)(3 r+8)$ |
| :---: | :---: | :---: | :---: |

Develop \& Understand: B

I found this on page \qquad _.
8. Tell how to use the pattern for $(a+b)(a-b)$ to find 32 times 28 .
\qquad
\qquad
\qquad
\qquad
9. Explain why the diagrams below show that $(a+b)(a-b)=$ $a^{2}-b^{2}$.

\qquad
\qquad
\qquad
\qquad
\qquad

What Did You Learn?

	$(a+b)^{2}$	$(a-b)^{2}$	$(a+b)(a-b)$	$(a+b)^{2}$ and $a^{2}+b^{2}$	$(a-b)^{2}$ and $a^{2}-b^{2}$
What I need to remember					

Transformational Geometry

Real-Life Math

Symmetry is used in art and in architecture. Repeating patterns and symmetric designs may exist in your own home, such as in the tile work on a shower wall.

Think About It

Imagine drawing a vertical line down the center of the picture of the Taj Mahal. What would be true about the left and right sides of the picture?

Although barely shown in this photo, there is a long pool of water in front of the Taj Mahal. Suppose a picture is taken from the far end of the pool. Can you draw a horizontal line across the picture that has the same effect as a vertical line down the center of the picture?

Connections to the Past (Chapter 3)

You estimated percents in Chapter 3. Choose two parts of the Taj Mahal that are the same shape but different size. Estimate the percent increase or decrease between the size of the first part and the size of the second part.

Vocabulary

Complete the graphic organizer so that each box contains two of the words or phrases below.

dilation	enlargement or reduction	flip	reflection
rotation	slide	translation	turn

Family Letter

What types of transformations did you use in your designs? Which type do you think made the most interesting design? Why?
\qquad
\qquad
\qquad
\qquad

If you found places or objects that showed symmetry, list them below. Tell how you know they have symmetry.

Place or Object	How I know it has symmetry.

In Lesson 6.1, I expect to learn:
\qquad .

Vocabulary A \qquad is a way to take a figure and create a new figure that is similar or \qquad to the original.

Vocabulary

\qquad is a form of balance in
figures and objects.

Explore

What would have happened if you did not fold your paper exactly in half?
\qquad
\qquad

1. Vocabulary Reflection symmetry is also called

I found this on page

\qquad —.
2. How can you tell if a line is a line of symmetry?
\qquad
\qquad
3. Look at the " Z." Why is the line not a line of symmetry?
4. Look at the cartoon on page 261. Can you think of a way to create a figure that has a line of symmetry?
\qquad
\qquad

Develop \& Understand: A
5. Complete the chart.

Type of Triangle	Number of Lines of Symmetry	Example
Scalene (no sides have the same length)		
Isosceles (2 sides have the same length)		
Equilateral (3 sides have the same length)		

6. Vocabulary The result of any transformation is called an

Investigation (2)

Develop \& Understand: B

7. Label each part of the reflection, and give the coordinates of I found this on page \qquad . each point.

8. What do you know about the lengths of $\overline{B C}$ and the length of its image $\overline{B^{\prime} C^{\prime} \text { ? }}$ \qquad What do you know about the distance of each point and its reflection point from the line of reflection? \qquad

Investigation
 3

9. What is a perpendicular bisector of a segment?
\qquad _.
10. Describe how to reflect a point over a line using the perpendicular bisector method.

Step 1. \qquad
\qquad
Step 2. \qquad
\qquad
\qquad
\qquad
11. Suppose you want to reflect $\triangle A B C$ over line m.
a. Which points would you reflect? \qquad
b. Show the reflection below.

What Did You Learn?

I need to remember the following about:
line of symmetry: \qquad
\qquad
perpendicular bisector: \qquad
\qquad
\qquad
reflecting a line in a plane: \qquad
\qquad

Rotation

In Lesson 6.2, I expect to learn:

Investigation (1) Develop \& Understand: B

1. How can you determine if a figure has rotation symmetry?

I found this on page \qquad .
2. Suppose a figure has an angle of rotation of 72°. What do you know about the figure?
\qquad
\qquad
\qquad
3. The figure below has rotation symmetry. Find the angle of rotation. \qquad

Investigation
 2

4. How can you tell if a figure is to be rotated clockwise or counterclockwise?
\qquad
\qquad
I found this on page \qquad .
\qquad
\qquad —.

Develop \& Understand: A

5. In a \qquad , a figure is turned about a point. Sketch the following rotations.

90°	180°	270°	-90°
A	A	A	A
\bullet	\bullet	\bullet	\bullet

Investigation

Develop \& Understand: B

6. Complete the chart. In each case, rotate the triangle about point P.

Measure of angle APA'		180°	-90°
Angle of rotation			
		A	
Example	$A^{\prime}<$		

7. How does a rotation of 180° differ from a rotation of any other angle?

Develop \& Understand: C

8. You want to rotate a triangle with vertices $(-1,3),(1,1)$, and $(-2,-1)$ about the origin. Suppose you use 90° as the angle of rotation. What would be the new coordinates?
9. How can you use the 90° rotation rule $(x, y) \rightarrow(-y, x)$ to make a rule for a rotation of 180° ?
\qquad
\qquad
\qquad
\qquad
10. Using the rule that you described in Exercise 9, find the coordinates of the image vertices for the triangle with coordinates $(0,0),(3,4)$, and $(3,0)$ if it is rotated 180°.

What Did You Learn?

I need to remember the following about:
rotation symmetry: \qquad
\qquad
angle of rotation: \qquad

rotations: \qquad
the rule for a rotation of 90° in the coordinate plane: \qquad
EXAMPLE: \qquad

Translations, Dilations, and Combined Transformations

In Lesson 6.3, I expect to learn:

Investigation (1)

1. Vocabulary In a \qquad a figure is moved a specific distance in a specific direction.

I found this on page \qquad .
2. Vocabulary A \qquad is a line segment with an arrowhead that indicates distance and direction. Here is an example:

Develop \& Understand: A

3. How are translations like reflections and rotations? How are they different?
\qquad
\qquad

Develop \& Understand: C

4. Describe how each rule translates the point $(-2,4)$ on the coordinate plane.

Rule	How the point moves	Example
Add to x-coordinate		Rule: add 3 to x-coordinate $(-2,4) \rightarrow$ Subtract from the x-coordinate Add to y-coordinate Subtract from the y-coordinateRule: subtract 3 from the x-coordinate $(-2,4) \rightarrow$

5. Vocabulary A \qquad is a combination of

I found this on page \qquad .

Inquiry

Investigation

a reflection over a line and a translation by a vector parallel to that line.
6. Give an example of a combination of transformations in which the image has the same orientation as the original figure. Draw the figure.
\qquad
\qquad
\qquad
\qquad
7. What is a tessellation?
)

I found this on page \qquad .

I found this on page
 \qquad .

8. The first step in making a tessellation from a square is to cut out a shape from one side of it. What are your options for placing the cutout shape back on the paper?

Option 1: \qquad
Option 2: \qquad
\qquad
\qquad
Option 3: \qquad

Investigation
 4

9. Vocabulary The ratio between corresponding side lengths of similar figures is called the \qquad -.

I found this on page \qquad .
10. Complete the table.

Scale Factor	The image is ...
Between 0 and 1	
1	
Greater than 1	

11. Triangle I, II, and III below show dilations. Fill in the table below.

Triangle	is a dilation of Triangle	with scale factor -
III	II	
I	II	
II	III	

What Did You Learn?

I need to remember the following about:
translations: \qquad
tessellations: \qquad
dilations: \qquad
\qquad
\qquad
applying the projection method and coordinate methods when dilating a figure:
\qquad
\qquad
Example of projection method:

CHAPTER

Inequalities and Linear Systems

Real-Life Math

This chapter begins by discussing how mathematical programming was developed after World War II and how it is used extensively in business situations to optimize variables such as profit, cost, and time.

Think About It

What are some of the variables that a company might consider when maximizing profits?

Contents in Brief

7.1 Equations3127.2 Inequalities 325
7.3 Solve Systems of Equations 342
Review \& Self-Assessment 367

Vocabulary

Complete each statement with a term from the list below.

elimination inequality

substitution system of equations

- When using the process of \qquad you replace an expression in one equation with an equivalent expression from another.
- When using the process of you remove a variable by adding opposites.
A(n) \qquad is a group of two or more equations.

A(n) \qquad contains one of the following
symbols: $<,>, \leq, \geq, \neq$.

Family Letter

Which method of solving equations did you share? Why do you choose this method to share?

What were some of the skills that you found that can be used outside of school?
\qquad
\qquad
\qquad
\qquad

Equations

In Lesson 7.1, I expect to learn:
\qquad
\qquad

Think \& Discuss

I found this on page \qquad . How is backtracking used to solve an equation?

Investigation (1) Example

1. When creating a flowchart for backtracking, how do you know
\qquad what to use as the input and what to use as the output?

Develop \& Understand: A

2. What kind of equation would be difficult to solve by backtracking? Give an example.

Develop \& Understand: B

3. When solving an equation by doing the same thing to both sides, how do you determine which operation to perform on each side? Give an example.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Develop \& Understand: C
4. What are some of the limitations of the backtracking method? How does simplifying the equation help?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: D

5. What is a common error when you set up and solve an equation given in words?

Investigation (2)

Develop \& Understand: A and B

6. How do you know when a relationship between variables is

I found this on

 linear? How can this be used to demonstrate that the relationship between Fahrenheit and Celsius degrees is linear?7. Describe how to rearrange the equation $a=\frac{1}{3} b+5$ into an equation that will give the value of b when a is known. What is this new equation?
8. How can you check that your new equation in Exercise 7 is correct? Show an example.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad .

Develop \& Understand: E and F

9. Complete the chart by writing the equation in different ways.

What Did You Learn?

I need to remember the following about:
backtracking: \qquad
\qquad
\qquad
EXAMPLE: An equation that can be solved by backtracking is \qquad
\qquad
doing the same thing to both sides: \qquad
\qquad
\qquad
EXAMPLE: An equation that can be solved by doing the same thing to both sides is \qquad
how doing the same thing to both sides is similar to backtracking: \qquad
\qquad
\qquad

Inequalities

In Lesson 7.2, I expect to learn:
\qquad .

Vocabulary An \qquad is a mathematical statement that uses $<,>, \leq$, or \geq to compare quantities. Give two possible values for each inequality.

Inequality Symbol	Example	Possible Values
$<$	$3 x<9$	
$>$	$4 y>24$	
\leq	$2 t-9 \leq 21$	
\geq	$\|P\| \geq 6$	

Investigation

 (1)Develop \& Understand: A

1. Consider only whole number values for x. Write three other compound inequalities that represent the same set of values. In the I found this on page \qquad -.

Develop \& Understand: B

2. To describe Randall's time in Exercise 14 on page 327, why is \leq used and not < ?

Develop \& Understand: A and B
3. How is solving an inequality like solving an equation? How is it different? Give an example to show how they are alike.
\qquad -. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

I found this on page \qquad .
4. Give an example to explain why you must reverse the direction of the inequality sign when multiplying or dividing both sides of an inequality by a negative number.
\qquad
\qquad

Investigation (3) Develop \& Understand: A

5. Complete the table about compound inequalities.

	What I know about solutions	Signs used in absolute-value inequalities	Example of graph
Uses the word "and"			
Uses the word "or"			

Develop \& Understand: B and C

I found this on
6. Describe the graph of $|m| \leq 5$.
\qquad
\qquad
7. Describe the graph of $|n| \geq 2$.

Investigation(4) Example

8. Complete the table about graphing inequalities on the I found this on page \qquad coordinate plane.

Use a dashed line when ...	Use a solid line when ...
Shade above the line when ...	Shade below the line when ...

Develop \& Understand: B

9. Why is it important to convert to slope-intercept form before graphing an equation or inequality?

What Did You Learn?

I need to remember the following about:
solving inequalities: \qquad
combined inequalities with and: \qquad
\qquad
combined inequalities with or: \qquad
\qquad
identifying solutions to inequalities that are graphed on a number line:

graphing inequalities in the coordinate plane: \qquad
\qquad

Solve Systems of Equations

In Lesson 7.3, I expect to learn:

Explore

In both graphs, there was one point that satisfied both solutions. Could there be a situation where there is no such point? Explain.

Investigation (1)

1. Vocabulary A \qquad is a group of two or more equations.
I found this on page \qquad .

Develop \& Understand: A and B

2. Complete the table about solving a system of equations by graphing.

Number of Solutions	Description of Graph of LInes
0	
1	
infinite	

3. For a system of equations, what must be true about the coordinates of the point(s) where the two lines intersect?

Investigation

4. In business, what is meant by a break-even point?

I found this on page \qquad .

> 5. How can you identify a break-even point from a graph?
\qquad
\qquad

Investigation 3

6. "Substitute" means to replace. How does this meaning relate to the process of solving a system of equations by substitution?

I found this on page

\qquad -.
\qquad
\qquad
7. How does substituting an expression for one of the variables make it possible to solve the system?
\qquad
\qquad
8. Give an example of a system of equations that can be solved by substitution. Then give the solution.

Investigation (4) Example

I found this on page

\qquad -.
9. Tell how to eliminate each variable in the system.

Eliminate x	$2 x-y=3$	Eliminate y
	$4 x+3 y=31$	

10. When do you think it is easier to use elimination rather than substitution when solving a system of equations?
\qquad
\qquad
11. Show the steps to solving the system by elimination. Start by eliminating x.

Think \& Discuss

 .12. In Exercise 11, y could have been chosen as the variable to eliminate. What would you have done to eliminate y ?
\qquad

Inquiry

Investigation (5)

13. What does the command $\$ B \$ 2$ mean when written in a spreadsheet?

I found this on page \qquad . \qquad
\qquad
14. Why do the cells in row 3 of the spreadsheet start with "="?
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
solving a system of equations by graphing: \qquad
\qquad
solving a system of equations by substitution: \qquad
\qquad
solving a system of equations by elimination: \qquad
\qquad
the number of solutions of pairs of equations from the ones shown below and how I check:
i. $y=2 x+4$
ii. $y+2 x=-4$
iii. $x=4-\frac{y}{2}$
iv. $2 y-4 x=10$
\qquad
\qquad
\qquad

CHAPTER

Real-Life Math

This chapter begins by discussing how Galileo Galilei performed the classic experiment of dropping two different objects from the same height to see if they would hit the ground at the same time.

Think About It

How far will a cannonball have fallen 1 second after it is dropped? How did you determine that distance?

Find the distances it will have fallen after 2 seconds and 3 seconds.

What do you notice about the rate at which an object falls?

Contents in Brief

8.1 Use Graphs and Tables to Solve
Equations 374
8.2 Quadratic Relationships 390
8.3 Families of Quadratics 403
8.4 Inverse Variation 428
8.5 Conjectures 447

Review \& Self-Assessment 459
 \title{
Quadratic and
 \title{
Quadratic and Inverse Relationships
}
\qquad
\qquad

Connections to the Past (Chapter 1)

You studied linear relationships in Chapter 1. Explain why the equation $d=16 t^{2}$ does not describe a linear relationship.

(Chapter 7)

You solved equations by backtracking in Chapter 7. To find how long it took an object to fall 400 feet, you would solve $400=16 t^{2}$. If you were to solve this equation for t by backtracking, what would be the steps from the input to the output?

Vocabulary

Circle true or false for each statement.
A conjecture is a proven fact. true false
A parabola is a symmetric U-shaped curved. true false

- The equation $y=3 x$ is a cubic equation. true false
- The equation $y=x^{3}$ is a quadratic equation. true false

A vertex is the highest or lowest point on a parabola.
true false

- If two variables are inversely proportional, then as the values of one variable increase, the values of the other variable decrease.
true false

Family Letter

List sports-related activities that produce projectile motion paths.
\qquad
\qquad
\qquad

List the real-world situations that produce inverse relationships.
\qquad
\qquad
\qquad

In Lesson 8.1, I expect to learn:
\qquad .

Vocabulary A \qquad is one in which one of the variables is squared.

Investigation (1)

I found this on page \qquad -.

Develop \& Understand: B

1. Why does it make sense to only look at the part of the graph that is in Quadrant I?
2. A ball is bounced off the ground. It goes straight up and comes back down. Sketch the general shape of the graph that describes the height of the ball x seconds after the bounce.

3. What does the point $(0,0)$ represent?
4. How can you use the graph to find how long it takes for the ball to come down after it reaches its maximum height?
\qquad
\qquad
\qquad
\qquad
5. Complete the table for an equation in the form $b=v t-16 t^{2}$.

For a given value of $\boldsymbol{h} \ldots$	
t has values...	when...
2	
1	
0	

Investigation

I found this on page \qquad .

Think \& Discuss

6. Explain how the equation $x(x+1)=4$ can be used to find the length and width of the tapestry.
\qquad
\qquad

Example

I found this on page .
7. What does the Table Setup feature on your calculator allow you to do?
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
the formula $b=v t-16 t^{2}$: \qquad
\qquad
a sample graph of $b=v t-16 t^{2}$:
\qquad
\qquad
\qquad

using a table to solve an equation: \qquad
\qquad
\qquad

Quadratic Relationships

In Lesson 8.2, I expect to learn:

Explore

Desribe the general shape of the human graph.

Investigation

I found this on page \qquad -.

1. Vocabulary The graph of a quadratic equation is called
a \qquad _.
2. Tell why the graph to the right is not a parabola.

\qquad
3. Complete the graphic organizer.

Develop \& Understand: A
4. Given that the equation $y=a x^{2}$ describes a quadratic equation, do you think a can be 0 ? Tell why or why not.
\qquad
\qquad

I found this on page \qquad 5. In the graph of $t=s^{2}+1$, how can you generate both positive and negative ordered pairs without substituting negative numbers for s ?
\qquad
\qquad
\qquad
\qquad
6. Compare and contrast the equations $y=x+1$ and $y=x^{2}+1$.
\qquad
\qquad
\qquad
\qquad
\qquad

Develop \& Understand: B

7. What is the number of diagonals in a polygon with 6 sides? Draw the polygon and diagonals to check your work.
\qquad
8. What is the number of diagonals in a 12 -gon? Explain how you found your answer.
9. The equation for the number of diagonals in a polygon is $d=\frac{n(n-3)}{2}$, where d represents the number of diagonals and $n=$ the number of sides of the polygon. Explain why you think the equation shows a quadratic relationship.
10. What kind of graph will the relationship between the number of diagonals and the number of sides of a polygon have?

What Did You Learn?

I need to remember the following about: parabolas:
the graph of $y=a x^{2}$ if a is positive:

quadratic equations:

LESSON
 Families of Quadratics

 8.3In Lesson 8.3, I expect to learn:

I found this on page \qquad . Vocabulary Give the general form of each.

quadratic expression	quadratic equation

For each, a, b, and c are \qquad and
\qquad is not 0 .

Investigation 1

1. Sketch a general graph to fit each equation. Assume $n>1$. Use the same scale when sketching all five graphs.
I found this on page \qquad .

$$
y=x^{2}+n
$$

$y=x^{2}$

$$
y=x^{2}-n
$$

Develop \& Understand: A

2. How can you tell from looking at a quadratic equation if its graph will open upward or downward?
3. Vocabulary The highest or lowest point of a parabola is called its \qquad .
4. How can you tell from looking at a quadratic equation if the vertex of the graph will be on the y-axis?

Investigation (3)

5. A graph shows the trajectory of a ball thrown across a field with time on the x-axis and height on the y-axis. What information can you obtain from the vertex of the parabola?
\qquad
\qquad
\qquad

Investigation

Develop \& Understand: A

6. Why is the equation $y=b(b+1)$ a quadratic equation even though neither occurrence of b has an exponent of 2 ?
\qquad -.

7. Vocabulary A

\qquad can be written in the form $y=a x^{3}+b x^{2}+c x+d$, where a is not \qquad .

Develop \& Understand: B

8. How is the graph of a cubic equation similar to the graph of a quadratic equation? How is it different?
9. Sketch a general graph to fit each equation. Assume $n>1$. Use the same scale when sketching all five graphs.

Inquiry

Investigation (5)

10. When using graphs of quadratic equations to make designs, how do you reflect over the x-axis? Give an example.
\qquad
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
graphs of quadratic equations: \qquad
\qquad
\qquad
EXAMPLE:

graphs of cubic equations: \qquad
\qquad
\qquad
EXAMPLE:

Inverse Variation

In Lesson 8.4, I expect to learn:
\qquad
\qquad

Exp/ore

I found this on page
Why does the graph appear only in Quadrant I?

Investigation (1

Develop \& Understand: A

1. Write two other forms of the equation $x y=a$. Then sketch the graph of the general equation. Assume $a \geq 1$.
I found this on page \qquad .

2. What happens to the y-values as the x-values increase?

I found this on page \qquad _.

Develop \& Understand: C

3. What steps would you use to graph the equation $x y=8$?
\qquad
\qquad
\qquad
4. Vocabulary The graph of the equation $x y=a$ where a is a nonzero constant is a curve called a \qquad .
5. Sketch the graph of $x y=a$.

I found this on page

I found this on page \qquad .
6. Vocabulary When two variables have a constant nonzero product, they are said to be \qquad and the relationship is called an \qquad

Develop \& Understand: A

7. How can you find the reciprocal of a decimal?

Develop \& Understand: B

8. What happens if you double x in the relationship $x y=6$?

I found this on page

\qquad .
9. Vocabulary Inverse variation is also called a \qquad
\qquad An example is \qquad _.
10. Complete the table.

How to Recognize an Inverse Variation		
From a Graph	From a Table	From an Equation

Investigation 3

11. How does the graph of $y=\frac{1}{x}$ change when a constant is added to x ? Give an example.

I found this on page \qquad —.
12. How does the graph of $y=\frac{1}{x}$ change when a constant is added to the fraction $\frac{1}{x}$? Give an example.
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
inverse variation: \qquad
\qquad
\qquad
characteristics of hyperbolas: \qquad
\qquad
\qquad
\qquad
a sample graph of a hyperbola:

Conjectures

In Lesson 8.5, I expect to learn:
\qquad .

Vocabulary

A \qquad is an educated guess or a generalization that has not been proven.

Explore

Do you think you would have proven the conjecture if you found it to be true for 100 more examples? Explain.
\qquad

Investigation

Develop \& Understand: A

1. What is meant by first differences? By second differences?

I found this on page \qquad . \qquad
\qquad
\qquad
2. Complete the graphic organizer.

3. Vocabulary What is a counterexample?

I found this on page \qquad
3. Wocabulary What is a counterexamp?
4. Fill in the blanks to show what numbers Dante might use if he was conjecturing that the sum of two even numbers was always even.

This cartoon is found on page 452.

5. Give a counterexample for the conjecture: The square of a nonnegative number is always positive. Tell why it is a counterexample.
\qquad
\qquad
6. Give an example of a conjecture that you know is true.

What Did You Learn?

I need to remember the following about:
conjecture: \qquad
\qquad
first and second differences: \qquad

COUNTEREXAMPLE:

Solve Quadratic Equations

Real-Life Math

This chapter begins by discussing how computer programmers use

Contents in Brief

9.1 Backtracking	466
9.2 Factoring	476
9.3 Completing the Square	492
9.4 The Quadratic Formula	502

Review \& Self-Assessment $\quad 519$ expressions and equations in the programs they write. These may include equations for animation, such as quadratic equations for paths, or trajectories of balls in motion.

Think About It

What is the general shape of the basketball's trajectory?

How would the shape change if the person stood further away from the basket?

Suppose you were to graph the path of the basketball's trajectory, where x is the time in seconds since the person released the ball and y is the ball's height above the ground. Would the point $(0,0)$ be on the graph? Explain.

Connections to the Past (Chapter 8)

You studied the graphs of quadratic equations in Chapter 8. What can you say about the values of a, b, and c for the quadratic equation in the form $y=a x^{2}+b x+c$ that would model the path of the basketball's trajectory?
a.
b. \qquad
c. \qquad
.

Vocabulary

In a multiplication problem, the numbers that are multiplied together are called factors. Therefore, writing factors of a number is called factoring.
Circle the equations that show factoring.

$$
\begin{array}{rlrl}
5 & =2+3 & 9 & =3 \cdot 3 \\
10 & =1 \cdot 2 \cdot 5 & 8 & =16 \div 2 \\
20 x & =4 \cdot 5 \cdot x & 2 x & =x+x
\end{array}
$$

In everyday life, a factor is something that contributes to, or is a part of, something else. For example, high speeds and wet roads can be factors in the cause of a car accident. Factors to consider when taking a new job include the salary, benefits, and the length of the commute.

Family Letter

How did you search for real-life situations that can be modeled by quadratic equations?

List some of the real-life situations that you found.

Which method of solving quadratic equations did you enjoy sharing the most? Why?

Backtracking

In Lesson 9.1, I expect to learn:

Investigation
 1
 Develop \& Understand: A

1. Complete the table.

Operation in top of flowchart	Symbol used in flowchart	How to undo operation
Take the square root of a number		
Take the opposite of a number		

I found this on page \qquad .
2. For the two equations below, which flowchart would show "take the reciprocal" when going from the input to the output? Explain.

$$
\frac{2}{x}=6 \quad \frac{x}{2}=6
$$

\qquad
\qquad
\qquad

I found this on page \qquad .
3. Complete the table to describe two different methods to solve the equation $\frac{15-m}{5}=2$. Then give the value of m.

	Method 1	Method 2
Steps for input to output		
Steps to solve		
The value of m is		

4. What operation undoes the "change sign" operation?
5. When can an equation have two solutions? Why?
\qquad
\qquad
\qquad
6. For what value of a would $x^{2}=a$ have only one solution? Why?

Develop \& Understand: A

I found this on page ___.
7. In Exercise 8 Part e about filmmaking, there are two solutions for the equation $120=\frac{360,000}{d^{2}}$. Why is it only necessary to give the positive solution?
\qquad
\qquad
\qquad
8. Think of another situation where an equation with two solutions may apply but it is only necessary to give the positive solution.
\qquad
\qquad

Develop \& Understand: B

9. How will checking an approximate solution compare to checking an exact solution?
\qquad
10. What kind of equations may always have an approximate solution as well as an exact solution? Give two different examples.
\qquad
\qquad
11. Use a flowchart and backtracking to solve this equation. Explain your steps.

$$
(2 x-3)^{2}+1=10
$$

What Did You Learn?

I need to remember the following about using backtracking

with a variable in denominator:	when a variable has a coefficient of $-1:$	when squaring a number:

Factoring

In Lesson 9.2, I expect to learn:
\qquad . Vocabulary The process of \qquad means to write a number or algebraic expression as the product of factors.

Think \& Discuss

What kinds of numbers will have a factor pair that is made up of the same two numbers? Give an example.

Investigation

Develop \& Understand: A

1. When making a rectangle model for $x^{2}+5 x+6$, you need to think about factor pairs of 6 . Can you choose 1 and 6? Explain.
\qquad -.

Investigation(2)

Think \&z Discuss

3. Suppose that $x y=0$. Write three possibilities for the values of x and y.
\qquad .

Develop \& Understand: B

4. In the chart, describe the solutions each type of equation has. Then write equations with a quadratic expression on one side of the equal sign and 0 on the other.

Type of expression	Description of solutions	Example
difference of squares		
perfect square trinomial		

5. How can you tell if a quadratic expression is in a special form? Use examples in your explanation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Investigation (3) Develop \& Understand: A

6. When factoring a quadratic expression, how do you determine

I found this on page \qquad .

Develop \& Understand: A

8. What is the goal when rearranging quadratic equations so that you can solve them by factoring? Why?
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
using a rectangle model to find the binomial factors of a trinomial: \qquad

solving a quadratic equation by factoring: \qquad
\qquad
\qquad
how many solutions there will be to a problem like $y(y-1)=0$ and why: \qquad
\qquad
finding the values of m and n when solving by factoring: \qquad
\qquad

LESSON

 Completing the Square

 Completing the Square}
9.3

In Lesson 9.3, I expect to learn:

Investigation (1)

Example

1. What do you have to remember to do when taking the square

I found this on page \qquad root of both sides of an equation?
\qquad
\qquad
2. What does the symbol \pm indicate?

Develop \& Understand: A

3. If you were to solve all of Exercises 1 through 9 on page 493 by doing the same thing to both sides, would the first step always be to take the square root of both sides? Why or why not?
\qquad
\qquad
\qquad
\qquad
\qquad Develop \& Understand: B
4. Explain why a perfect square trinomial is a perfect square. Give an example.
\qquad
\qquad

Develop \& Understand: C

5. In the perfect square trinomial, $x^{2}+b x+c$, how are b and c related?

Investigation (2) Develop \& Understand: A

6. Complete the table about rewriting expressions as a perfect square trinomial plus or minus a constant.

	Words	Example
A constant is added to the perfect square when...		$x^{2}+8 x+17=0$ $(x+4)^{2}+1=0$
A constant is subtracted from the perfect square when...		

This cartoon is found on page 496. 7. Fill in the blanks and show the work described.

What Did You Learn?

I need to remember the following about:
taking the square root of both sides of an equation: \qquad
\qquad
\qquad
\qquad
solving by completing the square when the coefficient of x^{2} is not 1 : \qquad

LESSON
 The Quadratic Formula

In Lesson 9.4, I expect to learn:

I found this on page \qquad . The Quadratic Formula states that the solutions of
\qquad

Investigation (1) Develop \& Understand: A

1. Think about possible values of a, b, and c for an equation in $a x^{2}+b x+c=0$ form. Which values result in quadratic equations?

Is it possible to have...	If no, tell why not. If yes, give an example.
$a=0 ?$	
$b=0 ?$	
$c=0 ?$	

2. What are some advantages and disadvantages of using the Quadratic Formula to solve a quadratic equation?

Advantages	Disadvantages

Investigation (2) Develop \& Understand: A

3. In solving a problem that involves finding height in feet after I found this on page \qquad . dropping an object or throwing a ball straight up, what will you use for the value of a in the Quadratic Formula? Why?
\qquad -.
4. When an object is thrown straight up, an equation that can be used to approximate its height b in t seconds is \qquad _. Describe what you know about this equation.

Investigation 3
 Develop \& Understand: A

5. Complete the table.

I found this on

pages \qquad .

A quadratic equation has	when the value of $\boldsymbol{b}^{2}-4 \boldsymbol{a c}$ is	because ...	Example
solution(s),			$2 x^{2}+4 x-8=0$
			$x^{2}+4 x+4=0$
			$x^{2}+x+1=0$

6. Using your example of a quadratic equation with two solutions, show how you know there are two solutions.
\qquad 7. For the graph to the right, if you graphed $y=12$ on the same coordinate plane, what would it show?

Bouncy Ball Bounce Height

8. What is a golden rectangle? What is special about the ratio of its side lengths?
\qquad
\qquad
\qquad
9. The side lengths of a golden rectangle are shown below. Write an equation that sets the ratios equal to each other to get the golden ratio.

What Did You Learn?

I need to remember the following about:
the Quadratic Formula: \qquad
\qquad
\qquad
using part of the Quadratic Formula to determine the number of solutions:
\qquad

A quadratic equation has \qquad solution(s) when the value of
$b^{2}-4 a c$ is \qquad because \qquad

A quadratic equation has \qquad solution(s) when the value of
$b^{2}-4 a c$ is \qquad because \qquad
\qquad

A quadratic equation has \qquad solution(s) when the value of
$b^{2}-4 a c$ is \qquad because \qquad

Functions and Their Graphs

Real-Life Math

This chapter begins by discussing how mapmakers, or cartographers, use projections to create two-dimensional images of our three-dimensional world.

Think About It
 Think About

All flat maps of the world have some sort of distortion. What three-dimensional model represents the world without distortion? What geometric figure does it best represent?

How does a sphere differ from prisms and pyramids?
Contents in Brief
10.1 Functions 524
10.2 Graphs of Functions 550
Review \& Self-Assessment 572

A net is a pattern that can be folded to make a solid. More than one net can form a cube. Draw two nets for the same cube.

Connections to the Past (Chapters 1, 4, and 8)

You will study graphs in this chapter. You have studied graphs of several types of relationships so far. Describe the general shape of the graph of each relationship.

Linear	
Exponential	
Inverse	
Quadratic	

Vocabulary

Complete the graphic organizer by writing each of the following terms in the correct place.

The word domain can be used to indicate property owned by or ruled by a certain individual or group. It can be a region of land or a single house. The word domain can also be used to indicate a branch of the Internet.

The word range can be used to indicate certain limits. A patient with an injured arm may have limited range of motion. A radio will only pick up a station if it is within range of its signals.

Family Letter

Does tipping at a restaurant always represent a function? Explain.
\qquad
\qquad
\qquad

List some of the situations you and your family thought of that represent functions.
\qquad
\qquad
\qquad

Functions

In Lesson 10.1, I expect to learn:

Vocabulary A \qquad is a relationship between an input variable and an output variable in which there is only one
\qquad for each \qquad .

Write Function or Not a Function in the second column of the table. Then give input/ouput examples of the relationship described.

Relationship	Function or Not a Function?	Example	
		Input	Output
Squaring a number			
Taking the square			

Investigation (1)

Develop \& Understand: A

1. How are Function A and Function B alike? How are they different?

I found this on page \qquad . \qquad
\qquad
\qquad
\qquad

Develop \& Understand: B

I found this on page . 2. What does the "prime" function machine do? Explain.

$$
\text { 3. Can you input } 0 \text { into the "prime" function machine? Explain. }
$$

\qquad .

Develop \& Understand: C

4. Is the " 3 " machine a linear function machine? Explain.
\qquad

Investigation 2

5. Complete the cartoon.

This cartoon is found on page 529.

Develop \& Understand: B

6. How you tell from the graph of a relationship if the relationship is a function?
\qquad
\qquad
\qquad

Develop \& Understand: C

I found this on page \qquad . 7. In the skydiver function $f(t)=4.9 t^{2}$, what is 4.9 ?
\qquad
\qquad
8. Vocabulary The set of allowable inputs to a function is called the \qquad of that function.

Develop \& Understand: D

I found this on page .__

Investigation (3)

I found this on page \qquad -.
9. Give an example of a function whose domain is all real numbers except 3. Explain your choice.
\qquad
\qquad

Develop \& Understand: A

10. If the graph of a function is a parabola, what is the name of the point at which the maximum or minimum value occurs?
11. What must be true about a quadratic equation if its graph does not have a maximum value?
\qquad
12. Draw a function that has more than one maximum input value.

Develop \& Understand: A

13. For a fixed perimeter, describe the shape of the rectangle that gives the greatest area and the shape of the rectangle that gives the least area.
14. Why is it not necessary for your box to have a lid?
\qquad
15. Why is the domain limited for the graph of the function that gives the volume of the box?
\qquad
\qquad
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
determining if a relationship is a function: \qquad
\qquad
how I know a graph is not the graph of function, by example: \qquad

the domain of a function: \qquad
\qquad

Graphs of Functions

In Lesson 10.2, I expect to learn:

Investigation 1

Develop \& Understand: A, B, and C

1. Complete the graphic organizer by telling how the graph of the function will change.

Investigation (2) Think \& Discuss

2. Describe how you found the values of x for each $f(x)$.
\qquad -.
\qquad 5. For the general quadratic function, $f(x)=(x-b)^{2}+k$,
a. What is the line of symmetry? \qquad
b. What is the vertex? \qquad
3. If you know the vertex, can you write a quadratic function with that vertex? Is that the only function you can write? Explain. Use the vertex $(2,3)$ as an example.
\qquad
\qquad

Investigation
 3

7. Vocabulary The x values at which a graph crosses the x-axis are called the \qquad _.
8. How are the x-intercepts of the graph of a function $f(x)$ related to the solutions of $f(x)=0$?

Example

I found this on page
9. Explain how to find the vertex of a function if you know the x-intercepts of the function.
\qquad
\qquad
\qquad

Investigation (4)

10. Describe two methods of estimating solutions of an equation by graphing.

Method 1	Method 2

11. Which method that you described in Exercise 10 would you use to solve the equation $x^{3}=3 x-0.4$? Why?
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
translating functions: \qquad
the range of a function:
x-intercepts and solutions of equations: \qquad
interpreting a graph to find the solution to an equation like $x^{3}=5 x+10$:
\qquad

Data and Probability

Real-Life Math

This chapter begins by discussing anagrams. Anagrams are words that are formed from other words. They have the same exact letters, but the letters appear in a different order.
11.1 Counting Strategies 578
11.2 Modeling with Data 602

Review \& Self-Assessment 622

Think About It

The letters in the word stop have 24 different combinations, some of which are anagrams. List some of the anagrams you found for the word stop.

Suppose you had to list all 24 combinations of the word stop. Describe an organized way of doing this task.

Connections to the Past (Chapter 8)

You studied first and second differences in Chapter 8. Complete the table and use it to tell if the relationship between the number of letters in a word and the possible number of combinations is linear, quadratic, or neither. Explain. (Note: Assume all of the letters in each word are different.)

Number of Letters in Word	2	3	4	5
Number of Combinations			24	120

\qquad
\qquad
\qquad
\qquad

Vocabulary

Answer each question.
Suppose you have a log. How many cuts would you need to make to divide the log into four pieces? Why?

The word quartile comes from the Latin word, quartus, meaning fourth. Quartiles divide sets of numbers into four groups. How many quartiles will a data set have?

Use three vertical lines to divide the data set below into four equal groups.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

The set of all possible outcomes for a particular situation is the
\qquad .

Family Letter

Does your state have lottery games? If yes, describe one of the games, the number of possible combinations, and/or the probability of winning.

If you played a game that involved dice, spinners, or probability, describe one of the probabilities that you determined while playing.

Counting Strategies

In Lesson 11.1, I expect to learn:

I found this on page \qquad .

Probability is a number between \qquad and —. To find a probability, you first have to find the number of possible \qquad .
Inquiry

Investigation

I found this on page \qquad .

1. When listing pizza topping possibilities, would you count mushrooms and artichokes and artichokes and mushrooms separately? Why or why not?
2. There are \qquad possibilities that have
\qquad toppings.

When there are n toppings, there are...
\qquad one-topping possibilities
\qquad n-topping possibilities
\qquad total possibilities

Investigation

3. Vocabulary For a particular situation, the set of all possible outcomes is the \qquad .

I found this on page \qquad .

Develop \& Understand: B

4. Vocabulary What does it mean to make a selection randomly?

I found this on page .
5.

Equally likely outcomes are	
Example	Nonexample

6. How does making a tree diagram compare to making a table to list combinations?
\qquad
\qquad
\qquad
7. How can you find how many entries are in a list without counting them all?

Develop \& Understand: B

\qquad 8. If p is the probability of an event happening, what does $1-p$ represent? Why?
9. If you use Ajay's method, explain how to find the number of ways to order 6 CDs.

10. Complete the table.

Strategies to Find Size of Sample Space		

Investigation (5)

I found this on pages
 \qquad —.

11. Name an outcome where the first spinner would have a greater probability than the second. Then name one where the first spinner would have the lesser probability.

First Spinner has Greater Probability	First Spinner has Lesser Probability

12. Suppose you turned the two spinners below and added the results. Describe an organized way to list the outcomes.
\qquad
\qquad
\qquad
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
sample space: \qquad
\qquad
EXAMPLE: \qquad
\qquad
\qquad
equally likely outcomes and probability: \qquad
\qquad
\qquad
example using the spinner below: \qquad
\qquad

Modeling with Data

In Lesson 11.2, I expect to learn:

Investigation (1)

I found this on page \qquad .

Develop \& Understand: A

1. If you knew you would be computing the medians of the scores for the two towns, how would you have changed your tables? Why? How else can ordering the data in the table be helpful?

Develop \& Understand: B

2. Discuss why it is important to look at more than one measure of center (mean, median, mode) when comparing two sets of data.

Investigation (2)

I found this on page \qquad .

Think \&z Discuss

3. Do the years increase by a constant amount? If so, by how much? Do the prices seem to increase by about the same amount? If so, by about how much?
4. In what ways can a graph of data be more helpful than a table of the same data?
\qquad
\qquad
\qquad

Investigation

I found this on page
5. Vocabulary In a box-and-whisker plot, the points that divide the data into four sections are called \qquad .
6. If you are given a set of data to make a box-and-whisker plot, what would be the first thing you would do with the data and why?
\qquad
\qquad
7. Complete the table by telling how to find each of the five important points in a box-and-whisker plot.

Important Point	How to Find
Minimum	
First Quartile	
Second Quartile	
Third Quartile	
Maximum	

What Did You Learn?

I need to remember the following about:
organizing data in graphs: \qquad
\qquad
\qquad
the percent of data in the boxes and whiskers of a box-and-whisker plot:
\qquad
\qquad

EXAMPLE: Using the box-and-whisker plot below, draw arrows to the quartiles and to the maximum and minimum points.

Algebraic Fractions

Real-Life Math

This chapter begins by discussing what is known in mathematics as a work problem. You are told how long it takes two or more people to do a job alone and are asked how long it will take for them to complete the job if they work together.

Think About It

Tell how you know that the time it will take Lakeesha and James to set up the display together is less than 3 hours. Then tell how you know it is less than 2 hours.
\qquad
\qquad
\qquad
What do the fractions $\frac{b}{3}$ and $\frac{b}{2}$ mean if $h=1$?

Contents in Brief

12.1 Work with Algebraic Fractions 628
12.2 Add and Subtract Algebraic Fractions 639

[^0]
Vocabulary

Circle the fractions that are algebraic fractions.

$$
\begin{array}{cccc}
\frac{1}{x} & & \frac{3}{5} & \frac{3}{5 x} \\
& \frac{x+1}{x+3} & \frac{4+7}{9+12} \\
\frac{2 x}{4 x y} & & \frac{1}{2} & \frac{2}{2 y+x^{2}}
\end{array}
$$

In everyday use, word fraction means a small part of a whole. For instance, "the tax is just a fraction of the total cost." It can also mean just a small amount as in "add just a fraction more." The word comes from the Latin fractionem, meaning a breaking into pieces.

Family Letter

When you reviewed the process for simplifying fractions, how could you tell when a fraction is simplified? Give an example.
\qquad
\qquad
\qquad
\qquad

Give an example of the process for adding and subtracting fractions with unlike denominators.

Write a real-world situation that can be represented using algebraic fractions.
\qquad
\qquad
\qquad

Work with Algebraic Fractions

In Lesson 12.1, I expect to learn:

I found this on page __. Vocabulary Fractions that involve algebraic expressions are

Investigation
 (1)

\qquad

Develop \& Understand: A

1. For what value(s) of the variable is an algebraic fraction undefined?

I found this on page \qquad -.

I found this on page \qquad .
2. An equation where the left side is y and the right side is an algebraic fraction is entered into a graphing calculator. Complete the table below to describe how to use the calculator to find the x values that make the fraction undefined.

From the Table of Values	From the Graph of the Equation

Develop \& Understand: B

3. Name some situations for which values for an equation would make mathematical sense but would not make sense in the context of the situation.
4. Describe two methods of simplifying algebraic fractions. Give an example showing how to use each method.
\qquad

	Description	Example
Method 1		
Method 2		

5. Which of the two methods do you prefer and why?
\qquad
\qquad
\qquad
6. How can you check if you simplified an algebraic fraction correctly?
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
when an algebraic fraction is undefined: \qquad
\qquad
EXAMPLE: \qquad
when an algebraic fraction is simplified: \qquad

EXAMPLE: \qquad

Add and Subtract Algebraic Fractions

In Lesson 12.2, I expect to learn:

Investigation

Develop \& Understand: A

1. Simplify each of the following.
a. $\frac{12}{n}+\frac{26}{n}-\quad$ b. $\frac{13}{2 y}-\frac{4}{y}$ \qquad
2. How do you add and subtract algebraic fractions?

Example

I found this on page ___.
3. Describe three possible ways of writing algebraic fractions so that they have a common denominator. Comment on each method and give an example.

Method			
Comments			
Example			

Investigation
 (2

4. To add $\frac{1}{n}+\frac{1}{n-1}$, how can you rewrite 1 to find equivalent fractions with a common denominator?
I found this on page \qquad -.
5. When adding and subtracting two algebraic fractions, when do you need to multiply just one of the fractions by a form of one (such as $\frac{m}{m}$ or $\frac{x+2}{x+2}$)?
\qquad
\qquad
Develop \& Understand: C
6. Show the steps for simplifying $\frac{1}{n}+\frac{1}{n-1}$.

Inquiry

Investigation

I found this on page \qquad .
7. How does building an algebraic fraction from an expression that is not a fraction, such as 5 or $x^{2} y$, differ from building one from an expression that is already a fraction, such as $\frac{y}{(z-4)}$?
\qquad
\qquad
\qquad
\qquad
\qquad
8. What extra step must you include when solving equations with variables in the denominator of fractions? Why?

I found this on page

\qquad .

Example

9. Describe the process of "clearing" fractions from an equation. Then create an example showing how to use it.

Description of Process	Example

9. How do you solve an algebraic equation by graphing?
\qquad
\qquad
\qquad
\qquad
10. Why does solving an algebraic equation by graphing work?
\qquad
\qquad
\qquad
11. Is there another way to solve an algebraic equation by graphing? Explain.
\qquad
\qquad

What Did You Learn?

I need to remember the following about:
finding common denominators: \qquad
\qquad
\qquad
using patterns to add and subtract fractions: \qquad
\qquad
\qquad
solving an algebraic equation by graphing: \qquad
\qquad
\qquad
\qquad

Course 3 Contents

Chapter 1: Linear Relationships
Chapter 2: Lines and Angles
Chapter 3: Percents and Proportions
Chapter 4: Exponents and Exponential Variation
Chapter 5: Algebraic Expressions
Chapter 6: Transformational Geometry
Chapter 7: Inequalities and Linear Systems
Chapter 8: Quadratic and Inverse Relationships
Chapter 9: Solve Quadratic Equations
Chapter 10: Functions and Their Graphs
Chapter 11: Data and Probability
Chapter 12: Algebraic Fractions

[^0]: Review \& Self-Assessment

