Book 3

Graw Glencoe

The McGraw-Hill Companies

Ma
 Graw
 Glencoe

Copyright © 2010 The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, network storage or transmission, or broadcast for distance learning.

Send all inquiries to:
Glencoe/McGraw-Hill
8787 Orion Place
Columbus, OH 43240-4027
ISBN: 978-0-07-891508-6 (Student Edition)
MHID: 0-07-891508-2 (Student Edition)
ISBN: 978-0-07-891509-3 (Teacher Wraparound Edition)
MHID: 0-07-891509-0 (Teacher Wraparound Edition)
Printed in the United States of America.

Handhook at a Glance

Introduction XVi
PART ONE
HotWords 2
Glossary 4
Formulas 64
Symbols 66
Patterns 67
PART TWO
HotTopics 70
1 Numbers and Computation 72
2 Rational Numbers 92
3 Powers and Roots 144
4 Data, Statistics, and Probability 174
5 Logic 234
6 Algebra 250
7 Geometry 316
8 Measurement 372
9 Tools 394
PART THREE
HoiSolutions and Index 416

Handhook Contents

Introduction

Descriptions of features show you how to use this handbook

PART ONE

HotWords 2
Glossary 4
Definitions for boldfaced words and other key mathematical terms in the HotTopics section
Formulas 64Explanations of commonly used formulas
Symbols 66
Mathematical symbols with their meanings
Patterns 67A collection of common and significant patterns that are woventhrough mathematics
HotTopics 70
A reference to key topics spread over nine areas of mathematics
1 Numbers and Computation
What Do You Know? 72
(1•1) Order of Operations
Understanding the Order of Operations 74
Exercises 75
(102) Factors and Multiples
Factors 76
Divisibility Rules 78
Prime and Composite Numbers 79
Multiples and Least Common Multiples 81
Exercises 83
103 Integer Operations
Positive and Negative Integers 84
Opposites of Integers and Absolute Value 84
Comparing and Ordering Integers 85
Adding and Subtracting Integers 86
Multiplying and Dividing Integers 88
Exercises 89
What Have You Learned? 90
2 Rational Numbers
What Do You Know? 92
201) Fractions
Equivalent Fractions 94
Writing Fractions in Simplest Form 96
Writing Improper Fractions and Mixed Numbers 97
Exercises 99

2.2 Operations with Fractions

Adding and Subtracting Fractions with Like Denominators 100
Adding and Subtracting Fractions with Unlike Denominators 101
Adding and Subtracting Mixed Numbers 102
Multiplying Fractions 106
Dividing Fractions 108
Exercises 109
2.3 Operations with Decimals
Adding and Subtracting Decimals 110
Multiplying Decimals 111
Dividing Decimals 112
Exercises 115
2.4) Fractions and Decimals
Writing Fractions as Decimals 116
Writing Decimals as Fractions 117
Comparing and Ordering Rational Numbers 119
Exercises 120
2.5) The Real Number System
Irrational Numbers 121
Graphing Real Numbers 122
Exercises 122
2.6 Percents
The Meaning of Percent 123
Percents and Fractions 125
Percents and Decimals 127
Exercises 129
2.7 Using and Finding Percents
Finding a Percent of a Number 130
The Percent Proportion 132
Finding Percent and Whole 133
Percent of Increase or Decrease 135
Discounts and Sale Prices 136
Finding Simple Interest 139
Exercises 141
What Have You Learned? 142
Contents

3 Powers and Roots

What Do You Know? 144
3.1 Powers and Exponents
Exponents 146
Evaluating the Square of a Number 147
Evaluating the Cube of a Number 149
Evaluating Higher Powers 150
Zero and Negative Exponents 151
Powers of Ten 152
Using a Calculator to Evaluate Powers 153
Exercises 155
(302) Square and Cube Roots
Square Roots 156
Cube Roots 159
Exercises 160
303 Scientific Notation
Using Scientific Notation 161
Converting from Scientific Notation to Standard Form 164
Exercises 166
304) Laws of Exponents
Revisiting Order of Operations 167
Product Laws 168
Quotient Laws 169
Power to a Power Law 170
Exercises 171
What Have You Learned? 172

4 Data, Statistics, and Probability

What Do You Know? 174
4.1 Collecting Data
Surveys 176
Random Samples 177
Biased Samples 178
Questionnaires 179
Compiling Data 180
Exercises 181
4.2) Displaying Data
Interpret and Create a Table 182
Interpret a Box Plot 183
Interpret and Create a Circle Graph 184
Interpret and Create a Line Plot 185
Interpret a Line Graph 186
Interpret a Stem-and-Leaf Plot 187
Interpret and Create a Bar Graph 188
Interpret a Double-Bar Graph 189
Interpret and Create a Histogram 190
Exercises 192
(403) Analyzing Data
Scatter Plots 193
Correlation 194
Line of Best Fit 197
Distribution of Data 198
Exercises 200
(404) Statistics
Mean 201
Median 202
Mode 204
Weighted Averages 206
Measures of Variation 207
Exercises 212

4.5) Combinations and Permutations

Tree Diagrams 213
Permutations 216
Combinations 217
Exercises 220
4.6 Probability
Experimental Probability 221
Theoretical Probability 222
Outcome Grids 226
Probability Line 227
Dependent and Independent Events 229
Sampling With and Without Replacement 230
Exercises 231
What Have You Learned? 232
5 Logic
What Do You Know? 234
501) If/Then Statements
Conditional Statements 236
Converse of a Conditional 237
Negations and the Inverse of a Conditional 238
Contrapositive of a Conditional 239
Exercises 240
(502) Counterexamples
Counterexamples 241
Exercises 243
503 Sets
Sets and Subsets 244
Union of Sets 244
Intersection of Sets 245
Venn Diagrams 245
Exercises 247
What Have You Learned? 248

6 Algebra

What Do You Know? 250
6.1 Writing Expressions and Equations
Expressions 252
Writing Expressions Involving Addition 253
Writing Expressions Involving Subtraction 253
Writing Expressions Involving Multiplication 254
Writing Expressions Involving Division 255
Writing Expressions Involving Two Operations 256
Writing Equations 257
Exercises 258
6.2 Simplifying Expressions
Terms 259
The Commutative Property of Addition and Multiplication 259
The Associative Property of Addition and Multiplication 260
The Distributive Property 260
Properties of Zero and One 261
Equivalent Expressions 262
The Distributive Property with Common Factors 263
Like Terms 264
Simplifying Expressions 265
Exercises 266
603 Evaluating Expressions and Formulas
Evaluating Expressions 267
Evaluating Formulas 268
Exercises 270
604 Solving Linear Equations
Additive Inverses 271
Solving Addition or Subtraction Equations 271
Solving Equations by Multiplication or Division 272
Solving Two-Step Equations. 274
Solving Equations with the Variable on Each Side 275
Equations Involving the Distributive Property 276
Solving for a Variable in a Formula 277
Exercises 278

6.5 Ratio and Proportion

Ratio 279
Rate 279
Proportions 280
Using Proportions to Solve Problems 281
Exercises 282
6.6 Inequalities
Graphing Inequalities 283
Writing Inequalities 284
Solving Inequalities by Addition and Subtraction 284
Solving Inequalities by Multiplication and Division 286
Exercises 287
6.7 Graphing on the Coordinate Plane
Axes and Quadrants 288
Writing an Ordered Pair 289
Locating Points on the Coordinate Plane 290
Arithmetic Sequences 291
Linear Functions 292
Exercises 294
608 Slope and Intercept
Slope 295
Calculating the Slope of a Line 296
Slopes of Horizontal and Vertical Lines 297
The y-Intercept 298
Using the Slope and y-Intercept to Graph a Line 299
Slope-Intercept Form 300
Writing Equations in Slope-Intercept Form 300
Writing the Equation of a Line 302
Exercises 305
6.9 Direct Variation
Direct Variation 306
Exercises 308
6010 Systems of Equations
Solving a System of Equations with One Solution 309
Solving a System of Equations with No Solution 310
Solving a System of Equations with an Infinitely Many Solutions 311
Exercises 313
What Have You Learned? 314
7 Geometry
What Do You Know? 316
(701) Classifying Angles and Triangles
Classifying Angles 318
Special Pairs of Angles 319
Line and Angle Relationships 321
Triangles 322
Classifying Triangles 322
Exercises 324
702) Naming and Classifying Polygons and Polyhedrons
Quadrilaterals 325
Angles of a Quadrilateral 325
Types of Quadrilaterals 326
Polygons 328
Angles of a Polygon 329
Polyhedrons 330
Exercises 332
703 Symmetry and Transformations
Reflections 334
Reflection Symmetry 335
Rotations 336
Translations 337
Exercises 338
Perimeter of a Polygon 339
Perimeter of a Right Triangle 341
Exercises 342
(705) Area
What Is Area? 344
Area of a Parallelogram 345
Area of a Triangle 346
Area of a Trapezoid 347
Exercises 348
706 Surface Area
Surface Area of a Rectangular Prism 349
Surface Area of Other Solids 350
Exercises 352
7.7 Volume
What Is Volume? 353
Volume of a Prism 354
Volume of a Cylinder 355
Volume of a Pyramid and a Cone 355
Exercises 358
7.8 Circles
Parts of a Circle 359
Circumference 360
Central Angles 362
Area of a Circle 363
Exercises 364
709 Pythagorean Theorem
Right Triangles 365
The Pythagorean Theorem 366
Pythagorean Triples 367
Distance and the Pythagorean Theorem 368
Exercises 369
What Have You Learned? 370

8 Measurement

What Do You Know? 372
801 Systems of Measurement
The Metric and Customary Systems 374
Exercises 375
(802) Length and Distance
Metric and Customary Units 376
Conversions Between Systems 377
Exercises 378
803 Area, Volume, and Capacity
Area 379
Volume 380
Capacity 381
Exercises 383
(8.4) Mass and Weight
Mass and Weight 384
Exercises 385
(805) Size and Scale
Similar Figures 386
Scale Factors 387
Scale Factors and Area 388
Scale Factors and Volume 389
Exercises 391
What Have You Learned? 392

9 Tools

What Do You Know? 394
9•1 Scientific Calculator
Frequently Used Functions 395
Exercises 400
902 Geometry Tools
Protractor 401
Compass 402
Construction Problem. 403
Exercises 405
903 Spreadsheets
What Is a Spreadsheet? 407
Spreadsheet Formulas 408
Fill Down and Fill Right 409
Spreadsheet Graphs 412
Exercises 413
What Have You Learned? 414
PART THREE
HoiSolutions and Index 416

Handhook Introduction

Why use this handbook?

You will use this handbook to refresh your memory of mathematics concepts and skills.

What are HotWords, and how do you find them?

HotWords are important mathematical terms. The HotWords section includes a glossary of terms, a collection of common or significant mathematical patterns, and lists of symbols and formulas in alphabetical order. Many entries in the glossary will refer you to chapters and topics in the HotTopics section for more detailed information.

absolute value a number's distance from zero on the number line see $1 \cdot 3$ Integer Operations

Example:

accuracy the exactness of a number
Examples: Rounding 62.42812 to three decimal places
(62.428) is more accurate than rounding 62.42812
to two decimal places (62.43).
Rounding 62.42812 to two decimal places (62.43) is more accurate than rounding 62.42812 to one decimal place (62.4).
Rounding 62.42812 to one decimal place (62.4) is more accurate than rounding 62.42812 to the nearest whole number (62).
actual size the true size of an object represented by a scale

What are HotTopics, and how do you use them?

HotTopics are key concepts that you need to know. The HotTopics section consists of nine chapters. Each chapter has several topics that give you to-the-point explanations of key mathematical concepts. Each topic includes one or more concepts. Each section includes Check It Out exercises, which you can use to check your understanding. At the end of each topic, there is an exercise set.

There are problems and a vocabulary list at the beginning and end of each chapter to help you preview what you know and review what you have learned.

What are HotSolutions?

The HotSolutions section gives you easy-to-locate answers to Check It Out and What Do You Know? problems. The HotSolutions section is at the back of the handbook.

Chapter 1 Numbers and C
p. 72

1. $(4+7) \cdot 3=33 \quad$ 2. $(30+15) \div$
2. no $\quad 4$. no \quad 5. yes $\quad 6$. no $\quad 7.2^{3}$
3. $2 \cdot 5 \cdot 23 \quad 10.4 \quad 11.5 \quad 12.9$
4. $90 \quad 16.60$
p. 73
5. 7,7
6. $15,-15$
7. 12,12

8. $<$;

9.
10. $>; \stackrel{\mid}{\stackrel{\mid}{4}-6-4-1}$
11. $>$;

$\begin{array}{llll}\text { 25. } 2 & \text { 26. }-4 & \text { 27. }-11 & 28.1\end{array}$

Common Factors

Factors that are the same for two or more numbers are
Two numbers multiplied together to produce 12 factors of 12 . So, the factors of 12 are $1,2,3,4,6$ To decide whether one number is a factor of anot there is a remainder of 0 , the number is a factor.

EXAMPLE Finding the Factors of
What are the factors of 18 ? $1 \cdot 18=18$
$2 \cdot 9=18 \quad$ - Find all pairs of numbers

$$
3 \cdot 6=18
$$ to give the product.

1, 2, 3, 6, 9, 18
So, the factors of 18 are $1,2,3,6,9$, and 18 .

Check It Out
 Find the factors of each number. 1) 8 (2) 48

common factors.

Multiples

Factors

The HotWords section includes a glossary of terms, lists of formulas and symbols, and a collection of common or significant mathematical patterns. Many entries in the glossary will refer to chapters and topics in the HotTopics section.

Glossary 4
Formulas 64
Symbols 66
Patterns 67

A
absolute value a number's distance from zero on the number
line see $1 \cdot 3$ Integer Operations
Example: $\quad-2$ is 2 units from 0

The absolute value of -2 is 2 or $|-2|=2$.
accuracy the exactness of a number
Examples: Rounding 62.42812 to three decimal places (62.428) is more accurate than rounding 62.42812 to two decimal places (62.43).
Rounding 62.42812 to two decimal places (62.43) is more accurate than rounding 62.42812 to one decimal place (62.4).

Rounding 62.42812 to one decimal place (62.4) is more accurate than rounding 62.42812 to the nearest whole number (62).
actual size the true size of an object represented by a scale model or drawing
acute angle any angle that measures less than 90°
Example:

$\angle A B C$ is an acute angle.

$$
0^{\circ}<m \angle A B C<90^{\circ}
$$

acute triangle a triangle in which all angles measure less than 90° see $7 \cdot 1$ Classifying Angles and Triangles

Example:

$\triangle R S T$ is an acute triangle.
Addition Property of Equality the mathematical rule that states that if the same number is added to each side of an equation, the expressions remain equal see $6 \cdot 4$ Solving Linear Equations
Example: If $a=b$, then $a+c=b+c$.
additive inverse two integers that are opposite of each other;
the sum of any number and its additive inverse is zero see $6 \cdot 4$ Solving Linear Equations
Example: $(+3)+(-3)=0$
(-3) is the additive inverse of 3 .
additive system a mathematical system in which the values of individual symbols are added together to determine the value of a sequence of symbols
Example: The Roman numeral system, which uses symbols such as $\mathrm{I}, \mathrm{V}, \mathrm{D}$, and M , is a well-known additive system.

This is another example of an additive system:

$$
\begin{aligned}
& \nabla \nabla \square \\
& \text { If } \square \text { equals } 1 \text { and } \nabla \text { equals } 7 \text {, } \\
& \text { then } \nabla \nabla \square \text { equals } 7+7+1=15 \text {. }
\end{aligned}
$$

algebra a branch of mathematics in which symbols are used to represent numbers and express mathematical relationships see Chapter 6 Algebra
algorithm a step-by-step procedure for a mathematical operation
alternate exterior angles in the figure below, transversal t intersects lines ℓ and $m ; \angle 1$ and $\angle 7$, and $\angle 2$ and $\angle 8$ are alternate exterior angles; if lines ℓ and m are parallel, then these pairs of angles are congruent see 7.1 Classifying Angles and Triangles

alternate interior angles in the figure below, transversal t intersects lines ℓ and $m ; \angle 3$ and $\angle 5$, and $\angle 4$ and $\angle 6$ are alternate interior angles; if lines ℓ and m are parallel, then these pairs of angles are congruent see 7.1 Classifying Angles and Triangles

altitude the perpendicular distance from a vertex to the opposite side of a figure; altitude indicates the height of a figure

Example:

angle two rays that meet at a common endpoint
Example:

$\angle A B C$ is formed by $\overrightarrow{B A}$ and $\overrightarrow{B C}$.
arithmetic expression a mathematical relationship expressed as a number, or two or more numbers with operation symbols see expression
arithmetic sequence see Patterns page 67, 6.7 Graphing on the Coordinate Plane

Associative Property the mathematical rule that states that the way in which numbers are grouped when they are added or multiplied does not change their sum or product see $6 \cdot 2$ Simplifying Expressions
Examples: $(x+y)+z=x+(y+z)$

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot z
$$

average the sum of a set of values divided by the number of values see $4 \cdot 4$ Statistics

Example: The average of $3,4,7$, and 10 is

$$
(3+4+7+10) \div 4=6
$$

average speed the average rate at which an object moves
axis (pl. axes) [1] a reference line by which a point on a coordinate graph may be located; [2] the imaginary line about which an object may be said to be symmetrical (axis of symmetry); [3] the line about which an object may revolve (axis of rotation) see 6.7 Graphing on the Coordinate Plane

B

bar graph a display of data that uses horizontal or vertical bars to compare quantities see $4 \cdot 2$ Displaying Data
base [1] the number used as the factor in exponential form;
[2] two parallel congruent faces of a prism or the face opposite the apex of a pyramid or cone; [3] the side perpendicular to the height of a polygon; [4] the number of characters in a number system see $3 \cdot 1$ Powers and Exponents, $7 \cdot 5$ Area, 7.7 Volume
base-ten system the number system containing ten singledigit symbols $\{0,1,2,3,4,5,6,7,8$, and 9$\}$ in which the numeral 10 represents the quantity ten
base-two system the number system containing two singledigit symbols $\{0$ and 1$\}$ in which 10 represents the quantity two see binary system
benchmark a point of reference from which measurements and percents can be estimated see $2 \cdot 6$ Percents
best chance in a set of values, the event most likely to occur
biased sample a sample drawn in such a way that one or more parts of the population are favored over others see $4 \cdot 1$ Collecting Data
bimodal distribution a statistical model that has two different peaks of frequency distribution see $4 \cdot 3$ Analyzing Data
binary system the base-two number system, in which combinations of the digits 1 and 0 represent different numbers or values
binomial an algebraic expression that has two terms Examples: $x^{2}+y ; x+1 ; a-2 b$
box plot a diagram that summarizes numerical data using the median, the upper and lower quartiles, and the maximum and minimum values see $4 \cdot 2$ Displaying Data
budget a spending plan based on an estimate of income and expenses

0
capacity the amount that can be held in a container
cell a small rectangle in a spreadsheet that stores information;
each cell can store a label, number, or formula see 9.3 Spreadsheets
center of the circle the point from which all points on a circle are equidistant see 7.8 Circles
chance the probability or likelihood of an occurrence, often expressed as a fraction, decimal, percentage, or ratio see $4 \cdot 6$ Probability
circle the set of all points in a plane that are equidistant from a fixed point called the center

Example:

a circle
circle graph (pie chart) a display of statistical data that uses a circle divided into proportionally-sized "slices"
see $4 \cdot 2$ Displaying Data
Example: Favorite Primary Color

circumference the distance around (perimeter) a circle see Formulas page 65, 7•8 Circles
classification the grouping of elements into separate classes or sets
coefficient the numerical factor of a term that contains a variable see $6 \cdot 2$ Simplifying Expressions
collinear a set of points that lie on the same line Example:

Points A, C, and D are collinear.
columns vertical lists of numbers or terms
combination a selection of elements from a larger set in which the order does not matter see 4.5 Combinations and Permutations

> Example: 456,564 , and 654 are one combination of three digits from 4567.
common denominator a common multiple of the denominators of a group of fractions see $2 \cdot 2$ Operations with Fractions Example: The fractions $\frac{3}{4}$ and $\frac{7}{8}$ have a common denominator of 8 .
common difference the difference between any two consecutive terms in an arithmetic sequence
common factor a whole number that is a factor of each number in a set of numbers see 1.2 Factors and Multiples Example: 5 is a common factor of $10,15,25$, and 100.
common ratio the ratio of any term in a geometric sequence to the term that precedes it

Commutative Property the mathematical rule that states that the order in which numbers are added or multiplied does not change their sum or product see $6 \cdot 2$ Simplifying Expressions Examples: $x+y=y+x$
$x \cdot y=y \cdot x$
compatible numbers two numbers that are easy to add, subtract, multiply, or divide mentally
complementary angles two angles are complementary if the sum of their measures is 90° see $7 \cdot 1$ Classifying Angles and Triangles

$\angle 1$ and $\angle 2$ are complementary angles.
composite number a whole number greater than 1 having more than two factors see $1 \cdot 2$ Factors and Multiples
concave polygon a polygon that has an interior angle greater than 180°

Example:

a concave polygon
conditional a statement that something is true or will be true provided that something else is also true see 5•1 If/Then Statements

Example: If a polygon has three sides, then it is a triangle.
cone a three-dimensional figure consisting of a circular base and one vertex

Example:
vertex
congruent having the same size and shape; the symbol \cong is used to indicate congruence see 7.1 Classifying Angles and Triangles
Example:

$\triangle A B C$ and $\triangle D E F$ are congruent.
congruent angles angles that have the same measure

conic section the curved shape that results when a conical surface is intersected by a plane
Example:

constant of variation a constant ratio in a direct variation see 6.9 Direct Variation
continuous data the complete range of values on the number line
Example: The possible sizes of apples are continuous data.
contrapositive a logical equivalent of a given conditional statement, often expressed in negative terms see $5 \cdot 1 \mathrm{If} /$ Then Statements

Example: "If x, then y " is a conditional statement;
"if not y, then not x " is the contrapositive statement.
convenience sampling a sample obtained by surveying people who are easiest to reach; convenience sampling does not represent the entire population, therefore it is considered biased
converse a conditional statement in which terms are expressed in reverse order see 5.1 If/Then Statements

Example: "If x, then y " is a conditional statement;
"if y, then x " is the converse statement.
convex polygon a polygon with all interior angles measuring
less than 180°
Example:

A regular hexagon is a convex polygon.
coordinate any number within a set of numbers that is used to define a point's location on a line, on a surface, or in space see $1 \cdot 3$ Integer Operations
coordinate plane a plane in which a horizontal number line and a vertical number line intersect at their zero points see $6 \cdot 7$ Graphing on the Coordinate Plane

coplanar points or lines lying in the same plane
correlation the way in which a change in one variable corresponds to a change in another see 4.3 Analyzing Data
corresponding angles in the figure below, transversal t intersects lines ℓ and $m ; \angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 4$ and $\angle 8$, and $\angle 3$ and $\angle 7$ are corresponding angles; if lines ℓ and m are parallel, then these pairs of angles are congruent see 7.1 Classifying Angles and Triangles

cost an amount paid or required in payment
cost estimate an approximate amount to be paid or to be required in payment
counterexample a statement or example that disproves a conjecture see 5.2 Counterexamples
counting numbers the set of positive whole numbers $\{1,2,3,4 \ldots\}$ see positive integers
cross product a method used to solve proportions and test whether ratios are equal see 2.1 Fractions, 6.5 Ratio and Proportion Example: $\frac{a}{b}=\frac{c}{d}$ if $a \cdot d=b \cdot c$
cross section the figure formed by the intersection of a solid and a plane
Example:

cube [1] a solid figure with six congruent square faces see 7.2 Naming and Classifying Polygons and Polyhedrons
[2] the product of three equal terms see $3 \cdot 1$ Powers and Exponents
Examples: [1]

a cube

$$
[2] 2^{3}=2 \cdot 2 \cdot 2=8
$$

cube root a number that when raised to the third power equals a given number see 3.2 Square and Cube Roots
Example: $\sqrt[3]{8}=2$
2 is the cube root of 8
cubic centimeter the volume of a cube with edges that are
1 centimeter in length
cubic foot the volume of a cube with edges that are 1 foot in length
cubic inch the volume of a cube with edges that are 1 inch in length see 7.7 Volume
cubic meter the volume of a cube with edges that are 1 meter in length see 7.7 Volume
customary system units of measurement used in the United States to measure length in inches, feet, yards, and miles; capacity in cups, pints, quarts, and gallons; weight in ounces, pounds, and tons; and temperature in degrees Fahrenheit see English system, 8.1 Systems of Measurement
cylinder a solid shape with parallel circular bases

Example:

D
decagon a polygon with ten angles and ten sides
decimal system the most commonly used number system, in which whole numbers and fractions are represented using base ten

Example: Decimal numbers include 1230, 1.23, 0.23, and -13 .
degree [1] (algebraic) the exponent of a single variable in a simple algebraic term; [2] (algebraic) the sum of the exponents of all the variables in a more complex algebraic term;
[3] (algebraic) the highest degree of any term in a polynomial;
[4] (geometric) a unit of measurement of an angle or arc, represented by the symbol ${ }^{\circ}$
Examples: [1] In the term $2 x^{4} y^{3} z^{2}, x$ has a degree of $4, y$ has a degree of 3 , and z has a degree of 2 .
[2] The term $2 x^{4} y^{3} z^{2}$ as a whole has a degree of $4+3+2=9$.
[3] The equation $x^{3}=3 x^{2}+x$ is an equation of the third degree.
[4] An acute angle is an angle that measures less than 90°.
denominator the bottom number in a fraction representing the total number of equal parts in the whole see $2 \cdot 1$ Fractions Example: In the fraction $\frac{a}{b}, b$ is the denominator.
dependent events two events in which the outcome of one event is affected by the outcome of another event see $4 \cdot 6$ Probability
diagonal a line segment connecting two non-adjacent vertices of a polygon see 7.2 Naming and Classifying Polygons and Polyhedrons
Example:

$\overline{B D}$ is a diagonal of parallelogram $A B C D$.
diameter a line segment connecting the center of a circle with two points on its perimeter see $7 \cdot 8$ Circles

Example:

difference the result obtained when one number is subtracted from another see 6.1 Writing Expressions and Equations
dimension the number of measures needed to describe a figure geometrically

Examples: A point has 0 dimensions.
A line or curve has 1 dimension.
A plane figure has 2 dimensions.
A solid figure has 3 dimensions.
direct correlation the relationship between two or more elements that increase and decrease together see 4.3 Analyzing Data
Example: At an hourly pay rate, an increase in the number of hours worked means an increase in the amount paid, while a decrease in the number of hours worked means a decrease in the amount paid.
direct variation a relationship between two variable quantities with a constant ratio see $6 \cdot 9$ Direct Variation
discount a deduction made from the regular price of a product or service see 2.7 Using and Finding Percents
discrete data only a finite number of values is possible Example: The number of parts damaged in a shipment is discrete data.
distance the length of the shortest line segment between two points, lines, planes, and so forth
distribution the frequency pattern for a set of data see $4 \cdot 3$ Analyzing Data

Distributive Property the mathematical rule that states that multiplying a sum by a number gives the same result as multiplying each addend by the number and then adding the products see $6 \cdot 2$ Simplifying Expressions

Example: $a(b+c)=a \cdot b+a \cdot c$
divisible a number is divisible by another number if their quotient has no remainder see $1 \cdot 2$ Factors and Multiples
division the operation in which a dividend is divided by a divisor to obtain a quotient Example:

divisor
Division Property of Equality the mathematical rule that states that if each side of an equation is divided by the same nonzero number, the two sides remain equal see $6 \cdot 4$ Solving Linear Equations
Example: If $a=b$, then $\frac{a}{c}=\frac{b}{c}$.
domain the set of input values in a function see $6 \cdot 7$ Graphing on the Coordinate Plane
double-bar graph a display of data that uses paired horizontal or vertical bars to compare quantities see $4 \cdot 2$ Displaying Data Example:

E
edge a line segment joining two planes of a polyhedron
English system units of measurement used in the United States that measure length in inches, feet, yards, and miles; capacity in cups, pints, quarts, and gallons; weight in ounces, pounds, and tons; and temperature in degrees Fahrenheit see customary system
equal angles angles that measure the same number of degrees equally likely describes outcomes or events that have the same chance of occurring
equally unlikely describes outcomes or events that have the same chance of not occurring
equation a mathematical sentence stating that two expressions are equal see $6 \cdot 1$ Writing Expressions and Equations, $6 \cdot 8$ Slope and Intercept
Example: $3 \cdot(7+8)=9 \cdot 5$
equiangular the property of a polygon in which all angles are congruent
equiangular triangle a triangle in which each angle is 60°
Example:

$m \angle A=m \angle B=m \angle C=60^{\circ}$ $\triangle A B C$ is equiangular.
equilateral the property of a polygon in which all sides are congruent
equilateral triangle a triangle in which all sides are congruent
Example:

$$
A B=B C=A C
$$

$\triangle A B C$ is equilateral.
equivalent equal in value see $6 \cdot 1$ Writing Expressions and Equations
equivalent expressions expressions that always result in the same number, or have the same mathematical meaning for all replacement values of their variables see $6 \cdot 2$ Simplifying
Expressions
Examples: $\frac{9}{3}+2=10-5$

$$
2 x+3 x=5 x
$$

equivalent fractions fractions that represent the same
quotient but have different numerators and denominators
see $2 \cdot 1$ Fractions
Example: $\frac{5}{6}=\frac{15}{18}$
equivalent ratios ratios that are equal
Example: $\frac{5}{4}=\frac{10}{8} ; 5: 4=10: 8$
estimate an approximation or rough calculation
see 2.6 Percents
even number any whole number that is a multiple of 2
$\{0,2,4,6,8,10,12 \ldots\}$
event any happening to which probabilities can be assigned see 4.5 Combinations and Permutations
expanded form a method of writing a number that highlights the value of each digit
Example: $867=(8 \cdot 100)+(6 \cdot 10)+(7 \cdot 1)$
expense an amount of money paid; cost
experimental probability the ratio of the total number of times the favorable outcome occurs to the total number of times the experiment is completed see 4.6 Probability
exponent a numeral that indicates how many times a number or variable is used as a factor see $3 \cdot 1$ Powers and Exponents, 3.3 Scientific Notation, 3.4 Laws of Exponents Example: In the equation $2^{3}=8$, the exponent is 3 .
expression a mathematical combination of numbers, variables, and operations see $6 \cdot 1$ Writing Expressions and Equations, 6.2 Simplifying Expressions, 6.3 Evaluating Expressions and Formulas

Example: $6 x+y^{2}$
F
face a two-dimensional side of a three-dimensional figure see 7.2 Naming and Classifying Polygons and Polyhedrons, 7.6 Surface Area
factor a number or expression that is multiplied by another to yield a product see $1 \cdot 2$ Factors and Multiples, $2 \cdot 2$ Operations with Fractions, 3•1 Powers and Exponents
Example: 3 and 11 are factors of 33
factorial represented by the symbol !, the product of all the whole numbers between 1 and a given positive whole number see $4 \cdot 5$ Combinations and Permutations

Example: $5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120$
factor pair two unique numbers multiplied together to yield a product
fair describes a situation in which the theoretical probability of each outcome is equal

Fibonacci numbers see Patterns page 67
flat distribution a frequency graph that shows little difference between responses see $4 \cdot 3$ Analyzing Data Example:

flip a transformation that produces the mirror image of a figure see 7.3 Symmetry and Transformations

Example:

$\triangle A^{\prime} B^{\prime} C^{\prime}$ is a flip of $\triangle A B C$.
formula an equation that shows the relationship between two or more quantities; a calculation performed by a spreadsheet see Formulas pages 64-65, 9.3 Spreadsheets
Example: $A=\pi r^{2}$ is the formula for calculating the area of a circle; A2 * B2 is a spreadsheet formula.
fraction a number representing part of a whole; a quotient in the form $\frac{a}{b}$ see $2 \cdot 1$ Fractions
function the assignment of exactly one output value to each input value see 6.7 Graphing on the Coordinate Plane Example: You are driving at 50 miles per hour. There is a relationship between the amount of time you drive and the distance you will travel. You say that the distance is a function of the time.
©
geometric sequence see Patterns page 67
geometry the branch of mathematics that investigates the relations, properties, and measurements of solids, surfaces, lines, and angles see Chapter 7 Geometry, 9.2 Geometry Tools
gram a metric unit of mass see $8 \cdot 1$ Systems of Measurement
greatest common factor (GCF) the greatest number that is a factor of two or more numbers see 1.2 Factors and Multiples, 2.1 Fractions

Example: 30, 60, 75
The greatest common factor is 15 .
(1)
harmonic sequence see Patterns page 67
height the perpendicular distance from a vertex to the opposite side of a figure
heptagon a polygon with seven angles and seven sides
Example:

a heptagon
hexagon a polygon with six angles and six sides
Example:

a hexagon
hexagonal prism a prism that has two hexagonal bases and six rectangular sides
Example:

a hexagonal prism
hexahedron a polyhedron that has six faces
Example:

A cube is a hexahedron.
histogram a special kind of bar graph that displays the frequency of data that has been organized into equal intervals see 4.2 Displaying Data
horizontal parallel to or in the plane of the horizon see $6 \cdot 7$ Graphing on the Coordinate Plane
hyperbola the curve of an inverse variation function, such as $y=\frac{1}{x}$, is a hyperbola

Example:

hypotenuse the side opposite the right angle in a right triangle see 7.9 Pythagorean Theorem

Example:

Side $\overline{A B}$ is the hypotenuse of this right triangle.
(1)
improper fraction a fraction in which the numerator is greater than the denominator see $2 \cdot 1$ Fractions
Examples: $\frac{21}{4}, \frac{4}{3}, \frac{2}{1}$
income the amount of money received for labor, services, or the sale of goods or property
independent events two events in which the outcome of one event is not affected by the outcome of another event see 4.6 Probability
inequality a statement that uses the symbols $>$ (greater than), $<$ (less than), \geq (greater than or equal to), and \leq (less than or equal to) to compare quantities see $6 \cdot 6$ Inequalities
Examples: $5>3 ; \frac{4}{5}<\frac{5}{4} ; 2(5-x)>3+1$
infinite, nonrepeating decimal irrational numbers, such as π and $\sqrt{2}$, that are decimals with digits that continue indefinitely but do not repeat
inscribed figure a figure that is enclosed by another figure as shown below Examples:

a triangle inscribed in a circle

a circle inscribed in a triangle
interquartile range the range of the middle half of a set of data; it is the difference between the upper and the lower quartile see $4 \cdot 4$ Statistics
integers the set of all whole numbers and their additive inverses $\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}$
intercept [1] the cutting of a line, curve, or surface by another line, curve, or surface; [2] the point at which a line or curve cuts across a coordinate axis see 6.8 Slope and Intercept
intersection the set of elements common to two or more sets see $5 \cdot 3$ Sets Example:

The area shaded green is the intersection of set A (numbers 1 through 5) and set B (even numbers to 10).
inverse negation of the if idea and the then idea of a conditional statement see $5 \cdot 1 \mathrm{If} /$ Then Statements
Example: "if x, then y " is a conditional statement;
"if not x, then not y " is the inverse statement
inverse operation the operation that reverses the effect of another operation

Examples: Subtraction is the inverse operation of addition.
Division is the inverse operation of multiplication.
irrational numbers the set of all numbers that cannot be expressed as finite or repeating decimals see 2.5 The Real Number System
Example: $\sqrt{2}$ ($1.414214 \ldots$) and π (3.141592 ...) are irrational numbers.
isometric drawing a two-dimensional representation of a three-dimensional object in which parallel edges are drawn as parallel lines

Example:

isosceles trapezoid a trapezoid in which the two nonparallel sides are of equal length

Example:

an isosceles trapezoid
isosceles triangle a triangle with at least two sides of equal length

Example:

leaf the unit digit of an item of numerical data between 1 and 99 see stem-and-leaf plot, $4 \cdot 2$ Displaying Data
least common denominator (LCD) the least common multiple of the denominators of two or more fractions
Example: The least common denominator of $\frac{1}{3}, \frac{2}{4}$, and $\frac{3}{6}$ is 12 .
least common multiple (LCM) the smallest nonzero whole number that is a multiple of two or more whole numbers see 1.2 Factors and Multiples

Example: The least common multiple of 3,9 , and 12 is 36 .
legs of a triangle the sides adjacent to the right angle of a right triangle Example:

$\overline{A B}$ and $\overline{B C}$ are the legs of $\triangle A B C$.
length a measure of the distance of an object from end to end
likelihood the chance of a particular outcome occurring
like terms terms that include the same variables raised to the same powers; like terms can be combined see $6 \cdot 2$ Simplifying Expressions

Example: $5 x^{2}$ and $6 x^{2}$ are like terms; $3 x y$ and $3 z y$ are not like terms.
line a connected set of points extending forever in both directions
linear equation an equation with two variables (x and y) that takes the general form $y=m x+b$, where m is the slope of the line and b is the y-intercept
linear measure the measure of the distance between two points on a line
line graph a display of data that shows change over time see $4 \cdot 2$ Displaying Data Example:

line of best fit on a scatter plot, a line drawn as near as possible to the various points so as to best represent the trend in data see $4 \cdot 3$ Analyzing Data

Example:

line of symmetry a line along which a figure can be folded so that the two resulting halves match

Example:

$\stackrel{\rightharpoonup}{\text { ST }}$ is a line of symmetry.
line plot a display of data that shows the frequency of data on a number line see 4.2 Displaying Data
line segment a section of a line between two points Example:

$\overline{A B}$ is a line segment.
liter a metric unit of capacity see $8 \cdot 3$ Area, Volume, and Capacity
logic the mathematical principles that use existing theorems to prove new ones see Chapter 5 Logic
lower quartile the median of the lower half of a set of data, represented by LQ see $4 \cdot 4$ Statistics

Iowest common multiple the smallest number that is a multiple of all the numbers in a given set; same as least common multiple

Example: The lowest common multiple of 6,9 , and 18 is 18 .
Lucas numbers see Patterns page 67

(iI)

magic square see Patterns page 68
maximum value the greatest value of a function or a set of numbers
mean the quotient obtained when the sum of the numbers in a set is divided by the number of addends see average, $4 \cdot 4$ Statistics

Example: The mean of $3,4,7$, and 10 is

$$
(3+4+7+10) \div 4=6 \text {. }
$$

measurement units standard measures, such as the meter, the liter, and the gram, or the foot, the quart, and the pound see $8 \cdot 1$ Systems of Measurement
measures of variation numbers used to describe the distribution of spread of a set of data see 4.4 Statistics
median the middle number in an ordered set of numbers see $4 \cdot 4$ Statistics

Example: 1, 3, 9, 16, 22, 25, 27
16 is the median.
meter the metric unit of length
metric system a decimal system of weights and measurements based on the meter as its unit of length, the kilogram as its unit of mass, and the liter as its unit of capacity see 8.1 Systems of Measurement
midpoint the point on a line segment that divides it into two equal segments

Example:

M is the midpoint of $\overline{A B}$.
minimum value the least value of a function or a set of numbers
mixed number a number composed of a whole number and a fraction see $2 \cdot 1$ Fractions
Example: $5 \frac{1}{4}$ is a mixed number.
mode the number or element that occurs most frequently in a set of data see $4 \cdot 4$ Statistics

Example: 1, 1, 2, 2, 3, 5, 5, 6, 6, 6, 8
6 is the mode.
monomial an algebraic expression consisting of a single term Example: $5 x^{3} y, x y$, and $2 y$ are three monomials.
multiple the product of a given number and an integer see $1 \cdot 2$ Factors and Multiples
Examples: 8 is a multiple of 4 .
3.6 is a multiple of 1.2.
multiplication one of the four basic arithmetical operations, involving the repeated addition of numbers
multiplication growth number a number that when used to multiply a given number a given number of times results in a given goal number
Example: Grow 10 into 40 in two steps by multiplying ($10 \cdot 2 \cdot 2=40$)
2 is the multiplication growth number.
Multiplication Property of Equality the mathematical rule that states that if each side of an equation is multiplied by the same number, the two sides remain equal see $6 \cdot 4$ Solving Linear Equations

Example: If $a=b$, then $a \cdot c=b \cdot c$.
multiplicative inverse two numbers are multiplicative inverses if their product is 1 see 2.2 Operations with Fractions Example: $10 \cdot \frac{1}{10}=1$ $\frac{1}{10}$ is the multiplicative inverse of 10.
natural variability the difference in results in a small number of experimental trials from the theoretical probabilities
negative integers the set of all integers that are less than zero $\{-1,-2,-3,-4,-5, \ldots\}$ see $1 \cdot 3$ Integer Operations
negative numbers the set of all real numbers that are less than zero $\{-1,-1.36,-\sqrt{2},-\pi\}$
net a two-dimensional plan that can be folded to make a three-dimensional model of a solid see 7.6 Surface Area Example:

the net of a cube
nonagon a polygon with nine angles and nine sides
Example:

a nonagon
noncollinear points not lying on the same line
noncoplanar points or lines not lying on the same plane
normal distribution represented by a bell curve, the most common distribution of most qualities across a given population see $4 \cdot 3$ Analyzing Data

Example:

number line a line showing numbers at regular intervals on which any real number can be indicated

number symbols the symbols used in counting and measuring Examples: $1,-\frac{1}{4}, 5, \sqrt{2},-\pi$
numerator the top number in a fraction representing the number of equal parts being considered see $2 \cdot 1$ Fractions Example: In the fraction $\frac{a}{b}, a$ is the numerator.
obtuse angle any angle that measures greater than 90° but less than 180°

Example:

an obtuse angle
obtuse triangle a triangle that has one obtuse angle
Example:

$\triangle A B C$ is an obtuse triangle.
octagon a polygon with eight angles and eight sides Example:

an octagon
octagonal prism a prism that has two octagonal bases and eight rectangular faces
Example:

an octagonal prism
odd numbers the set of all integers that are not multiples of 2
odds against the ratio of the number of unfavorable outcomes to the number of favorable outcomes
odds for the ratio of the number of favorable outcomes to the number of unfavorable outcomes
one-dimensional having only one measurable quality Example: A line and a curve are one-dimensional.
operations arithmetical actions performed on numbers, matrices, or vectors
opposite angle in a triangle, a side and an angle are said to be opposite if the side is not used to form the angle

Example:

In $\triangle A B C, \angle A$ is opposite of $\overline{B C}$.
ordered pair two numbers that tell the x-coordinate and y-coordinate of a point see 6.7 Graphing on the Coordinate Plane

Example: The coordinates $(3,4)$ are an ordered pair. The x-coordinate is 3 , and the y-coordinate is 4 .
order of operations to simplify an expression, follow this four-step process: 1) do all operations within parentheses;
2) simplify all numbers with exponents; 3) multiply and divide in order from left to right; 4) add and subtract in order from left to right see $1 \cdot 1$ Order of Operations, 3.4 Laws of Exponents
origin the point $(0,0)$ on a coordinate graph where the x-axis and the y-axis intersect see 6.7 Graphing on the Coordinate Plane
orthogonal drawing always shows three views of an objecttop, side, and front; the views are drawn straight-on Example:

side

top

outcome a possible result in a probability experiment see 4.5 Combinations and Permutations, $4 \cdot 6$ Probability
outcome grid a visual model for analyzing and representing theoretical probabilities that shows all the possible outcomes of two independent events see $4 \cdot 6$ Probability Example:

A grid used to find the sample space for rolling a pair of dice. The outcomes are written as ordered pairs.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$
$\mathbf{2}$	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
$\mathbf{3}$	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$
$\mathbf{4}$	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$
$\mathbf{5}$	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$
$\mathbf{6}$	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$

There are 36 possible outcomes.
outlier data that are more than 1.5 times the interquartile range from the upper or lower quartiles see $4 \cdot 4$ Statistics
parabola the curve formed by a quadratic equation such as

$$
y=x^{2}
$$

Example:

parallel straight lines or planes that remain a constant distance from each other and never intersect, represented by the symbol ||
Example:

$\overleftrightarrow{A B} \| \overleftrightarrow{C D}$
parallelogram a quadrilateral with two pairs of parallel sides see 7.2 Naming and Classifying Polygons and Polyhedrons
Example:

parentheses the enclosing symbols (), which indicate that the terms within are a unit

Example: $(2+4) \div 2=3$
Pascal's Triangle see Patterns page 68
pattern a regular, repeating design or sequence of shapes or numbers see Patterns pages 67-69

PEMDAS an acronym for the order of operations: 1) do all operations within parentheses; 2) simplify all numbers with exponents; 3) multiply and divide in order from left to right; 4) add and subtract in order from left to right see $1 \cdot 1$ Order of Operations
pentagon a polygon with five angles and five sides Example:

a pentagon
percent a number expressed in relation to 100, represented by the symbol \% see $2 \cdot 6$ Percents

Example: 76 out of 100 students use computers.
76 percent or 76% of students use computers.
percent grade the ratio of the rise to the run of a hill, ramp, or incline expressed as a percent
Example:

$$
\text { percent grade }=75 \%\left(\frac{6}{8}\right)
$$

percent proportion compares part of a quantity to the whole quantity using a percent see 2.7 Using and Finding Percents

$$
\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}
$$

perfect cube a number that is the cube of an integer
Example: 27 is a perfect cube since $27=3^{3}$.
perfect number an integer that is equal to the sum of all its positive whole number divisors, excluding the number itself Example: $1 \cdot 2 \cdot 3=6$ and $1+2+3=6$ 6 is a perfect number.
perfect square a number that is the square of an integer see 3.2 Square and Cube Roots
Example: 25 is a perfect square since $25=5^{2}$.
perimeter the distance around the outside of a closed figure see Formulas page 64
Example:

permutation a possible arrangement of a group of objects; the number of possible arrangements of n objects is expressed by the term n ! see factorial, $4 \cdot 5$ Combinations and Permutations
perpendicular two lines or planes that intersect to form a right angle
Example:

$\overline{A B}$ and $\overline{A C}$ are perpendicular.
pi the ratio of a circle's circumference to its diameter; $p i$ is shown by the symbol π, and is approximately equal to 3.14 see 7.7 Volume
picture graph a display of data that uses pictures or symbols to represent numbers
place value the value given to a place a digit occupies in a numeral
place-value system a number system in which values are given to the places digits occupy in the numeral; in the decimal system, the value of each place is 10 times the value of the place to its right
point one of four undefined terms in geometry used to define all other terms; a point has no size see $6 \cdot 7$ Graphing on the Coordinate Plane
polygon a simple, closed plane figure, having three or more line segments as sides see 7.1 Classifying Angles and Triangles Examples:

polygons

polyhedrons
population the universal set from which a sample of statistical data is selected see $4 \cdot 1$ Collecting Data
positive integers the set of all integers that are greater than zero $\{1,2,3,4,5, \ldots\}$ see $1 \cdot 3$ Integer Operations
positive numbers the set of all real numbers that are greater than zero $\{1,1.36, \sqrt{2}, \pi\}$
power represented by the exponent n, to which a number is used as a factor n times see $3 \cdot 1$ Powers and Exponents Example: 7 raised to the fourth power.

$$
7^{4}=7 \cdot 7 \cdot 7 \cdot 7=2,401
$$

predict to anticipate a trend by studying statistical data
prime factorization the expression of a composite number as a product of its prime factors see $1 \cdot 2$ Factors and Multiples
Examples: $504=2^{3} \cdot 3^{2} \cdot 7$

$$
30=2 \cdot 3 \cdot 5
$$

prime number a whole number greater than 1 whose only factors are 1 and itself see $1 \cdot 2$ Factors and Multiples

Examples: 2, 3, 5, 7, 11
prism a solid figure that has two parallel, congruent polygonal faces (called bases) see 7.2 Naming and Classifying Polygons and Polyhedrons Examples:

prisms
probability the study of likelihood or chance that describes the possibility of an event occurring see $4 \cdot 6$ Probability
probability line a line used to order the probability of events from least likely to most likely see $4 \cdot 6$ Probability
probability of events the likelihood or chance that events will occur
product the result obtained by multiplying two numbers or variables see $6 \cdot 1$ Writing Expressions and Equations
profit the gain from a business; what is left when the cost of goods and of carrying on the business is subtracted from the amount of money taken in
project to extend a numerical model, to either greater or lesser values, in order to predict likely quantities in an unknown situation
proportion a statement that two ratios are equal see 6.5 Ratio and Proportion
pyramid a solid geometrical figure that has a polygonal base and triangular faces that meet at a common vertex see 7.2 Naming and Classifying Polygons and Polyhedrons Examples:

pyramids
Pythagorean Theorem a mathematical idea stating that the sum of the squared lengths of the two legs of a right triangle is equal to the squared length of the hypotenuse see 7.9 Pythagorean Theorem

Example:

For a right triangle, $a^{2}+b^{2}=c^{2}$.
Pythagorean triple a set of three positive integers a, b, and c, such that $a^{2}+b^{2}=c^{2}$ see 7.9 Pythagorean Theorem
Example: The Pythagorean triple $\{3,4,5\}$

$$
\begin{aligned}
& 3^{2}+4^{2}=5^{2} \\
& 9+16=25
\end{aligned}
$$

quadrant [1] one quarter of the circumference of a circle;
[2] on a coordinate graph, one of the four regions created by the intersection of the x-axis and the y-axis see 6.7 Graphing on the Coordinate Plane
quadratic equation a polynomial equation of the second degree, generally expressed as $a x^{2}+b x+c=0$, where a, b, and c are real numbers and a is not equal to zero
quadrilateral a polygon that has four sides see 7.2 Naming and Classifying Polygons and Polyhedrons Examples:

quadrilaterals
qualitative graphs a graph with words that describes such things as a general trend of profits, income, and expenses over time; it has no specific numbers
quantitative graphs a graph that, in contrast to a qualitative graph, has specific numbers
quartiles values that divide a set of data into four equal parts see 4.2 Displaying Data
quotient the result obtained from dividing one number or variable (the divisor) into another number or variable (the dividend) see $6 \cdot 1$ Writing Expressions and Equations

Example:

divisor
B
radical the indicated root of a quantity
Examples: $\sqrt{3}, \sqrt[4]{14}, \sqrt[12]{23}$
radical sign the root symbol $\sqrt{ }$
radius a line segment from the center of a circle to any point on its perimeter see 7.8 Circles
random sample a population sample chosen so that each member has the same probability of being selected see $4 \cdot 1$ Collecting Data
range in statistics, the difference between the largest and smallest values in a sample see $4 \cdot 4$ Statistics
rank to order the data from a statistical sample on the basis of some criterion-for example, in ascending or descending numerical order
ranking the position on a list of data from a statistical sample based on some criterion
rate [1] fixed ratio between two things; [2] a comparison of two different kinds of units, for example, miles per hour or dollars per hour see 6.5 Ratio and Proportion
ratio a comparison of two numbers see $6 \cdot 5$ Ratio and Proportion
Example: The ratio of consonants to vowels in the alphabet is $21: 5$.
rational numbers the set of numbers that can be written in the form $\frac{a}{b}$, where a and b are integers and b does not equal zero see 2.1 Fractions
Examples: $1=\frac{1}{1}, \frac{2}{9}, 3 \frac{2}{7}=\frac{23}{7},-0.333=-\frac{1}{3}$
ray the part of a straight line that extends infinitely in one direction from a fixed point

Example:

a ray
real numbers the set consisting of zero, all positive numbers, and all negative numbers; real numbers include all rational and irrational numbers
real-world data information processed by people in everyday situations
reciprocal one of a pair of numbers that have a product of 1
see 2.2 Operations with Fractions
Examples: The reciprocal of 2 is $\frac{1}{2}$; of $\frac{3}{4}$ is $\frac{4}{3}$; of x is $\frac{1}{x}$.
rectangle a parallelogram with four right angles
see 7.2 Naming and Classifying Polygons and Polyhedrons
Example:

a rectangle
rectangular prism a prism that has rectangular bases and four rectangular faces see 7.2 Naming and Classifying Polygons and Polyhedrons
reflection a transformation that produces the mirror image of a figure see 7.3 Symmetry and Transformations
Example:

the reflection of a trapezoid
reflex angle any angle with a measure that is greater than 180° but less than 360°

Example:

$\angle A$ is a reflex angle.
regular polygon a polygon in which all sides are equal and all angles are congruent see 7.2 Naming and Classifying Polygons and Polyhedrons

a regular polygon
relationship a connection between two or more objects, numbers, or sets; a mathematical relationship can be expressed in words or with numbers and letters
repeating decimal a decimal in which a digit or a set of digits repeat infinitely see $2 \cdot 4$ Fractions and Decimals Example: $0.121212 \ldots$ is a repeating decimal.
rhombus a parallelogram with all sides of equal length
see 7.2 Naming and Classifying Polygons and Polyhedrons Example:

a rhombus
right angle an angle that measures 90°
Example:

$\angle A$ is a right angle.
right triangle a triangle with one right angle see 7.4 Perimeter Example:

$\triangle A B C$ is a right triangle.
rise the vertical distance between two points see $6 \cdot 8$ Slope and Intercept

Roman numerals the numeral system consisting of the symbols I (1), V (5), X (10), L (50), C (100), D (500), and M $(1,000)$; when a Roman symbol is preceded by a symbol of equal or greater value, the values of a symbol are added $(\mathrm{XVI}=16)$; when a symbol is preceded by a symbol of lesser value, the values are subtracted $(\mathrm{IV}=4)$
root [1] the inverse of an exponent; [2] the radical sign $\sqrt{ }$ indicates square root see 3.2 Square and Cube Roots
rotation a transformation in which a figure is turned a certain number of degrees around a fixed point or line see 7.3 Symmetry and Transformations Example:

> the turning of a triangle
round to approximate the value of a number to a given decimal place
Examples: 2.56 rounded to the nearest tenth is 2.6;
2.54 rounded to the nearest tenth is 2.5 ;

365 rounded to the nearest hundred is 400 .
row a horizontal list of numbers or terms
rule a statement that describes a relationship between numbers or objects
run the horizontal distance between two points see $6 \cdot 8$ Slope and Intercept

5

sample a finite subset of a population, used for statistical analysis see $4 \cdot 1$ Collecting Data
sample space the set of all possible outcomes of a probability experiment see $4 \cdot 5$ Combinations and Permutations
sampling with replacement a sample chosen so that each element has the chance of being selected more than once see $4 \cdot 6$ Probability

Example: A card is drawn from a deck, placed back into the deck, and a second card is drawn. Since the first card is replaced, the number of cards remains constant.
scale the ratio between the actual size of an object and a proportional representation see 8.5 Size and Scale
scale drawing a proportionally correct drawing of an object or area at actual, enlarged, or reduced size
scale factor the factor by which all the components of an object are multiplied in order to create a proportional enlargement or reduction see 8.5 Size and Scale
scalene triangle a triangle with no sides of equal length Example:

$\triangle A B C$ is a scalene triangle.
scale size the proportional size of an enlarged or reduced representation of an object or area see 8.5 Size and Scale
scatter plot (or scatter diagram) a display of data in which the points corresponding to two related factors are graphed and observed for correlation see 4.3 Analyzing Data

Example:

scatter plot
scientific notation a method of writing a number using exponents and powers of ten; a number in scientific notation is written as a number between 1 and 10 multiplied by a power of ten see 3.3 Scientific Notation
Examples: $9,572=9.572 \cdot 10^{3}$ and $0.00042=4.2 \cdot 10^{-4}$
segment two points and all the points on the line between them see $7 \cdot 2$ Naming and Classifying Angles and Triangles
sequence see Patterns page 68
series see Patterns page 68
set a collection of distinct elements or items see 5.3 Sets
side a line segment that forms an angle or joins the vertices of a polygon
sighting measuring a length or angle of an inaccessible object by lining up a measuring tool with one's line of vision
signed number a number preceded by a positive or negative sign
significant digit the number of digits in a value that indicate its precision and accuracy Example: 297,624 rounded to three significant digits is 298,000;
2.97624 rounded to three significant digits is 2.98 .
similar figures figures that have the same shape but are not necessarily the same size see 8.5 Size and Scale Example:

$$
\begin{aligned}
& m \angle A=m \angle D \\
& m \angle B=m \angle E \\
& m \angle C=m \angle F
\end{aligned}
$$

$\triangle A B C$ and $\triangle D E F$ are similar figures.
simple event an outcome or collection of outcomes
simulation a mathematical experiment that approximates real-world processes
skewed distribution an asymmetrical distribution curve representing statistical data that is not balanced around the mean see $4 \cdot 3$ Analyzing Data Example:

slide to move a shape to another position without rotating or reflecting it; also referred to as a translation see 7.3 Symmetry and Transformations
Example:

the slide of a trapezoid
slope [1] a way of describing the steepness of a line, ramp, hill, and so on; [2] the ratio of the rise to the run see $6 \cdot 8$ Slope and Intercept
slope angle the angle that a line forms with the x-axis or other horizontal
slope ratio the slope of a line as a ratio of the rise to the run solid a three-dimensional figure
solution the answer to a mathematical problem; in algebra, a solution usually consists of a value or set of values for a variable
speed the rate at which an object moves
speed-time graph a graph used to chart how the speed of an object changes over time
sphere a perfectly round geometric solid, consisting of a set of points equidistant from a center point

Example:

a sphere
spinner a device for determining outcomes in a probability experiment
Example:

a spinner
spiral see Patterns page 69
spreadsheet a computer tool where information is arranged into cells within a grid and calculations are performed within the cells; when one cell is changed, all other cells that depend on it automatically change see 9.3 Spreadsheets
square [1] a rectangle with congruent sides [2] the product of two equal terms see 7.2 Naming and Classifying Polygons and Polyhedrons, 3.1 Powers and Exponents Example: [1]

a square

$$
[2] 4^{2}=4 \cdot 4=16
$$

square centimeter a unit used to measure the area of a surface; the area of a square measuring one centimeter on each side see 8.3 Area, Volume, and Capacity
square foot a unit used to measure the area of a surface; the area of a square measuring one foot on each side see 8.3 Area, Volume, and Capacity
square inch a unit used to measure the area of a surface; the area of a square measuring one inch on each side see 8.3 Area, Volume, and Capacity
square meter a unit used to measure the area of a surface; the area of a square measuring one meter on each side see 8.3 Area, Volume, and Capacity
square number see Patterns page 69
square pyramid a pyramid with a square base
square root a number that when multiplied by itself equals a given number see 3.2 Square and Cube Roots
Example: 3 is the square root of 9 .

$$
\sqrt{9}=3
$$

square root symbol the mathematical symbol $\sqrt{ }$; indicates that the square root of a given number is to be calculated see 3.2 Square and Cube Roots
standard measurement commonly used measurements, such as the meter used to measure length, the kilogram used to measure mass, and the second used to measure time
statistics the branch of mathematics that investigates the collection and analysis of data see $4 \cdot 4$ Statistics
steepness a way of describing the amount of incline (or slope) of a ramp, hill, line, and so on
stem the tens digit of an item of numerical data between 1 and 99 see stem-and-leaf plot, 4•2 Displaying Data
stem-and-leaf plot a method of displaying numerical data between 1 and 99 by separating each number into its tens digit (stem) and its unit digit (leaf) and then arranging the data in ascending order of the tens digits see $4 \cdot 2$ Displaying Data
Example: Average Points per Game

Stem	Leaf				
0	6				
1	1	8	2	2	5
2	6	1			
3	7				
4	3				
5	8				

2 | $6=26$ points
a stem-and-leaf plot for the data set
$11,26,18,12,12,15,43,37,58,6$, and 21
straight angle an angle that measures 180°; a straight line
strip graph a graph indicating the sequence of outcomes; a strip graph helps to highlight the differences among individual results and provides a strong visual representation of the concept of randomness

Example:
Outcomes of a coin toss
H = heads $\mathrm{T}=$ tails

H H THTTT
 a strip graph

subtraction one of the four basic arithmetical operations, taking one number or quantity away from another

Subtraction Property of Equality the mathematical rule that states that if the same number is subtracted from each side of the equation, then the two sides remain equal see $6 \cdot 4$ Solving Linear Equations
Example: If $a=b$, then $a-c=b-c$.
sum the result of adding two numbers or quantities
see $6 \cdot 1$ Writing Expressions and Equations
Example: $6+4=10$
10 is the sum of the two addends, 6 and 4 .
supplementary angles two angles that have measures whose sum is 180° see $7 \cdot 1$ Classifying Angles and Triangles

$\angle 1$ and $\angle 2$ are supplementary angles.
surface area the sum of the areas of all the faces of a geometric solid, measured in square units see 7.6 Surface Area

Example:

The surface area of this rectangular prism is $2(3 \cdot 3)+4(3 \cdot 8)=114$ square units.
survey a method of collecting statistical data in which people are asked to answer questions see $4 \cdot 1$ Collecting Data
symmetry see line of symmetry, 7.3 Symmetry and
Transformations
Example:

This hexagon has symmetry around the dotted line.
systems of equations a set of two or more equations with the same variables see 6.10 Systems of Equations (1)
table a collection of data arranged so that information can be easily seen
tally marks marks made for certain numbers of objects in keeping account
Example: 洲 III $=8$
tangent [1] a line that intersects a circle in exactly one point;
[2] The tangent of an acute angle in a right triangle is the ratio of the length of the opposite side to the length of the adjacent side

Example:

$\overleftrightarrow{A B}$ is tangent to the curve at point P.
tangent ratio the ratio of the length of the side opposite a right triangle's acute angle to the length of the side adjacent to it Example:

$\angle S$ has a tangent ratio of $\frac{3}{4}$.
term product of numbers and variables see $6 \cdot 1$ Writing Expressions and Equations Example: $x, a x^{2}, 2 x^{4} y^{2}$, and $-4 a b$ are all terms.
terminating decimal a decimal with a finite number of digits
see $2 \cdot 4$ Fractions and Decimals
tessellation see Patterns page 69
tetrahedron a geometrical solid that has four triangular faces see 7.2 Naming and Classifying Polygons and Polyhedrons Example:

a tetrahedron
theoretical probability the ratio of the number of favorable outcomes to the total number of possible outcomes see $4 \cdot 6$ Probability
three-dimensional having three measurable qualities: length, height, and width
tiling completely covering a plane with geometric shapes see tessellations
time in mathematics, the element of duration, usually represented by the variable t
total distance the amount of space between a starting point and an endpoint, represented by d in the equation $d=s$ (speed) $\cdot t$ (time)
total distance graph a coordinate graph that shows cumulative distance traveled as a function of time
total time the duration of an event, represented by t in the equation $t=\frac{d \text { (distance) }}{s(\text { speed })}$
transformation a mathematical process that changes the shape or position of a geometric figure see 7.3 Symmetry and Transformations
translation a transformation in which a geometric figure is slid to another position without rotation or reflection see 7.3 Symmetry and Transformations
transversal a line that intersects two or more other lines at different points see 7.1 Classifying Angles and Triangles
trapezoid a quadrilateral with only one pair of parallel sides see 7.2 Naming and Classifying Polygons and Polyhedrons Example:

tree diagram a connected, branching graph used to diagram probabilities or factors see $1 \cdot 2$ Factors and Multiples, 4.5 Combinations and Permutations

Example:

a tree diagram
trend a consistent change over time in the statistical data representing a particular population
triangle a polygon with three angles and three sides
triangular numbers see Patterns page 69
triangular prism a prism with two triangular bases and three rectangular sides see 7.6 Surface Area
turn to move a geometric figure by rotating it around a point see 7.3 Symmetry and Transformations

Example:

the turning of a triangle
two-dimensional having two measurable qualities: length and width
unbiased sample a sample representative of the entire population
unequal probabilities different likelihoods of occurrence; two events have unequal probabilities if one is more likely to occur than the other
unfair where the probability of each outcome is not equal
union a set that is formed by combining the members of two or more sets, as represented by the symbol \cup; the union contains all members previously contained in both sets see Venn diagram, 5.3 Sets

Example:

unit price the price of a single item or amount
unit rate the rate in lowest terms see $6 \cdot 5$ Ratio and Proportion
Example: 120 miles in two hours is equivalent to a unit rate of 60 miles per hour.
upper quartile the median of the upper half of a set of data, represented by UQ see $4 \cdot 4$ Statistics
variable a letter or other symbol that represents a number or set of numbers in an expression or an equation see $6 \cdot 1$ Writing Expressions and Equations
Example: In the equation $x+2=7$, the variable is x.
variation a relationship between two variables; direct variation, represented by the equation $y=k x$, exists when the increase in the value of one variable results in an increase in the value of the other; inverse variation, represented by the equation $y=\frac{k}{x}$, exists when an increase in the value of one variable results in a decrease in the value of the other

Venn diagram a pictorial means of representing the relationships between sets see $5 \cdot 3$ Sets

Example:

vertex (pl. vertices) the common point of two rays of an angle, two sides of a polygon, or three or more faces of a polyhedron Examples:

vertex of an angle

vertices of a triangle

vertices of a cube
vertex of tessellation the point where three or more tessellating figures come together

Example:

vertical a line that is perpendicular to a horizontal base line see $6 \cdot 7$ Graphing on the Coordinate Plane

Example:

$\overline{A B}$ is vertical to the base of this triangle.
vertical angles opposite angles formed by the intersection of two lines; vertical angles are congruent; in the figure, the vertical angles are $\angle 1$ and $\angle 3$, and $\angle 2$ and $\angle 4$ see 7.1 Classifying Angles and Triangles

volume the space occupied by a solid, measured in cubic units see Formulas page 64, 7.7 Volume, 8.3 Area, Volume, and Capacity

Example:

The volume of this rectangular prism is 30 cubic units.

$$
2 \cdot 3 \cdot 5=30
$$

weighted average a statistical average in which each element in the sample is given a certain relative importance, or weight see $4 \cdot 4$ Statistics

Example: To find the accurate average percentage of people who own cars in three towns with different-sized populations, the largest town's percentage would have to be weighted.
whole numbers the set of all counting numbers plus zero $\{0,1,2,3,4,5 \ldots\}$
width a measure of the distance of an object from side to side

\otimes

x-axis the horizontal reference line in the coordinate graph see $6 \cdot 7$ Graphing on the Coordinate Plane
x-intercept the point at which a line or curve crosses the x-axis see 6.8 Slope and Intercept
\checkmark
y-axis the vertical reference line in the coordinate graph see 6.7 Graphing on a Coordinate Plane
y-intercept the point at which a line or curve crosses the y-axis see 6.8 Slope and Intercept
(2)
zero-pair one positive cube and one negative cube used to model signed-number arithmetic

Formulas

Area (see 7.5)

$$
\begin{aligned}
\text { circle } & A=\pi r^{2}(\mathrm{pi} \cdot \text { square of the radius }) \\
\text { parallelogram } & A=b h(\text { base } \cdot \text { height }) \\
\text { rectangle } & A=\ell w \text { (length } \cdot \text { width }) \\
\text { square } & A=s^{2} \text { (side squared) } \\
\text { trapezoid } A= & \frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& \left(\frac{1}{2} \cdot \text { height } \cdot\right. \text { sum of the bases) } \\
\text { triangle } \quad A= & \frac{1}{2} b h \\
& \left(\frac{1}{2} \cdot \text { base } \cdot \text { height }\right)
\end{aligned}
$$

Volume (see 7-7)

$$
\begin{aligned}
& \text { cone } \quad V=\frac{1}{3} \pi r^{2} h \\
& \left(\frac{1}{3} \cdot \mathrm{pi} \cdot \text { square of the radius } \cdot \text { height }\right) \\
& \text { cylinder } \quad V=\pi r^{2} h \\
& \text { (pi • square of the radius } \cdot \text { height) } \\
& \text { prism } \quad V=B h \text { (area of the base } \cdot \text { height) } \\
& \text { pyramid } \quad V=\frac{1}{3} B h \\
& \left(\frac{1}{3} \cdot \text { area of the base } \cdot\right. \text { height) } \\
& \text { rectangular prism } \quad V=\ell w h \text { (length } \cdot \text { width } \cdot \text { height) } \\
& \text { sphere } \quad V=\frac{4}{3} \pi r^{3} \\
& \text { (} \frac{4}{3} \cdot \mathrm{pi} \cdot \text { cube of the radius) }
\end{aligned}
$$

Perimeter (see 7.4)

parallelogram $\quad P=2 a+2 b$

$$
(2 \cdot \text { side } a+2 \cdot \text { side } b)
$$

rectangle $P=2 \ell+2 w$ (twice length + twice width)
square $P=4 s$

$$
\text { (} 4 \cdot \text { side })
$$

triangle $\quad P=a+b+c($ side $a+$ side $b+$ side $c)$

Formulas

Circumference (see 7.8)

circle $\quad C=\pi d(\mathrm{pi} \cdot$ diameter $)$
or
$C=2 \pi r$
(2•pi \cdot radius)

Probability (see 4.6)

The Experimental Probability of an event is equal to the total number of times a favorable outcome occurred, divided by the total number of times the experiment was done.
Experimental Probability $=\frac{\text { favorable outcomes that occurred }}{\text { total number of experiments }}$ The Theoretical Probability of an event is equal to the number of favorable outcomes, divided by the total number of possible outcomes.
Theoretical Probability $=\frac{\text { favorable outcomes }}{\text { possible outcome }}$

Other

$$
\begin{aligned}
\text { Distance } & d=r t(\text { rate } \cdot \text { time }) \\
\text { Interest } & I=p r t(\text { principle } \cdot \text { rate } \cdot \text { time }) \\
\text { PIE } & \text { Profit }=\text { Income }- \text { Expenses } \\
\text { Temperature } & F=\frac{9}{5} C+32 \\
& \left(\frac{9}{5} \cdot \text { Temperature in }{ }^{\circ} \mathrm{C}+32\right) \\
& C=\frac{5}{9}(F-32) \\
& \left(\frac{5}{9} \cdot\left(\text { Temperature in }{ }^{\circ} \mathrm{F}-32\right)\right)
\end{aligned}
$$

Symbols

\{ \}	set	$\overline{A B}$	segment $A B$	
\varnothing	the empty set	$\overrightarrow{A B}$	ray $A B$	
\subseteq	is a subset of	$\overleftrightarrow{A B}$	line $A B$	
\cup	union	$\triangle A B C$	triangle $A B C$	
\cap	intersection	$\angle A B C$	angle $A B C$	
>	is greater than	$m \angle A B C$	measure of angle	
$<$	is less than		$A B C$	
\geq	is greater than or equal to	$\overline{A B}$ or $m \overline{A B}$	length of segment $A B$	
\leq	is less than or equal to	$\overparen{A B}$	$\operatorname{arc} A B$	
=	is equal to	!	factorial	
\neq	is not equal to degree		permutations of n things taken r	
\%	percent		at a time	
$f(n)$	function, f of n	${ }_{n} \mathrm{C}_{r}$	combinations of	
$a: b$	$\text { ratio of } a \text { to } b, \frac{a}{b}$		n things taken r at a time	
$\|a\|$	absolute value of a	$\sqrt{ }$	square root	
$P(E)$	probability of an event E		cube root	
π	pi	,	foot	
\perp	is perpendicular to		inch	
\|		is parallel to		divide
\cong	is congruent to		divide	
\sim	is similar to		multiply	
	is approximat		multiply	
	equal to		multiply	
\angle	angle		add	
L	right angle		subtract	
Δ	triangle			

Patterns

arithmetic sequence a sequence of numbers or terms that have a common difference between any one term and the next in the sequence; in the following sequence, the common difference is seven, so $8-1=7 ; 15-8=7 ; 22-15=7$, and so forth

Example: 1, 8, 15, 22, 29, 36, 43, ...
Fibonacci numbers a sequence in which each number is the sum of its two predecessors; can be expressed as $x_{n}=x_{n-2}+x_{n-1}$; the sequence begins: $1,1,2,3,5,8,13,21,34,55, \ldots$
Example:

geometric sequence a sequence of terms in which each term is a constant multiple, called the common ratio, of the one preceding it; for instance, in nature, the reproduction of many single-celled organisms is represented by a progression of cells splitting in two in a growth progression of $1,2,4,8,16,32, \ldots$, which is a geometric sequence in which the common ratio is 2
harmonic sequence a progression $a_{1}, a_{2}, a_{3}, \ldots$ for which the reciprocals of the terms, $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, \ldots$ form an arithmetic sequence

Lucas numbers a sequence in which each number is the sum of its two predecessors; can be expressed as $x_{n}=x_{n-2}+x_{n-1}$; the sequence begins: $2,1,3,4,7,11,18,29,47, \ldots$
magic square a square array of different integers in which the sum of the rows, columns, and diagonals are the same

Example:

Pascal's triangle a triangular arrangement of numbers in which each number is the sum of the two numbers above it in the preceding row

Example:

sequence a set of elements, especially numbers, arranged in order according to some rule
series the sum of the terms of a sequence
spiral a plane curve traced by a point moving around a fixed point while continuously increasing or decreasing its distance from it

Example:

The shape of a chambered nautilus shell is a spiral.
square numbers a sequence of numbers that can be shown by dots arranged in the shape of a square; can be expressed as x^{2}; the sequence begins $1,4,9,16,25,36,49, \ldots$
Example:

square numbers
tessellation a tiling pattern made of repeating polygons that fills a plane completely, leaving no gaps
Example:

tessellation
triangular numbers a sequence of numbers that can be shown by dots arranged in the shape of a triangle; any number in the sequence can be expressed as $x_{n}=x_{n-1}+n$; the sequence begins $1,3,6,10,15,21, \ldots$
Example:

1

6

10
triangular numbers

Part Two

 IDIITES

1 Numbers and Computation 72
2 Rational Numbers 92
3 Powers and Roots 144
4 Data, Statistics, and Probability 174
5 Logic 234
6 Algebra 250
7 Geometry 316
8 Measurement 372
9 Tools 394

Hotidile 1

Numbers and Computation

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 1-2).

Problem Set

Use parentheses to make each expression true. (Lesson 1-1)

1. $4+7 \cdot 3=33$
2. $30+15 \div 5+5=14$

Is it a prime number? Write yes or no. (Lesson 1-2)
3. 77
4. 111
5. 131
6. 301

Write the prime factorization for each number. (Lesson 1.2)
7. 40
8. 110
9. 230

Find the GCF for each pair of numbers. (Lesson 1.2)
10. 12 and 40
11. 15 and 50
12. 18 and 171

Find the LCM for each pair of numbers. (Lesson 1.2)
13. 5 and 12
14. 15 and 8
15. 18 and 30
16. A mystery number is a common multiple of 2,4 , and 15 . It is also a factor of 120 but does not equal 120. What is the number? (Lesson 1-2)

Give the absolute value of the integer. Then write the opposite of the original integer. (Lesson 1.3)
17. -7
18. 15
19. -12
20. 10

Graph each integer on a number line. Write $>$ or $<$. (Lesson 1-3)
21. $3 \square-1$
22. $-8 \square 4$
23. $-2 \square-4$
24. $-3 \square-7$

Add or subtract. (Lesson 1.3)
25. $9+(-7)$
26. $4-8$
27. $-5+(-6)$
28. 8 - (-8)
29. $-6-(-6)$
30. $-3+9$

Compute. (Lesson 1-3)
31. (-6) • (-7)
32. $48 \div(-12)$
33. $-56 \div(-8)$
34. $(-4 \cdot 3) \cdot(-2)$
35. $3 \cdot[-8+(-4)]$
36. $-5[4-(-6)]$
37. What can you say about the product of a negative integer and a positive integer? (Lesson $1 \cdot 3$)
38. What can you say about the sum of two positive integers? (Lesson 1•3)

absolute value (Lesson 1.3)
common factor (Lesson 1-2)
composite number (Lesson 1.2)
coordinate (Lesson 1-3)
divisible (Lesson 1-2)
factor (Lesson 1.2)
greatest common factor
(Lesson 1-2)
least common multiple (Lesson 1.2)
multiple (Lesson 1-2)
negative integer (Lesson 1.3)
positive integer (Lesson 1-3)
prime factorization
(Lesson 1-2)
prime number (Lesson 1-2)

$1 \mathbf{1 0}$ Order of Operations

Understanding the Order of Operations

Solving a problem may involve using more than one operation. Your answer can depend on the order in which you do the operations.

For instance, consider the expression $3^{2}+5 \cdot 7$.

The order in which you perform operations makes a difference.
To make sure that there is just one answer to a series of computations, mathematicians have agreed upon an order in which to complete the operations.

EXAMPLE Using the Order of Operations

How can you simplify $(4+5) \cdot 3^{2}-5$?
$=(9) \cdot 3^{2}-5 \quad$ - Simplify within the parentheses.
$=9 \cdot(9)-5 \quad$ - Evaluate the power (p. 153).
$=(81)-5 \quad$ - Multiply and divide from left to right.
$=76 \quad$ - Add and subtract from left to right.
So, $(4+5) \cdot 3^{2}-5=76$.

Check It Out

Simplify.
(1) $24-4 \cdot 3$
(2) $3 \cdot\left(4+5^{2}\right)$

1.1 Exercises

Is each expression true? Write yes or no.

1. $7 \cdot 4+5=33$
2. $3+4 \cdot 8=56$
3. $6 \cdot(4+6 \div 2)=30$
4. $4^{2}-1=9$
5. $(3+5)^{2}=64$
6. $\left(2^{3}+3 \cdot 4\right)+5=49$
7. $25-4^{2}=9$
8. $\left(4^{2} \div 2\right)^{2}=64$

Simplify.
9. $24-(4 \cdot 5)$
10. $2 \cdot\left(6+5^{2}\right)$
11. $\left(2^{4}\right) \cdot(12-8)$
12. $5^{2}+(5-3)^{2}$
13. $(16-10)^{2} \cdot 5$
14. $12+4 \cdot 3^{2}$
15. $\left(4^{2}+4\right)^{2}$
16. $60 \div(12+3)$
17. $30-(10-7)^{2}$
18. $44+5 \cdot\left(4^{2} \div 8\right)$

Use parentheses to make each expression true.
19. $4+4 \cdot 7=56$
20. $5 \cdot 20+80=500$
21. $48 \div 8-2=8$
22. $10+10 \div 2-3=12$
23. $12 \cdot 3^{2}+7=192$
24. $6^{2}-15 \div 3 \cdot 2^{2}=124$
25. Use five 2 s , a set of parentheses (as needed), and any of the operations to make the numbers 1 through 5 .

(P arentheses) E xponents ${ }^{2}$
 \times Multiplication \&
 D ivision -
 + A dditition \&
 S ubtraction-

1.2 Factors and

 Multiples
Factors

Two numbers multiplied together to produce 12 are considered factors of 12 . So, the factors of 12 are $1,2,3,4,6$, and 12 .

To decide whether one number is a factor of another, divide. If there is a remainder of 0 , the number is a factor.

EXAMPLE Finding the Factors of a Number

What are the factors of 18 ?
$1 \cdot 18=18$
$2 \cdot 9=18$
$3 \cdot 6=18$
1, 2, 3, 6, 9, 18
So, the factors of 18 are $1,2,3,6,9$, and 18 .

Check It Out

Find the factors of each number.
(1) 8
(2) 48

Common Factors

Factors that are the same for two or more numbers are common factors.

EXAMPLE Finding Common Factors

What numbers are factors of both 12 and 40 ?

$1,2,3,4,6,12$	- List the factors of the first number.
$1,2,4,5,8,10,20,40$	- List the factors of the second number.
$1,2,4$	- List the common factors that are in
	both lists.

So, the common factors of 12 and 40 are 1,2 , and 4.

Check It Out

List the common factors of each set of numbers.
(3) 8 and 18
(4) 10,30 , and 45

Greatest Common Factor

The greatest common factor (GCF) of two whole numbers is the greatest number that is a factor of both the numbers.

One way to find the GCF is to list all the factors of each number, then list the common factors and choose the greatest common factor.

What is the GCF of 24 and 60 ?

- The factors of 24 are $1,2,3,4,6,8,12,24$.
- The factors of 60 are $1,2,3,4,5,6,10,12,15,20,30,60$.
- The common factors that are in both lists are $1,2,3,4,6,12$.

The greatest common factor of 24 and 60 is 12 .

Check It Out

Find the GCF for each pair of numbers.
(5) 8 and 18
(6) 12 and 30
(7) 14 and 28
(8) 60 and 84

Divisibility Rules

Sometimes you may wish to know if a number is a factor of a much larger number. For example, if you want to form teams of 3
from a group of 246 basketball players, you will need to know whether 246 is divisible by 3 . A number is divisible by another number if the remainder of their quotient is 0 .

You can quickly figure out whether 246 is divisible by 3 if you know the divisibility rule for 3 . A number is divisible by 3 if the sum of the digits is divisible by 3 . For example, 246 is divisible by 3 because $2+4+6=12$, and 12 is divisible by 3 .

It can be helpful to know other divisibility rules.

A number is divisible by:	
2	the last digit is an even number or 0 .
3	the sum of the digits is divisible by 3 .
4	the last two digits are divisible by 4.
5	the last digit is 0 or 5 .
6	the number is divisible by both 2 and 3 .
8	the last three digits are divisible by 8.
9	the sum of the digits is divisible by 9 .
10	the number ends in 0 .

Check It Out

Check by using divisibility rules.
(9) Is 424 divisible by 4 ?
(10) Is 199 divisible by 9 ?
(11) Is 534 divisible by 6 ?
(12) Is 1,790 divisible by 5 ?

Prime and Composite Numbers

A prime number is a whole number greater than 1 that has exactly two factors, 1 and itself. Here are the first 10 prime numbers:

$$
2,3,5,7,11,13,17,19,23,29
$$

Twin primes are pairs of primes that have a difference of 2 . The pairs of prime numbers $(3,5),(5,7)$, and $(11,13)$ are examples of twin primes.

A number with more than two factors is called a composite number. When two composite numbers have no common factors greater than 1 , they are said to be relatively prime.

The numbers 12 and 25 are relatively prime.

- The factors of 12 are $1,2,3,4,6,12$.
- The factors of 25 are $1,5,25$.

Since 12 and 25 do not have a common factor greater than 1 , they are relatively prime.

Check It Out

Is it a prime number? Write yes or no.

(13) 61
(14) 77
(15) 83
(16) 91
(17) List a pair of twin primes greater than 13.

Prime Factorization

Every composite number can be expressed as a product of prime factors.

You can use a factor tree to find the prime factors. The one below shows the prime factorization of 60 . Although the order of the factors may be different because you can start with different pairs of factors, every factor tree for 60 has the same prime factorization. You also can write the prime factorization using exponents (p. 152).

EXAMPLE Finding Prime Factorization

Find the prime factorization of 264.

Check It Out

Write the prime factorization for each number.
(18) 80
(19) 120

Shortcut to Finding GCF

You can use prime factorization to find the greatest common factor.

EXAMPLE Using Prime Factorization to Find the GCF

Find the greatest common factor of 12 and 20.

$12=2 \cdot 2 \cdot 3$	- Find the prime factors of each number.
$20=2 \cdot 2 \cdot 5$	Use a factor tree if necessary.
$2 \cdot 2=4$	- Identify the prime factors common to
	both numbers and find their product.

So, the GCF of 12 and 20 is 2^{2}, or 4 .

Check It Out

Use prime factorization to find the GCF of each pair of numbers.
(20) 6 and 24
(21) 24 and 56
(22) 14 and 28
(23) 60 and 84

Multiples and Least Common Multiples

The multiples of a number are the whole-number products when that number is a factor. In other words, you can find a multiple of a number by multiplying it by $1,2,3$, and so on.

The least common multiple (LCM) is the smallest positive number that is a multiple of two or more whole numbers. One way to find the LCM of a pair of numbers is to first list positive multiples of each number, and then identify the smallest multiple common to both. For instance, to find the LCM of 6 and 8 :

- List multiples of $6: 6,12,18,24,30, \ldots$
- List multiples of $8: 8,16,24,32, \ldots$
- The LCM of 6 and 8 is 24 .

Another way to find the LCM is to use prime factorization.

EXAMPLE Using Prime Factorization to Find the LCM

Use prime factorization to find the least common multiple of 6 and 8.

$\begin{aligned} & 6=2 \cdot 3 \\ & 8=2 \cdot 2 \cdot 2 \end{aligned}$	- Find the prime factors of each number. Both numbers have one 2 in their lists. The 6 has an extra 3 and the 8 has two extra 2 s.
$2 \cdot 3 \cdot 2 \cdot 2=24$	- Multiply the common factors and the extra factors.
common extra	
factor factors	

So, the LCM of 6 and 8 is 24 .

Check It Out

Find the LCM for each pair of numbers.

(24) 6 and 9
(25) 20 and 35
(26) 9 and 4
(27) 25 and 75

1.2 Exercises

Find the factors of each number.

1. 16
2. 21
3. 36
4. 54

Is it a prime number? Write yes or no.
5. 71
6. 87
7. 103
8. 291

Write the prime factorization for each number.
9. 50
10. 130
11. 180
12. 320

Find the GCF for each pair of numbers.
13. 75 and 125
14. 8 and 40
15. 18 and 60
16. 20 and 25
17. 16 and 50
18. 15 and 32

Find the LCM for each pair of numbers.
19. 9 and 15
20. 12 and 60
21. 18 and 24
22.6 and 32
23. What is the divisibility rule for 9 ? Is 118 divisible by 9 ?
24. Describe how to use prime factorization to find the GCF of two numbers.
25. A mystery number is a factor of 100 and a common multiple of 2 and 5 . The sum of its digits is 5 . What is the number?

1.3 Integer operations

Positive and Negative Integers

Some quantities can be expressed using negative numbers. For example, negative numbers show below-zero temperatures, drops in the value of stocks, or business losses.

Whole numbers less than zero are called negative integers. Whole numbers greater than zero are called positive integers.

Here is the set of all integers:

$$
\{\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}
$$

Check It Out

Write an integer to describe the situation.
(1) 6° below zero
2. a gain of $\$ 200$

Opposites of Integers and Absolute Value

Integers can describe opposite ideas. Each integer has an opposite.
The opposite of a gain of 3 inches is a loss of 3 inches.
The opposite of spending $\$ 8$ is earning $\$ 8$.
The opposite of -6 is +6 .
The absolute value of an integer is its distance from 0 on the number line. You write the absolute value of -7 as $|-7|$.
-7 is 7 units away from 0 .

The absolute value of -7 is 7 . You write $|-7|=7$.

Check It Out

Give the absolute value of the integer. Then write the opposite of the original integer.
(3) - 12
(4) 5
(5) 0

Comparing and Ordering Integers

You can compare integers by graphing them on a number line. The number that is assigned to a point on a number line is called a coordinate. To graph an integer, locate the point corresponding to the integer on a number line.

The graph shows the points with coordinates -7 and 5 on the number line. When comparing integers on a number line, the integer farthest to the right is greater than the integers to the left on the number line. This means that 5 is greater than -7 . When comparing a positive and a negative integer, the positive integer is always greater than the negative integer. When comparing negative integers, the negative integer closest to 0 is the greatest integer.

You can use inequality symbols $(<,>)$ to compare integers. When comparing -4 and 2,2 is to the right of -4 . Therefore, $-4<2$ or $2>-4$.

EXAMPLE Comparing and Ordering Integers

Compare and order $-2,6,-5$, and 3 .

- Graph the integers $-2,6,-5$, and 3 on the number line.

- Place the integers in order from left to right and compare.

$$
-5,-2,3 \text {, and } 6 ;-2<6,-2>5,6>-5,6>3,-5<3
$$

Check It Out

Graph each integer on a number line. Write $>$ or $<$.
(6) $2 \square-5$
(7) $-4 \square-2$

Place the integers in order from least to greatest.
(8) $6,-1,3,-4$
(9) $-5,-2,7,4$

Adding and Subtracting Integers

Use a number line to model addition and subtraction of integers.

When you add integers of the same sign, add the absolute values of the integers and use the sign of the addends. When adding integers of opposite signs, find the absolute values, subtract the smaller integer from the larger integer, and give the sum the sign of the integer that has the larger absolute value.

EXAMPLE Adding Integers

Add $-4+(-8)$.
$|-4|+|-8|=\quad$ - Add the absolute values.
$4+8=12$
$-4+(-8)=-12 \quad$ - Give the sum the same sign as the addends.
So, $-4+(-8)=-12$.
Add $8+(-3)$.

$\|8\|+\|-3\|=$	- Find the absolute values.
$8-3=5$	- Subtract the smaller absolute value
	from the larger.
$8+(-3)=5$	- Give the sum the sign of the integer
	that has the larger absolute value.

So, $8+(-3)=5$.

Subtracting an integer is the same as adding its opposite. When subtracting integers, change the subtracted integer to its opposite and add the two integers following the rules for addition.

EXAMPLE Subtracting Integers

Subtract 5-8.

$5+(-8)=$	- Change to an addition problem and convert the subtracted integer to its opposite.
$5+(-8)=-3$	- Add the two integers by following the rules for addition.
So, $5-8=-3$.	- Change to an addition problem and convert the subtracted integer to its opposite.
Subtract $9-(-4)$.	- Add the two integers by following the rules for addition.

So, $9-(-4)=13$.
Subtract $-7-2$.

$$
-7+(-2)=
$$

$-7+(-2)=-9$

- Change to an addition problem and convert the subtracted integer to its opposite.
- Add the two integers by following the rules for addition.
So, $-7-2=-9$.

Check It Out

Solve.
(10) $5-7$
(11) $4+(-4)$
(12) $-9-(-4)$
(13) $0+(-3)$

Multiplying and Dividing Integers

Multiply and divide integers as you would whole numbers, then use these rules for writing the sign of the answer. The product and quotient of two integers with like signs are positive.

EXAMPLE Multiplying and Dividing Integers with Like Signs

Multiply (-4 • (-3).
$(-4) \cdot(-3)=12 \quad$ - When the signs of the two integers are the same, the product is positive.
So, $(-4) \cdot(-3)=12$.
Divide $-24 \div(-4)$.
$-24 \div(-4)=6$

- When the signs of the two integers are the same, the quotient is positive.
So, $-24 \div(-4)=6$.

When the signs of two integers are different, the product and quotient are negative.

EXAMPLE Multiplying and Dividing Integers with Unlike Signs

Multiply (-3) • (6).
$(-3) \cdot(6)=-18 \quad$ - When the signs of the two integers are different, the product is negative.
So, $(-3) \cdot(6)=-18$.
Divide $-8 \div 2$.
$-8 \div 2=-4$

- When the signs of the two integers are different, the quotient is negative.
So, $-8 \div 2=-4$.

Check It Out

Find the product or quotient.

(14) $(-2) \cdot(-5)$
(15) $9 \div(-3)$
(10) $-15 \div(-5)$

1.3 Exercises

Give the absolute value of the integer. Then write its opposite.

1. -14
2. 6
3. -8
4. 1

Graph each integer on a number line. Write $>$ or $<$.
5. $-7 \square 3$
6. $-5 \square-2$
7. $8 \square-5$
8. $-1 \square 6$

Add or subtract.
9. 5 - 3
10. $4+(-6)$
11. $-7-(-4)$
12. $0+(-5)$
13. $-2+6$
14. $0-8$
15. $0-(-8)$
16. $-2-8$
17. $4+(-4)$
18. $-9-(-5)$
19. $-5-(-5)$
20. $-7+(-8)$

Find the product or quotient.
21. (-2) • (-6)
22. $8 \div(-4)$
23. $-15 \div 5$
24. (-6) (7)
25. (4) • (-9)
26. $-24 \div 8$
27. $-18 \div(-3)$
28. (3) • (-7)

Compute.
29. $[(-3)(-2)] \cdot 4$
30. $6 \cdot[(3)(-4)]$
31. $[(-2)(-5)] \cdot-3$
32. $-4 \cdot[3+(-5)]$
33. $(-8-2) \cdot 3$
34. $-4 \cdot[6-(-3)]$
35. Is the absolute value of a negative integer positive or negative?
36. If you know that the absolute value of an integer is 4 , what are the possible values for that integer?
37. What can you say about the sum of two negative integers?
38. What can you say about the product of two negative integers?
39. The temperature at noon was $18^{\circ} \mathrm{F}$. For the next 4 hours it dropped at a rate of 3 degrees an hour. First express this change as an integer. Then give the temperature at 4 P.m.

Numbers and Computation

What have you learned?

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 1-2).

Problem Set

Use parentheses to make each expression true. (Lesson 1-1)

1. $4+9 \cdot 2=26$
2. $25+10 \div 2+7=37$
3. $2 \cdot 3+4^{2}=38$
4. $6+7 \cdot 5^{2}-7=318$
5. $14+9 \cdot 6 \div 3^{2}=20$

Is it a prime number? Write yes or no. (Lesson 1-2)
6. 87
7. 102
8. 143
9. 401

Write the prime factorization for each number. (Lesson 1-2)
10. 35
11. 150
12. 320

Find the GCF for each pair of numbers. (Lesson 1-2)
13. 16 and 30
14. 12 and 50
15. 10 and 160

Find the LCM for each pair of numbers. (Lesson 1-2)
16. 5 and 12
17. 15 and 8
18. 18 and 30
19. What is the divisibility rule for 6 ? Is 246 a multiple of 6? (Lesson 1-2)

Give the absolute value of the integer. Then write the opposite of the original integer. (Lesson 1-3)
20. -9
21. 13
22. -10
23. 20

Graph each integer on a number line. Write $>$ or $<$. (Lesson 1-3)
24. $5 \square-3$
25. $-7 \square 2$
26. $-1 \square-8$
27. $-4 \square-6$

Add or subtract. (Lesson 1-3)
28. $9+(-8)$
29. $6-7$
30. $-8+(-9)$
31. 5 - (-5)
32. $-7-(-7)$
33. $-4+12$

Compute. (Lesson 1-3)
34. (-8) • (-9)
35. $64 \div(-32)$
36. $-36 \div(-9)$
37. $(-4 \cdot 5) \cdot(-3)$
38. $4 \cdot[-3+(-8)]$
39. $-6 \cdot[5-(-8)]$
40. What is true of the product of two positive integers? (Lesson 1-3)
41. What is true of the difference of two negative integers? (Lesson 1-3)

absolute value (Lesson 1.3)
common factor (Lesson 1-2)
composite number (Lesson 1-2)
coordinate (Lesson 1.3)
divisible (Lesson 1.2)
factor (Lesson 1-2)
greatest common factor
(Lesson 1-2)

Write definitions for the following words.
least common multiple
(Lesson 1-2)
multiple (Lesson 1-2)
negative integer (Lesson 1-3)
positive integer (Lesson 1-3)
prime factorization
(Lesson 1-2)
prime number (Lesson 1.2)

Hotionite 2

Rational Numbers

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 2-2).

Problem Set

1. It takes Mr. Chen about $1 \frac{1}{2}$ work days to install a tile floor in an average-size kitchen. How many days would it take him to install floors for 6 kitchens? (Lesson 2.2)
2. Leslie has $7 \frac{1}{2}$ cups of cooked pasta. She wants each serving to be $\frac{3}{4}$ cup. How many servings does she have? (Lesson 2-2)
3. In one basketball game, Julian scored $\frac{3}{7}$ of his free throws. In a second basketball game, he scored $\frac{1}{2}$ of his free throws. In which game did he perform better? (Lesson 2.4)
4. Nalani got 17 out of 20 questions correct on her science test. What percent did she get correct? (Lesson 2.6)
5. Which fraction is not equivalent to $\frac{9}{12}$? (Lesson 2•1)
A. $\frac{3}{4}$
B. $\frac{6}{8}$
C. $\frac{8}{11}$
D. $\frac{75}{100}$
6. Find the improper fraction and write it as a mixed number.
(Lesson 2•1)
A. $\frac{6}{12}$
B. $\frac{4}{3}$
C. $3 \frac{5}{6}$

Add or subtract as indicated. Write your answers in simplest form. (Lesson 2-2)
7. $\frac{2}{3}+\frac{1}{2}$
8. $3 \frac{3}{8}-1 \frac{5}{8}$
9. $6-2 \frac{3}{4}$
10. $3 \frac{1}{2}+4 \frac{4}{5}$

Multiply or divide. (Lesson 2-2)
11. $\frac{4}{5} \cdot \frac{1}{2}$
12. $\frac{3}{4} \div 1 \frac{1}{2}$
13. $3 \frac{3}{8} \cdot \frac{2}{9}$
14. $7 \frac{1}{2} \div 2 \frac{1}{2}$

Solve. (Lesson 2.3)
15. $3.604+12.55$
16. $11.4-10.08$
17. $6.05 \cdot 5.1$
18. $67.392 \div 9.6$
19. Write the following numbers in order from least to greatest:
$1 \frac{13}{20}, 1.605,1.065, \frac{33}{200}$. (Lesson 2•4)
Name all sets of numbers to which each real number belongs. (Lesson 2.5)
20. $\sqrt{19}$
21. -3.56

Solve the following. Round answers to the nearest tenth.
(Lesson 2-7)
22. What percent of 80 is 24 ? 23. Find 23% of 121 .
24. 44 is 80% of what number?

Holdurtls
benchmark (Lesson 2.6)
discount (Lesson 2.7)
improper fraction (Lesson 2.1)
irrational number (Lesson 2.5)
mixed number (Lesson 2.1) multiplicative inverse
(Lesson 2-2)
percent (Lesson 2.6)
percent proportion (Lesson 2.7) rational numbers (Lesson 2.1) reciprocal (Lesson 2-2) repeating decimal (Lesson 2•4) terminating decimal
(Lesson 2-4)

2.1 Fractions

Recall that rational numbers are numbers that can be written as fractions such as $\frac{a}{b}$, where a and b are integers and $b \neq 0$. Because -5 can be written as $-\frac{5}{1}$, and $3 \frac{3}{4}$ can be written as $\frac{15}{4}$, -5 and $3 \frac{3}{4}$ are rational numbers.

All whole numbers and integers can also be classified as rational numbers. There are some numbers that are not rational, such as $\sqrt{2}$ and π because they cannot be expressed as a fraction.

Equivalent Fractions

Finding Equivalent Fractions

To find a fraction that is equivalent to another fraction, you can multiply or divide the original fraction by a form of 1 .

EXAMPLE Methods for Finding Equivalent Fractions

Find a fraction equal to $\frac{6}{12}$.

- Multiply or divide by a form of 1 .

$$
\begin{aligned}
& \text { Multiply or } \\
& \text { Divide } \\
& \frac{6}{12} \cdot \frac{5}{5}=\frac{30}{60} \quad \frac{6}{12} \div \frac{2}{2}=\frac{3}{6} \\
& \frac{6}{12}=\frac{30}{60} \quad \frac{6}{12}=\frac{3}{6} \\
& \text { So, } \frac{6}{12}=\frac{3}{6} \text {. }
\end{aligned}
$$

Check It Out

Write two fractions equivalent to each fraction.
(1) $\frac{1}{4}$
(2) $\frac{10}{20}$
(3) $\frac{4}{5}$

4 Write three fractions equivalent to the number 1.

Deciding Whether Two Fractions Are Equivalent

Two fractions are equivalent if each fraction names the same amount. There are many fractional names for the same amount.

Such as: $\frac{1}{2}=\frac{3}{6}=\frac{4}{8}=\frac{6}{12}$
You can identify equivalent fractions by comparing the cross products (p. 282) of the fractions. If the cross products are equal, the fractions are equivalent.

EXAMPL E Deciding Whether Two Fractions Are Equivalent

Determine whether $\frac{2}{4}$ is equivalent to $\frac{10}{20}$.
$\frac{2}{4}-\frac{10}{20}$
$40=40$

- Find the cross products of the fractions.
$\frac{2}{4}=\frac{10}{20}$
- Compare the cross products.
- The cross products are the same; so the fractions are equivalent.

So, $\frac{2}{4}$ is equivalent to $\frac{10}{20}$.

Check It Out

Use the cross products method to determine whether each pair of fractions is equivalent.
(5) $\frac{15}{20}, \frac{30}{20}$
(6) $\frac{4}{5}, \frac{24}{30}$
(7) $\frac{3}{4}, \frac{15}{24}$

Writing Fractions in Simplest Form

When the numerator and the denominator of a fraction have no common factor other than 1 , the fraction is in simplest form.

To express a fraction in simplest form, you can divide the numerator and denominator by their greatest common factor (GCF).

EXAMPLE Finding Simplest Form of Fractions

Express $\frac{18}{24}$ in simplest form.
The factors of 18 are:

- List the factors of the numerator.

1, 2, 3, 6, 9,18
The factors of 24 are: - List the factors of the denominator.
$1,2,3,4,6,8,12,24$
The GCF is 6 .

- Find the greatest common factor (GCF).
$\frac{18 \div 6}{24 \div 6}=\frac{3}{4}$
- Divide the numerator and the denominator by the GCF.
So, $\frac{18}{24}$ in simplest form is $\frac{3}{4}$.

Check It Out

Express each fraction in simplest form.
(8) $\frac{8}{10}$
(9) $\frac{12}{16}$
(10) $\frac{24}{60}$

Writing Improper Fractions and Mixed Numbers

An improper fraction, such as $\frac{7}{2}$, is a fraction in which the numerator is greater than the denominator. Improper fractions represent quantities that are greater than 1 .

A number composed of a whole number and a fraction, such as $3 \frac{1}{2}$, is a mixed number.

You can write any mixed number as an improper fraction and any improper fraction as a mixed number.

$$
\frac{7}{2}=3 \frac{1}{2}
$$

You can use division to change an improper fraction to a mixed number.

EXAMPLE Changing an Improper Fraction to a Mixed Number

Change $\frac{17}{5}$ to a mixed number.
 - 15
$2 \leftarrow$ remainder
quotient $\rightarrow 3 \frac{2}{5} \longleftarrow$ remainder - Write the mixed number.
So, $\frac{17}{5}$ written as a mixed number is $3 \frac{2}{5}$.

Check It Out

Write a mixed number for each improper fraction.
(11) $\frac{43}{6}$
(12) $\frac{34}{3}$
(13) $\frac{32}{5}$
(14) $\frac{37}{4}$

You can use multiplication to change a mixed number to an improper fraction. Rename the whole-number part as an improper fraction with the same denominator as the fraction part. Then add the two parts.

EXAMPLE Changing a Mixed Number to an Improper Fraction

Change $3 \frac{1}{4}$ to an improper fraction.
$3 \cdot \frac{4}{4}=\frac{12}{4}$

- Multiply the whole-number part by a representation of 1 that has the same denominator as the fraction part.
$3 \frac{1}{4}=\frac{12}{4}+\frac{1}{4}=\frac{13}{4} \quad$ - Add the two parts.
So, $3 \frac{1}{4}$ written as an improper fraction is $\frac{13}{4}$.

Check It Out

Write an improper fraction for each mixed number.
(15) $4 \frac{5}{8}$
(16) $12 \frac{5}{6}$
(17) $24 \frac{1}{2}$
(18) $32 \frac{2}{3}$

2•1 Exercises

Write one fraction equivalent to the given fraction.

1. $\frac{1}{2}$
2. $\frac{7}{8}$
3. $\frac{40}{60}$
4. $\frac{18}{48}$

Express each fraction in simplest form.
5. $\frac{45}{90}$
6. $\frac{24}{32}$
7. $\frac{12}{34}$
8. $3 \frac{12}{60}$
9. $\frac{38}{14}$
10. $\frac{82}{10}$

Find the GCF of each pair of numbers.
11. 16, 21
12. 81,27
13. 18,15

Write a mixed number for each improper fraction.
14. $\frac{25}{4}$
15. $\frac{12}{10}$
16. $\frac{11}{4}$

Write an improper fraction for each mixed number.
17. $5 \frac{1}{6}$
18. $8 \frac{3}{5}$
19. $13 \frac{4}{9}$

2.2 Operations with Fractions

Adding and Subtracting Fractions with Like Denominators

When you add or subtract fractions that have the same denominator, you add or subtract the numerators. The denominator stays the same.

EXAMPLE
 Adding and Subtracting Fractions with Like Denominators

Add $\frac{3}{4}+\frac{2}{4}$.
$3+2=5$

- Add or subtract the numerators.
$\frac{3}{4}+\frac{2}{4}=\frac{5}{4}$
- Write the result over the like denominator.
$\frac{5}{4}=1 \frac{1}{4}$
- Simplify, if possible.

So, $\frac{3}{4}+\frac{2}{4}=1 \frac{1}{4}$.

Check It Out

Add or subtract. Simplify, if possible.
(1) $\frac{12}{15}+\frac{6}{15}$
(2) $\frac{24}{34}+\frac{13}{34}$
(3) $\frac{11}{12}-\frac{5}{12}$
(4) $\frac{7}{10}-\frac{2}{10}$

Adding and Subtracting Fractions with Unlike Denominators

To add or subtract fractions with unlike denominators, you need to change the fractions to equivalent fractions with common denominators.

EXAMPLE
 Adding and Subtracting Fractions with Unlike Denominators

Add $\frac{4}{5}+\frac{3}{4}$.

20 is the LCD of 4 and 5.
$\frac{4}{5}=\frac{4}{5} \cdot \frac{4}{4}=\frac{16}{20}$ and $\frac{3}{4}=\frac{3}{4} \cdot \frac{5}{5}=\frac{15}{20}$
$\frac{16}{20}+\frac{15}{20}=\frac{31}{20}$
$\frac{31}{20}=1 \frac{11}{20}$
So, $\frac{4}{5}+\frac{3}{4}=1 \frac{11}{20}$.

- Find the least common denominator.
- Write equivalent fractions with the LCD.
- Add or subtract the numerators. Write the result over the common denominator.
- Simplify, if possible.

Check It Out

Add or subtract. Simplify, if possible.
(5) $\frac{9}{10}+\frac{1}{2}$
(6) $\frac{1}{2}+\frac{5}{7}$
(7) $\frac{4}{5}-\frac{3}{4}$
(8) $\frac{5}{8}-\frac{1}{6}$

Adding and Subtracting Mixed Numbers

Adding and subtracting mixed numbers is similar to adding and subtracting fractions.

Adding Mixed Numbers with Common Denominators

You add mixed numbers with like fractions by adding the fraction part and then the whole numbers.

EXAMPL $=$ Adding Mixed Numbers with Common Denominators

Add $5 \frac{3}{8}+2 \frac{3}{8}$.

$$
\begin{array}{r}
5 \frac{3}{8} \\
+2 \frac{3}{8} \\
\hline 7 \frac{6}{8}
\end{array}
$$

- Add the fractions, and then add the whole numbers.

$$
7 \frac{6}{8}=7 \frac{3}{4}
$$

So, $5 \frac{3}{8}+2 \frac{3}{8}=7 \frac{3}{4}$.

Check It Out

Add. Simplify, if possible.
(9) $4 \frac{2}{6}+5 \frac{3}{6}$
(10) $21 \frac{7}{8}+12 \frac{6}{8}$
(11) $23 \frac{7}{10}+37 \frac{3}{10}$

Adding Mixed Numbers with Unlike Denominators

You can add mixed numbers with unlike fractions by writing equivalent fractions with a common denominator. Sometimes you will have to simplify an improper fraction in the answer.

EXAMPLE Adding Mixed Numbers with Unlike Denominators

$$
\begin{array}{ll}
\text { Add } 4 \frac{2}{3}+1 \frac{3}{5} . \\
\frac{2}{3}=\frac{10}{15} \text { and } \frac{3}{5}=\frac{9}{15} & \text { - Write equivalent fractions with the LCD. } \\
4 \frac{10}{15} & \text { - Add the fractions and then add the whole } \\
+1 \frac{9}{15} & \text { numbers. } \\
\begin{array}{ll}
5 \frac{19}{15}
\end{array} \\
5 \frac{19}{15}=6 \frac{4}{15} \\
\text { So, } 4 \frac{2}{3}+1 \frac{3}{5}=6 \frac{4}{15} . & \text { - Simplify, if possible. } \\
\text { Add } 3+8 \frac{5}{7} . & \text { - Add the fractions and then add the whole } \\
3 \\
+8 \frac{5}{7} \\
\hline 11 \frac{5}{7} & \text { numbers. } \\
\text { So, } 3+8 \frac{5}{7}=11 \frac{5}{7} . &
\end{array}
$$

Check It Out

Add. Simplify, if possible.
(12) $4 \frac{3}{8}+19 \frac{3}{5}$
(13) $15 \frac{2}{3}+4 \frac{3}{8}$
(14) $11 \frac{2}{3}+10 \frac{4}{5}$
(15) $8+2 \frac{5}{9}$

Subtracting Mixed Numbers with Common Denominators
To subtract mixed numbers with common denominators, you write the difference of the numerators over the common denominator.

EXAMPLE
 Subtracting Mixed Numbers with Common Denominators

Subtract $18 \frac{3}{9}-4 \frac{2}{9}$.

$$
18 \frac{3}{9}
$$

$-4 \frac{2}{9}$
$14 \frac{1}{9}$
So, $18 \frac{3}{9}-4 \frac{2}{9}=14 \frac{1}{9}$.
Subtract $13 \frac{1}{4}-9 \frac{3}{4}$.

$$
\begin{aligned}
13 \frac{1}{4} & \rightarrow 12 \frac{5}{4} \\
9 \frac{3}{4} & \rightarrow \frac{-9 \frac{3}{4}}{3 \frac{2}{4}}=3 \frac{1}{2}
\end{aligned}
$$

- Regroup before subtracting. $13 \frac{1}{4}=12+\frac{4}{4}+\frac{1}{4}=12 \frac{5}{4}$
- Subtract the fractions, and then subtract the whole numbers.
- Simplify, if possible.

So, $13 \frac{1}{4}-9 \frac{3}{4}=3 \frac{1}{2}$.

Check It Out

Subtract. Write in simplest form.
(16) $7 \frac{6}{11}-4 \frac{2}{11}$
(17) $10 \frac{1}{12}-4 \frac{7}{12}$
(18) $-1 \frac{7}{8}-5 \frac{7}{8}$

Subtracting Mixed Numbers with Unlike Denominators

To subtract mixed numbers, you need to have like fractions.

EXAMPLE
 Subtracting Mixed Numbers with Unlike Denominators

Subtract $6 \frac{1}{2}-1 \frac{5}{6}$.
$6 \frac{1}{2} \rightarrow 6 \frac{3}{6}$
$1 \frac{5}{6} \rightarrow-1 \frac{5}{6}$

- Write equivalent fractions with a common denominator.
- Rename, if necessary. $6 \frac{3}{6}=5+\frac{6}{6}+\frac{3}{6}=5 \frac{9}{6}$
- Subtract the fractions, and then subtract the whole numbers.
- Simplify, if possible.

Check It Out

Subtract.
(19) $12-4 \frac{1}{2}$
(20) $9 \frac{1}{10}-5 \frac{4}{7}$
(21) $14 \frac{7}{8}-3 \frac{3}{4}$

Multiplying Fractions

You know that $5 \cdot 4$ means " 5 groups of 4." Multiplying fractions involves the same concept: $3 \cdot \frac{1}{2}$ means " 3 groups of $\frac{1}{2}$." You may find it helpful to know that in math, the word of frequently means multiply.

The same is true when you are multiplying a fraction by a fraction. For example, $\frac{1}{2} \cdot \frac{1}{3}$ means that you actually find $\frac{1}{2}$ of $\frac{1}{3}$.
To multiply fractions, you multiply the numerators and then the denominators. There is no need to find a common denominator. $\frac{1}{2} \cdot \frac{1}{4}=\frac{1}{8}$

EXAMPLE Multiplying Fractions

Multiply $\frac{3}{4}$ and $2 \frac{2}{5}$.
$\frac{3}{4} \cdot 2 \frac{2}{5}=\frac{3}{4} \cdot \frac{12}{5}$

- Convert the mixed number to an improper fraction.
$\frac{3}{4} \cdot \frac{12}{5}=\frac{3 \cdot 12}{4 \cdot 5}=\frac{36}{20}$
- Multiply the numerators and the denominators.
$\frac{36}{20}=1 \frac{16}{20}=1 \frac{4}{5}$
- Write the product in simplest form, if necessary.
So, $\frac{3}{4} \cdot 2 \frac{2}{5}=1 \frac{4}{5}$.

Check It Out

Multiply.
(22) $\frac{2}{5} \cdot \frac{5}{6}$
(23) $\frac{3}{8} \cdot \frac{2}{9}$
(24) $5 \frac{1}{3} \cdot \frac{3}{8}$
(25) $3 \frac{2}{3} \cdot 4 \frac{1}{5}$

Shortcut for Multiplying Fractions

You can use a shortcut when you multiply fractions. Instead of multiplying across and then writing the product in simplest form, you can simplify factors first.

EXAMPLE Simplifying Factors

Simplify the factors and then multiply $\frac{5}{8}$ and $1 \frac{1}{5}$.
$\frac{5}{8} \cdot \frac{6}{5}$
$\frac{1_{5}}{1^{2 \cdot 4}} \cdot \frac{1_{2} \cdot 3}{5_{1}}=\frac{1}{4} \cdot \frac{3}{1}$
$=\frac{3}{4}$

So, $\frac{5}{8} \cdot 1 \frac{1}{5}=\frac{3}{4}$.

- Write the mixed number as an improper fraction. $1 \frac{1}{5}=\frac{6}{5}$
- Simplify factors if you can.
- Write the product in simplest form, if necessary.

Check It Out

Simplify the factors and then multiply.
(26) $\frac{3}{5} \cdot \frac{1}{6}$
(27) $\frac{4}{7} \cdot \frac{14}{15}$
(23) $1 \frac{1}{2} \cdot 1 \frac{1}{3}$

Finding the Reciprocal of a Number

Two numbers with a product of 1 are multiplicative inverses, or reciprocals, of each other. For example, $\frac{5}{1}$ and $\frac{1}{5}$ are multiplicative inverses because $\frac{5}{1} \cdot \frac{1}{5}=1$.

EXAMPLE Finding the Multiplicative Inverse

Write the multiplicative inverse of $-7 \frac{1}{3}$.
$-7 \frac{1}{3}=-\frac{22}{3} \quad$ - Write as an improper fraction.
Since $-\frac{22}{3}\left(-\frac{3}{22}\right)=1$, the multiplicative inverse
of $-7 \frac{1}{3}$ is $-\frac{3}{22}$.

The number 0 does not have a reciprocal.

Check It Out

Find the reciprocal of each number.
(2) $\frac{3}{7}$
(30) 3
(31) $4 \frac{2}{5}$

Dividing Fractions

When you divide a fraction by a fraction, such as $\frac{1}{2} \div \frac{1}{4}$, you are really finding out how many $\frac{1}{4}$ s are in $\frac{1}{2}$. That's why the answer is 2 . To divide fractions, you replace the divisor with its reciprocal and then multiply to get your answer.

$$
\frac{1}{2} \div \frac{1}{4}=\frac{1}{2} \cdot \frac{4}{1}=2
$$

EXAMPLE Dividing Fractions

Divide $\frac{5}{8} \div 3 \frac{3}{4}$.
$\frac{5}{8} \div \frac{15}{4}$

- Write the mixed number as an improper fraction.
$\frac{5}{8} \cdot \frac{4}{15}=\frac{15}{5}_{2^{8}}^{8} \cdot \frac{4^{1}}{15}=\frac{1}{2} \cdot \frac{1}{3} \quad$ - Replace the divisor with its reciprocal and simplify factors.
$\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$
- Multiply.

So, $\frac{5}{8} \div 3 \frac{3}{4}=\frac{1}{6}$.

Check It Out

Divide.

(32) $\frac{3}{4} \div \frac{1}{2}$
(33) $\frac{5}{7} \div 10$
(34) $1 \frac{1}{8} \div 4 \frac{1}{2}$

2.2 Exercises

Add or subtract.

1. $\frac{7}{9}-\frac{4}{9}$
2. $\frac{3}{8}-\frac{1}{4}$
3. $\frac{5}{6}+\frac{3}{4}$
4. $\frac{7}{12}+\frac{9}{16}$
5. $1 \frac{1}{2}+\frac{1}{6}$
6. $8 \frac{3}{8}+2 \frac{1}{3}$
7. $12-11 \frac{5}{9}$
8. $4 \frac{1}{2}+2 \frac{1}{2}$
9. $4 \frac{3}{4}-2 \frac{1}{4}$
10. $13 \frac{7}{12}-2 \frac{5}{8}$
11. $7 \frac{3}{8}-2 \frac{2}{3}$

Multiply.
12. $\frac{1}{2} \cdot \frac{8}{9}$
13. $\frac{2}{5} \cdot 3$
14. $4 \frac{1}{5} \cdot \frac{5}{6}$
15. $3 \frac{2}{3} \cdot 6$
16. $3 \frac{2}{5} \cdot 2 \frac{1}{2}$
17. $6 \cdot 2 \frac{1}{2}$
18. $2 \frac{2}{3} \cdot 3 \frac{1}{2}$
19. $4 \frac{3}{8} \cdot 1 \frac{3}{5}$

Find the reciprocal of each number.
20. $\frac{5}{8}$
21. 2
22. $3 \frac{1}{5}$
23. $2 \frac{2}{5}$
24. $\frac{7}{9}$

Divide.
25. $\frac{3}{4} \div \frac{3}{2}$
26. $\frac{1}{3} \div 2$
27. $\frac{1}{2} \div 1 \frac{1}{2}$
28. $2 \div 2 \frac{1}{3}$
29. $0 \div \frac{1}{4}$
30. $3 \frac{1}{5} \div \frac{1}{10}$
31. $1 \frac{2}{3} \div 3 \frac{1}{5}$
32. $\frac{2}{9} \div 2 \frac{2}{3}$
33. Last week Gabriel worked $9 \frac{1}{4}$ hours babysitting and $6 \frac{1}{2}$ hours giving gymnastic lessons. How many hours did he work in all?
34. Bill's Burger Palace had its grand opening on Tuesday. They had $164 \frac{1}{2}$ pounds of ground beef in stock. They had $18 \frac{1}{4}$ pounds left at the end of the day. Each burger requires $\frac{1}{4}$ pound of ground beef. How many hamburgers did they sell?
35. Girls make up $\frac{5}{8}$ of the eighth-grade enrollment at Marshall Middle School. If $\frac{1}{5}$ of the girls try out for the basketball team, what fractional part of the entire class is this?
36. Of the cafeteria dessert selections, $\frac{1}{3}$ are baked goods. Each day before lunch, the cafeteria workers divide the desserts so that an equal number of baked goods is available on both serving lines. On each line, what fraction of the total desserts are baked goods?

2.3 Operations with Decimals

Adding and Subtracting Decimals

Adding and subtracting decimals is similar to adding and subtracting whole numbers.

EXAMPLE Adding and Subtracting Decimals

Add $6.75+29.49+16.9$.
6.75
29.49
$\begin{array}{r}16.9 \\ \hline\end{array}$
1
6.75
29.49
$\begin{array}{r}+16.9 \\ \hline 4\end{array}$
2
6.75
29.49
$\begin{array}{r}16.9 \\ + \\ \hline\end{array}$
14
6.75
29.49

+16.9
53.14

So, $6.75+29.49+16.9=53.14$.

Check It Out

Solve.
(1)
$1.387+2.3444+3.45$
2. $0.7+87.8+8.174$
(3) $56.13-17.59$

- Continue with the whole numbers.

Place the decimal point in the result.

Multiplying Decimals

Multiplying decimals is much the same as multiplying whole numbers.

EXAMPLE Multiplying Decimals

Multiply 42.8 • 0.06 .

42.8	428	- Multiply as with whole
+0.06	¢ 6 $\times 6$	numbers.
2568	2568	
42.8	1 decimal place	- Add the number of decimal
+ 0.06	2 decimal places	places for the factors, and
2.568	$1+2=3$ decimal places	place the decimal point in the product.

So, $42.8 \cdot 0.06=2.568$.

Check It Out
Multiply.
(5) $22.03 \cdot 2.7$
(6) $9.655 \cdot 8.33$
(7) $11.467 \cdot 5.49$

Estimating Decimal Products

To estimate decimal products, you can replace given numbers with compatible numbers. Compatible numbers are estimates you choose because they are easier to work with mentally.

Estimate 26.2 - 52.3.

- Replace the factors with compatible numbers.

$$
26.2 \rightarrow 30 \quad 52.3 \rightarrow 50
$$

- Multiply mentally.

$$
30 \cdot 50=1,500
$$

Check It Out

Estimate each product by using compatible numbers.
(8) $12.75 \cdot 91.3$
(9) $3.76 \cdot 0.61$
(10) $25.25 \cdot 1.95$

Dividing Decimals

Dividing decimals is similar to dividing whole numbers.

EXAMPLE Dividing Decimals

Divide $38.35 \div 6.5$.
$6.5 \cdot 10=65$ - Multiply the divisor by a power of ten to make it a whole number.
$38.35 \cdot 10=383.5 \quad$ - Multiply the dividend by the same power of ten.

- Divide. Place the decimal point in the quotient.

So, $38.35 \div 6.5=5.9$.

Check It Out

Divide.
(11) $211.68 \div 9.8$
(12) $42.363 \div 8.1$
(13) $444.36 \div 4.83$
(14) $1.548 \div 0.06$

Zeros in Division

You can use zeros as placeholders in the dividend when you are dividing decimals.

EXAMPLE Zeros in Division

Divide $375.1 \div 6.2$.
$6.2 \cdot 10=62 \quad$ - Multiply the divisor and the dividend by
$375.1 \cdot 10=3,751 \quad$ a power of ten. Place the decimal point.
$62 . \longdiv { 3 7 5 1 . } \quad$ - Divide. Place the decimal point.
-372
31
$\begin{array}{r}-0 \\ \hline 31\end{array}$
62. $\begin{array}{r}\frac{60.5}{3751.0} \quad \text { Use zeros as placeholders in the dividend. }\end{array}$
$\begin{array}{r}-372 \\ \hline\end{array}$
31
Continue to divide.

-0
310

$\begin{array}{r}-310 \\ \hline 0\end{array}$
So, $375.1 \div 6.2=60.5$.

Check It Out

Divide until the remainder is zero.
(15) $0.7042 \div 0.07$
(16) $37.2 \div 1.5$
(17) $246.1 \div 0.8$

Rounding Decimal Quotients

You can use a calculator to divide decimals and round quotients.

EXAMPLE Rounding Decimals on a Calculator

Divide 6.3 by 2.6. Round to the nearest hundredth.
$6.3 \square 2.6 \square 2.4230769$ - Use your calculator to divide.
2.4230769 \uparrow
2.4230769 rounds to 2.42 .

- Look at the digit one place to the right of the hundredths place.
- Round.

Some calculators have a "fix" function. Press FIX and the number of decimal places you want. The calculator will then display all numbers rounded to that number of places. Consider the example above. Again, enter $6.3 \square 2.6 \square$ in a calculator. Since you want to round to the nearest hundredth press FIX 2 . The answer 2.42 is shown in the display.

Check It Out

Solve with a calculator. Round to the nearest hundredth.
(18) $0.0258 \div 0.345$
(19) $0.817 \div 1.25$
(20) $0.4369 \div 0.267$
(21) $0.3112 \div 0.4$

2.3 Exercises

Add.

1. $256.3+0.624$
2. $78.239+38.6$
3. $7.02396+4.88$
4. $\$ 250.50+\$ 385.16$
5. $2.9432+1.9+3+1.975$

Subtract.

6. $43-28.638$
7. $58.543-0.768$
8. $435.2-78.376$
9. $38.3-16.254$
10. $11.01-2.0063$

Multiply.

11. $0.66 \cdot 17.3$
12. $0.29 \cdot 6.25$
13. $7.526 \cdot 0.33$
14. $37.82 \cdot 9.6$
15. $22.4 \cdot 9.4$

Divide until the remainder is zero.
16. $29.38 \div 0.65$
17. $62.55 \div 4.5$
18. $84.6 \div 4.7$
19. $0.657 \div 0.6$

Divide. Round to the nearest hundredth.
20. $142.7 \div 7$
21. $2.55 \div 1.6$
22. $22.9 \div 6.2$
23. $15.25 \div 2.3$
24. The Moon orbits Earth in 27.3 days. How many orbits does the Moon make in 365.25 days? Round your answer to the nearest hundredth.
25. Apollo 15 astronauts drove the lunar rover about 27.8 kilometers on the Moon. Their average speed was 3.3 kilometers/hour. How long did they drive the lunar rover?

2.4 Fractions and Decimals

Writing Fractions as Decimals

A fraction can be written as either a terminating or a repeating decimal.

Fraction	Decimal	Terminating or Repeating
$\frac{1}{2}$	0.5	terminating
$\frac{1}{3}$	$0.333333 \overline{3}$	repeating
$\frac{1}{6}$	$0.16666 \overline{6}$	repeating
$\frac{3}{4}$	0.75	terminating
$\frac{2}{5}$	0.4	terminating
$\frac{3}{22}$	$0.13636 \overline{36}$	repeating

EXAMPLE Changing Fractions to Decimals

Write $-\frac{3}{25}$ as a decimal.
$-3 \div 25=-0.12$ - Divide the numerator of the fraction by the denominator.
So, $-\frac{3}{25}=-0.12$. The remainder is zero. The decimal is a terminating decimal.

Write $\frac{1}{6}$ and $\frac{5}{22}$ as decimals.
$1 \div 6=0.1666 \ldots$. . Divide the numerator of each fraction
$5 \div 22=0.22727 \ldots$ by the denominator.
$0.1 \overline{6}$
$0.2 \overline{27}$

- Place a bar over any digit or digits

So, $\frac{1}{6}=0.1 \overline{6}$ and $\frac{5}{22}=0.2 \overline{27}$. Both decimals are repeating decimals.

A mixed number can be expressed as a decimal by changing the mixed number to an improper fraction and dividing the numerator by the denominator.

EXAMPLE Changing Mixed Numbers to Decimals

Write $2 \frac{3}{4}$ as a decimal.
$2 \frac{3}{4}=\frac{11}{4}$

- Change the mixed number to an improper fraction.
$11 \div 4=2.75$
- Then divide the numerator of the fraction by the denominator.
So, $2 \frac{3}{4}=2.75$.

Check It Out

Use a calculator to find a decimal for each fraction or mixed number.
(1) $\frac{4}{5}$
(2) $\frac{11}{20}$
(3) $\frac{28}{32}$
(4) $\frac{5}{12}$
(5) $-\frac{6}{8}$
(6) $-\frac{15}{24}$
(7) $3 \frac{7}{8}$
(8) $2 \frac{5}{16}$

Writing Decimals as Fractions

Terminating decimals are rational numbers because you can write them as fractions.

EXAMPLE Changing Decimals to Fractions

Write 0.55 as a fraction.

$$
\begin{array}{ll}
0.55=\frac{55}{100} & \text { - Write the decimal as a fraction. } \\
\frac{55}{100}=\frac{55 \div 5}{100 \div 5}=\frac{11}{20} & \text { - Write the fraction in simplest form. } \\
\text { So, } 0.55=\frac{11}{20} . &
\end{array}
$$

Repeating decimals are also rational numbers because you can write them as fractions.

EXAMPLE Changing Repeating Decimals to Fractions

Write $0 . \overline{2}$ as a fraction in simplest form.
Let $n=0.222$.
$10(n)=10(0.222)$
$10 n=2.222$
$10 n=2.222$
$-n=0.222$
$9 n=2$
$\frac{9 n}{9}=\frac{2}{9}$
$n=\frac{2}{9}$
So, the decimal $0 . \overline{2}$ can be written as $\frac{2}{9}$.

A decimal greater than 1 can be expressed as a mixed number by writing the decimal part as a fraction.

EXAMPLE Changing Decimals to Mixed Numbers

Write -3.75 as a mixed number.
$-3.75=-3 \frac{75}{100} \quad$ - Write the decimal as a fraction.
$-3 \frac{75}{100}=-3+\frac{75 \div 25}{100 \div 25}=-3 \frac{3}{4} \quad$ - Write the mixed number in simplest form.
So, -3.75 written as a mixed number is $-3 \frac{3}{4}$.

Check It Out

Write each decimal as a fraction.
(9) 2.4
(13) $0 . \overline{4}$
(10) 0.056
(11) -0.6
(12) -1.375
(14) $-3 . \overline{18}$
(15) $-0.8 \overline{33}$
(16) 7.32

Comparing and Ordering Rational Numbers

You can compare rational numbers by renaming each fraction by using the least common denominator and then compare the numerators.

EXAMPLE Comparing Rational Numbers

Replace \square with $<$, $>$, or $=$ to make $\frac{3}{8} \square \frac{2}{3}$ a true sentence.
$\frac{3}{8}=\frac{3 \cdot 3}{8 \cdot 3}$ or $\frac{9}{24}$

- Rename the fractions using the LCD.
$\frac{2}{3}=\frac{2 \cdot 8}{3 \cdot 8}$ or $\frac{16}{24}$
- The LCD is 24 .

Since $\frac{9}{24}<\frac{16}{24}$, then $\frac{3}{8}<\frac{2}{3}$.
Replace \square with $<,>$, or $=$ to make $\frac{5}{9} \square 0.7$ a true sentence.
$\frac{5}{9}=0.55 \overline{5}$

- Express $\frac{5}{9}$ as a decimal.
$.55 \overline{5} \square 0.7$
- In the tenths place, $5<7$.

So, $\frac{5}{9}<0.7$.

You can use a number line to help compare and order rational numbers.

EXAMPLE Comparing and Ordering Rational Numbers

Replace \square with $\mathrm{a}<,>$, or $=$ to make $-2.35 \square-3.4$ a true sentence.

- Graph the decimals on a number line.

Because -2.35 is to the right of -3.4 , then $-2.35>-3.4$.

2.4 Exercises

Change each fraction to a decimal. Use bar notations to show repeating decimals.

1. $\frac{3}{18}$
2. $\frac{30}{111}$
3. $\frac{4}{18}$
4. $\frac{7}{15}$
5. $-\frac{5}{9}$
6. $4 \frac{5}{6}$

Write each decimal as a fraction or a mixed number.
7. 0.4
8. 2.004
9. 3.42
10. 0.27
11. -0.3
12. $2 . \overline{15}$

Replace each \square with $<,>$, or $=$ to make a true sentence.
13. $\frac{2}{3} \square \frac{8}{9}$
14. $\frac{5}{6} \square \frac{7}{8}$
15. $-\frac{1}{4} \square-\frac{5}{8}$
16. $0.7 \square 0.07$
17. $-1.6 \square 1.57$
18. $0 . \overline{24} \square 0.28$
19. Order $\frac{2}{8},-\frac{14}{8}, 1 \frac{1}{3}, 0.75$ from least to greatest.

2.5
 The Real

Number System

Irrational Numbers

An irrational number is a number that cannot be expressed as a quotient $\frac{a}{b}$, where a and b are integers and $b \neq 0$. The decimal representation of the $\sqrt{17} \approx 4.123105626 \ldots$ does not terminate or repeat. Therefore, the $\sqrt{17}$ cannot be written as a fraction and is an irrational number.

The set of Real Numbers includes the set of rational numbers and the set of irrational numbers. Study the Venn diagram below.

Real Numbers

Check It Out

Name all sets of numbers to which each real number belongs.
(1) $-\sqrt{49}$
(2) $1 . \overline{72}$
(3) $\sqrt{15}$
(4) π
(5) $8 . \overline{15}$
(6) $\sqrt{23}$

Graphing Real Numbers

You can use a calculator to estimate irrational numbers and graph them on a number line.

EXAMPLE Graphing Real Numbers

Estimate $\sqrt{7},-\sqrt{2}$, and 2.25 to the nearest tenth. Then graph $\sqrt{7},-\sqrt{2}$, and 2.25 on a number line.
$\sqrt{7} \approx 2.645751311 \ldots$

- Use a calculator.
or about 2.6
$-\sqrt{2} \approx-1.414213562 \ldots \quad$. Use a calculator.
or about -1.4
$2.25 \approx 2.3$

Check It Out

Use a calculator to estimate each square root to the nearest tenth. Then graph the square root on a number line.
(7) $\sqrt{11}$
(8) $-\sqrt{29}$
(9) $\sqrt{18}$

2.5 Exercises

Name all sets of numbers to which each real number belongs.

1. 0.909090 ...
2. $-\sqrt{81}$
3. $\sqrt{13}$
4. $\sqrt{23}$
5. $-2 \frac{1}{4}$
6. $0 . \overline{63}$
7. $-\frac{8}{9}$
8. $-\sqrt{41}$
9. $-9.7 \overline{33}$

Estimate each square root to the nearest tenth. Then graph the square root on a number line.
10. $\sqrt{2}$
11. $\sqrt{5}$
12. $-\sqrt{3}$
13. $\sqrt{15}$
14. $-\sqrt{8}$
15. $\sqrt{53}$
16. $-\sqrt{24}$
17. $-\sqrt{10}$
18. $\sqrt{27}$
19. $\sqrt{17}$
20. $\sqrt{46}$
21. $\sqrt{67}$

2.6 Percents

The Meaning of Percents

A ratio of a number to 100 is called a percent. Percent means per hundred and is represented by the symbol \%.

Any ratio can be expressed as a fraction, a decimal, and a percent. A quarter is 25% of $\$ 1.00$. You can express a quarter as 25 ¢, $\$ 0.25, \frac{1}{4}$ of a dollar, $\frac{25}{100}$ of a dollar, and 25% of a dollar.
You can use the following benchmarks to help you estimate percents.

EXAMPLE Estimating Percents

Estimate 26\% of 200.
26% is close to 25%.
$\frac{1}{4}$ is equal to 25%.
$\frac{1}{4}$ of 200 is 50 .
So, 26% of 200 is about 50 .

- Choose a benchmark, or a combination of benchmarks, close to the target percent and find a fraction or decimal equivalent.
- Use the benchmark equivalent to estimate the percent.

Use Mental Math to Estimate Percent

You can use fraction or decimal benchmarks to help you quickly estimate the percent of something, such as a tip in a restaurant.

EXAMPLE Mental Math to Estimate Percent

Estimate a 15% tip for a bill of $\$ 5.45$.
$\$ 5.45$ rounds to $\$ 5.50$.

- Round to a convenient number.
$15 \%=10 \%+5 \%$
- Think of the percent as a combination of benchmarks.
10% of $\$ 5.50=0.55$
- Multiply mentally.
5% of $\$ 5.50=$ about 0.25
$0.55+0.25=$ about 0.80
So, the tip is about $\$ 0.80$.

Check It Out

Estimate the amount of each tip.

(5) 20% of $\$ 4.75$
(6) 15% of $\$ 40$
(7) 10% of $\$ 94.89$
(8) 18% of $\$ 50$

Percents and Fractions

Recall that percents describe a ratio out of 100 . A percent can be written as a fraction with a denominator of 100 . The table shows how some percents are written as fractions.

Percent	Fraction
10 out of $100=10 \%$	$\frac{10}{100}=\frac{1}{10}$
15 out of $100=15 \%$	$\frac{15}{100}=\frac{3}{20}$
25 out of $100=25 \%$	$\frac{25}{100}=\frac{1}{4}$
30 out of $100=30 \%$	$\frac{30}{100}=\frac{3}{10}$
60 out of $100=60 \%$	$\frac{60}{100}=\frac{3}{5}$
75 out of $100=75 \%$	$\frac{75}{100}=\frac{3}{4}$

You can write fractions as percents and percents as fractions.

EXAMPLE Converting a Fraction to a Percent

Express $\frac{2}{5}$ as a percent.
$\frac{2}{5}=\frac{n}{100}$
$2 \cdot 100=5 n$
$\frac{2 \cdot 100}{5}=n$
$n=40$
40\%
So, $\frac{2}{5}=40 \%$.

- Set up a proportion.
- Solve the proportion.
- Express as a percent.

Check It Out

Change each fraction to a percent.
(9) $\frac{4}{5}$
(10) $\frac{13}{20}$
(11) $\frac{180}{400}$
(12) $\frac{19}{50}$

Changing Percents to Fractions

To change a percent to a fraction, write the percent as the numerator of a fraction with a denominator of 100 , and express in simplest form. Similarly, you can change a mixed number percent to a fraction.

EXAMPLE Changing Percents to Fractions

Express 45% as a fraction.
$45 \%=\frac{45}{100}$

- Change the percent to a fraction with a denominator of 100 . The percent becomes the numerator of the fraction.
$\frac{45}{100}=\frac{9}{20}$
- Simplify, if possible.

So, 45% expressed as a fraction is $\frac{9}{20}$.
Express $54 \frac{1}{2} \%$ as a fraction.
$54 \frac{1}{2}=\frac{109}{2}$
$\frac{109}{2} \cdot \frac{1}{100}=\frac{109}{200}$

- Change the mixed number to an improper fraction.
$54 \frac{1}{2}=\frac{109}{200}$
- Multiply the percent by $\frac{1}{100}$.
- Simplify, if possible.

So, $54 \frac{1}{2} \%$ expressed as a fraction is $\frac{109}{200}$.

Check It Out

Express each percent as a fraction in simplest form.
(13) 55%
(14) 29%
(15) 85%
(10) 92%
(17) $44 \frac{1}{2} \%$
(18) $34 \frac{2}{5} \%$

Percents and Decimals

Percents can be expressed as decimals, and decimals can be expressed as percents.

EXAMPLE Changing Decimals to Percents

Change 0.8 to a percent.

$0.8 \cdot 100=80$	- Multiply the decimal by 100.
$0.8=80 \%$	- Add the percent sign.
So, $0.8=80 \%$.	

A Shortcut for Changing Decimals to Percents

Change 0.5 to a percent.

- Move the decimal point two places to the right. Add zeros, if necessary.

$$
0.5 \rightarrow 50 .
$$

- Add the percent sign.

$$
0.5 \rightarrow 50 \%
$$

Check It Out

Write each decimal as a percent.
(19) 0.08
(20) 0.66
(21) 0.398
(22) 0.74

Because percent means part of a hundred, percents can be converted directly to decimals.

EXAMPLE Changing Percents to Decimals

Change 3\% to a decimal.
$3 \%=\frac{3}{100}$

- Express the percent as a fraction with 100 as the denominator.
$3 \div 100=0.03$
- Divide the numerator by 100 .

So, $3 \%=0.03$.

A Shortcut for Changing Percents to Decimals

Change 8\% to a decimal.

- Move the decimal point two places to the left.
$8 \% \rightarrow 8$.
- Add zeros, if necessary.
$8 \%=0.08$

Check It Out

Express each percent as a decimal.
(23) 14.5%
(24) 0.01%
(25) 23%
(26) 35%

2.6 Exercises

Use fractional benchmarks to estimate the percent of each number.

1. 15% of 200
2. 49% of 800
3. 2% of 50
4. 76% of 200
5. Estimate a 15% tip for a bill of $\$ 65$.
6. Estimate a 20% tip for a bill of $\$ 49$.
7. Estimate a 10% tip for a bill of $\$ 83$.
8. Estimate an 18% tip for a bill of $\$ 79$.

Change each fraction to a percent.

9. $\frac{17}{100}$
10. $\frac{19}{20}$
11. $\frac{13}{100}$
12. $\frac{19}{50}$
13. $\frac{24}{25}$

Change each percent to a fraction in simplest form.
14. 42%
15. 60\%
16. 44%
17. 12\%
18. 80%

Write each decimal as a percent.
19. 0.4
20. 0.41
21. 0.105
22. 0.83
23. 3.6

Write each percent as a decimal.
24. 35\%
25. 13.6\%
26. 18\%
27. 4\%
28. 25.4%
29. One middle school survey said 40% of eighth-grade students preferred pizza for lunch. Another survey said $\frac{2}{5}$ of eighthgrade students preferred pizza for lunch. Could both surveys be correct? Explain.
30. Blades on Second is advertising $\$ 109$ skateboards at 33% off. Skates on Seventh is advertising the same skateboard at $\frac{1}{3}$ off. Which is the better buy?

277 Using and Finding Percents

Finding a Percent of a Number

You have changed a percent to a decimal and a percent to a fraction. Now you will find the percent of a number. To find the percent of a number, you must first change the percent to a decimal or a fraction. Sometimes it is easier to change the percent to a decimal representation and other times to a fractional one.

To find 30% of 80 , you can use either the fraction method or the decimal method.

EXAMPLE Finding the Percent of a Number: Two Methods

Find 30% of 80 .

Decimal Method

- Change the percent to a decimal. $30 \%=0.3$
- Multiply.
$80 \cdot 0.3=24$
So, 30% of $80=24$.

Fraction Method

- Change the percent to a fraction in simplest form.

$$
30 \%=\frac{30}{100}=\frac{3}{10}
$$

- Multiply.
$80 \cdot \frac{3}{10}=24$

Check It Out

Find the percent of each number.
(1) 80% of 75
(2) 95% of 700
(3) 21% of 54
(4) 75% of 36

APPLICATION Go For It!

Calling all couch potatoes! To get in shape, you need to do an aerobic activity (such as walking, jogging, biking, or swimming) at least three times a week.

The goal is to get your heart beating at $\frac{1}{2}$ to $\frac{3}{4}$ of its maximum rate and to keep it there long enough to give it a good workout.

For example, if you want to exercise in the aerobic
 fitness zone, which is at $70 \%-80 \%$ of your maximum heart rate, first find your maximum heart rate (MHR) by subtracting your age from 220. Second, multiply your MHR by the higher percentage and lower percentage of your zone.

$$
\begin{aligned}
& 220-25=195 \\
& 195 \cdot 0.80=156 \\
& 195 \cdot 0.70=136.5
\end{aligned}
$$

In order for 25-year-old people to maximize their workout and stay in the aerobic zone, they need to keep their heart rate between 137-156 beats per minute for 15 to 25 minutes.

Heart Rate Zone	$\%$ of Maximum Heart Rate	Number of Minutes You Need to Exercise
Health Zone	$50 \%-60 \%$	$35-45$
Conditioning Zone	$60 \%-70 \%$	$25-35$
Aerobic Fitness Zone	$70 \%-80 \%$	$15-25$

The Percent Proportion

You can use proportions to help you find the percent of a number.

EXAMPLE
 Finding the Percent of a Number:
 Proportion Method

Pei works in a sporting goods store. He receives a commission of 12% on his sales. Last month he sold $\$ 9,500$ worth of sporting goods. What was his commission?

$$
\left.\left.\frac{p}{w}=\frac{n}{100}\right\} \text { percent } \quad \begin{array}{l}
\text { - Use a proportion to find the percent } \\
\text { of a number. } \\
\\
\\
\\
\\
w=\text { part }
\end{array}\right\}
$$

p is the unknown, called x. n is 12 .
w is $\$ 9,500$.
$\frac{p}{w}=\frac{n}{100} \quad \frac{x}{9,500}=\frac{12}{100}$
$100 x=114,000 \quad$ - Cross multiply.
$\frac{114,000}{100}=\frac{100 x}{100}$

- Divide both sides of the equation by 100 .
$1,140=x$
So, Pei received $\$ 1,140$ in commission.

Check It Out

Use a proportion to find the percent of each number.
(5) 95% of 700
(6) 150% of 48
(7) 65% of 200
(8) 85% of 400

Finding Percent and Whole

You can use a percent proportion to solve percent problems. One ratio of a percent proportion compares a part to the whole. The other ratio is the percent written as a fraction.

$$
\begin{aligned}
& \text { part }\left.\rightarrow \frac{p}{w}=\frac{n}{100}\right\} \text { percent } \\
& \text { whole }
\end{aligned}
$$

EXAMPLE Finding the Percent

What percent of 70 is 14 ?

- Set up a percent proportion. Let n represent the percent.

$$
\frac{\text { part }}{\text { whole }}=\frac{n}{100}
$$

$\frac{14}{70}=\frac{n}{100}$
(The number after the word of is the whole.)
$14 \cdot 100=70 \cdot n$

- Show the cross products of the proportion.
$1,400=70 n$
- Find the products.
$\frac{1,400}{70}=\frac{70 n}{70}$
- Divide both sides of the equation by the coefficient of n.
$n=20$
So, 14 is 20% of 70 .

Check It Out

Solve.
(9) What percent of 240 is 80 ?
(10) What percent of 64 is 288 ?
(11) What percent of 2 is 8 ?
(12) What percent of 55 is 33 ?

You can use a percent proportion to find the percent of the whole.

EXAMPLE Finding the Whole

12 is 48% of what number?

- Set up a percent proportion using this form: $\frac{\text { part }}{\text { whole }}=\frac{\text { percent }}{100}$
$\frac{12}{w}=\frac{48}{100}$
(The phrase what number after the word of is the whole.)
$12 \cdot 100=48 \cdot w \quad$ - Show the cross products of the proportion.
$1200=48 w \quad$ - Find the products.
$\frac{1200}{48}=\frac{48 w}{48}$
- Divide both sides of the equation by the coefficient of w.
$w=25$
So, 12 is 48% of 25 .

Check It Out

Solve.
(13) 52 is 50% of what number?
(14) 15 is 75% of what number?
(15) 40 is 160% of what number?
(10) 84 is 7% of what number?

Percent of Increase or Decrease

Sometimes it is helpful to keep a record of your monthly expenses. Keeping a record allows you to see the actual percent of increase or decrease in your expenses. You can make a chart to record expenses.

Expenses	September	October	Increase or Decrease (amount of) (\% of)	
	225		36	16
Travel	75	95	20	
Rent	360	375	15	4
Clothing	155	62	93	60
Miscellaneous	135	108	27	20
Entertainment	80	44		
Total	1,030	871	159	15

You can use a calculator to find the percent of increase or decrease.

EXAMPLE Finding the Percent of Increase

What was the percent of increase in the amount spent on travel from September to October?

$$
\begin{array}{ll}
95-75=20 & \text { - Find the amount of change. } \\
\frac{20}{75}=0.2 \overline{66} & \text { - Find the percent of change by using the } \\
\text { following formula: } \\
& \text { Percent of change }=\frac{\text { amount of change }}{\text { original amount }} \\
0.27=27 \% & \text { - Round to the nearest hundredth and } \\
\text { convert to a percent. }
\end{array}
$$

So, the percent of increase from $\$ 75$ to $\$ 95$ is 27%.

Check It Out

Use a calculator to find the percent of increase.
(17) 56 to 70
(18) 20 to 39
45 to 99
(20) 105 to 126

EXAMPLE Finding the Percent of Decrease

During September, $\$ 80$ was spent on entertainment. In October, $\$ 44$ was spent on entertainment. What was the percent of decrease from September to October?
$80-44=36$

- Find the amount of change.
$\frac{36}{80}=0.45$
$0.45=45 \%$
- Percent of change $=\frac{\text { amount of change }}{\text { original amount }}$
- Round to the nearest hundredth and convert from a decimal to a percent.
So, the percent of decrease from $\$ 80$ to $\$ 44$ is 45%.

Check It Out

Use your calculator to find the percent of decrease.

Discounts and Sale Prices

A discount is the amount that is reduced from the regular price of an item. The sale price is the regular price minus the discount. Discount stores have regular prices marked below the suggested retail price. You can use percent to find discounts and resulting sale prices.

A CD player has a regular price of $\$ 109.99$. It is on sale for 25% off the regular price. How much money will you save by buying the item on sale?

You can use a calculator to help you find the discount and resulting sale price of an item.

EXAMPLE Finding Discounts and Sale Prices

The regular price of the item is $\$ 109.99$. It is marked 25% off. Find the discount and the sale price.
$d=0.25 \cdot 109.99$

- Find the amount of discount.
$d=27.50 \quad$ Amount of discount $(d)=$ percent \cdot whole
So, the discount is $\$ 27.50$.
$109.99-27.50=s \quad$ - Find the sale price.
$82.49=s \quad$ regular price - discount $=$ sale price (s)
So, the sale price is $\$ 82.49$.

Check It Out

Use a calculator to find the discount and sale price.
(25) regular price: $\$ 813.25$, discount percent: 20%

26 regular price: $\$ 18.90$, discount percent: 30%
(27) regular price: $\$ 79.99$, discount percent: 15%

Estimating a Percent of a Number

You can use what you know about compatible numbers and simple fractions to estimate a percent of a number. You can use the table to help you estimate the percent of a number.

Percent	1%	5%	10%	20%	25%	$33 \frac{1}{3} \%$	50%	$66 \frac{2}{3} \%$	75%	100%
Fraction	$\frac{1}{100}$	$\frac{1}{20}$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	1

EXAMPLE Estimating a Percent of a Number

Estimate 17% of 46.
17% is about 20%.
20% is equivalent to $\frac{1}{5}$.
46 is about 50 .
$\frac{1}{5}$ of 50 is 10 .
So, 17% of 46 is about 10 .

- Find the percent that is closest to the percent you are asked to find.
- Find the fractional equivalent for the percent.
- Find a compatible number for the number you are asked to find the percent of.
- Use the fraction to find the percent.

Check It Out

Use compatible numbers to estimate.
(28) 67% of 150
(29) 35% of 6
(30) 27% of 54
(31) 32% of 89

Finding Simple Interest

When you have a savings account, the bank pays you for the use of your money. With a loan, you pay the bank for the use of their money. In both situations, the payment is called interest. The amount of money you borrow or save is called the principal. To find the total amount you pay or earn, you add the principal and interest.

You want to borrow $\$ 5,000$ at 7% interest for 3 years. To find out how much interest you will pay, you can use the formula $I=p \cdot r \cdot t$. The table can help you understand the formula.

| \boldsymbol{p} | Principal—the amount of money you borrow or save |
| :--- | :--- | :--- |
| \boldsymbol{r} | Interest Rate—a percent of the principal you pay or earn |
| \boldsymbol{t} | Time-the length of time you borrow or save (in years) |
| \boldsymbol{I} | Total Interest—interest you pay or earn for the entire time |

EXAMPLE Finding Simple Interest

Find the interest and the total amount that you will pay if you borrow $\$ 5,000$ at 7% interest for 3 years.
$\$ 5,000 \cdot 0.07 \cdot 3=\$ 1,050$ - Multiply the principal (p) by the interest $p \cdot r \cdot t=I$ rate (r) by the time (t) to find the interest (l) you will pay.

So, the interest is $\$ 1,050$.
$p+I=$ total amount

- To find the total amount you will pay
$\$ 5,000+\$ 1,050=\$ 6,050$ back, add the principal and the interest. So, the total amount of money to be paid back is $\$ 6,050$.

Check It Out

Find the interest (I) and the total amount.
(32) principal: $\$ 4,800$
rate: 12.5%
time: 3 years
(33) principal: $\$ 2,500$ rate: 3.5%
time: $1 \frac{1}{2}$ years

application Oseola McCarty

Miss Oseola McCarty had to leave school after sixth grade. At first she charged $\$ 1.50$ to do a bundle of laundry, later $\$ 10.00$. But she always managed to save. By age 86 , she had accumulated $\$ 250,000$. In 1995, she decided to donate \$150,000 to endow a scholarship. Miss McCarty said, "The secret to building a fortune is compounding interest. You've got to leave your investment alone long enough for it to increase."

2.7 Exercises

Find the percent of each number.

1. 2% of 50
2. 125% of 34
3. 42% of 700
4. 4% of 16.3

Solve.
5. What percent of 60 is 48 ?
7. 3 is what percent of 20 ?
6. 14 is what percent of 70 ?
8. What percent of 8 is 6 ?

Solve.

9. 82% of what number is 492 ?
10. 24% of what number is 18 ?
$\mathbf{1 1 .} 3 \%$ of what number is 4.68 ? 12. 80% of what number is 24 ?
Find the percent of increase or decrease to the nearest percent.
11. 20 to 39
12. 175 to 91
13. 112 to 42

Estimate the percent of each number.

16. 48% of 70
17. 34% of 69
18. Mariko needed a helmet to snowboard on the half-pipe at Holiday Mountain. She bought a helmet for 45% off the regular price of $\$ 39.50$. How much did she save? How much did she pay?
19. A snowboard is on sale for 20% off the regular price of $\$ 389.50$. Find the discount and the sale price of the snowboard.

Find the discount and sale price.
20. regular price: $\$ 80$
discount percent: 20\%
22. regular price: $\$ 1,200$ discount percent: 12%
21. regular price: $\$ 17.89$ discount percent: 10\%
23. regular price: $\$ 250$ discount percent: 18\%

Find the interest and total amount. Use a calculator.
24. $p=\$ 9,000$
$r=7.5 \%$ per year
$t=2 \frac{1}{2}$ years
25. $p=\$ 1,500$
$r=9 \%$ per year
$t=2$ years

Rational Numbers

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 2-2).

Problem Set

1. Of the 16 girls on the softball team, 12 play regularly. What percent of girls play regularly? (Lesson $2 \cdot 6$)
2. Itay missed 6 questions on a 25 -question test. What percent did he get correct? (Lesson 2.6)
3. Fenway Park in Boston has a seating capacity of approximately 35,900 seats. 27% of the seats are held by season-ticket holders. About how many seats are taken by season-ticket holders? (Lesson 2•6)
4. Which fraction is equivalent to $\frac{14}{21}$? (Lesson 2-1)
A. $\frac{2}{7}$
B. $\frac{7}{7}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$
5. Which fraction is greater, $\frac{1}{12}$ or $\frac{3}{35}$? (Lesson 2-4)

Add or subtract. Write your answers in simplest form. (Lesson 2-2)
6. $\frac{5}{8}+\frac{3}{4}$
7. $2 \frac{1}{5}-1 \frac{1}{2}$
8. $3-1 \frac{1}{8}$
9. $7 \frac{3}{4}+2 \frac{7}{8}$
10. Write the improper fraction $\frac{11}{4}$ as a mixed number. (Lesson 2-1)

In Exercises 11-14, multiply or divide as indicated. (Lesson 2-2)
11. $\frac{4}{5} \cdot \frac{5}{6}$
12. $\frac{3}{10} \div 4 \frac{1}{2}$
13. $2 \frac{5}{8} \cdot \frac{4}{7}$
14. $5 \frac{1}{3} \div 2 \frac{1}{6}$
15. Write the following numbers in order from least to greatest:
$0.90,-0 . \overline{33}, 1 \frac{2}{3}, \frac{7}{8}$. (Lesson 2.4)
Solve. (Lesson 2.3)
16. $10.55+3.884$
17. $13.4-2.08$
18. $8.05 \cdot 6.4$
19. $69.69 \div 11.5$

Name all sets of numbers to which each real number belongs.
(Lesson 2.5)
20. $\sqrt{22}$
21. -1.78

Solve the following. Round answers to the nearest tenth.
(Lesson 2.7)
22. What percent of 125 is 30 ?
23. Find 18% of 85 .
24. 36 is 40% of what number?

benchmark (Lesson 2•6) discount (Lesson 2.7) improper fraction (Lesson 2.1) irrational number (Lesson 2.5) mixed number (Lesson 2.1) multiplicative inverse
(Lesson 2-2)
percent (Lesson 2-6) percent proportion (Lesson 2.7) rational numbers (Lesson 2.1)
reciprocal (Lesson 2-2)
repeating decimal (Lesson 2.4)
terminating decimal
(Lesson 2-4)

Hotidile 8

Powers and Roots

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers

 1| $1 / 1$
 What

 to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 3-2).
Problem Set

Write each product, using an exponent. (Lesson 3.1)

$$
\text { 1. } 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \quad \text { 2. } a \cdot a \cdot a \cdot a \cdot a
$$

Evaluate each square. (Lesson 3.1)
3. 2^{2}
4. 9^{2}
5. 6^{2}

Evaluate each cube. (Lesson 3•1)
6. 2^{3}
7. 5^{3}
8. 7^{3}

Evaluate each power. (Lesson 3.1)
9. 6^{4}
10. 3^{7}
11. 2^{9}

Evaluate each power of 10. (Lesson 3-1)
12. 10^{3}
13. 10^{7}
14. 10^{11}

Evaluate each square root. (Lesson 3.2)
15. $\sqrt{16}$
16. $\sqrt{49}$
17. $\sqrt{121}$

Estimate each square root between two consecutive whole numbers. (Lesson 3-2)
18. $\sqrt{33}$
19. $\sqrt{12}$
20. $\sqrt{77}$

Estimate each square root to the nearest thousandth. (Lesson 3.2) 21. $\sqrt{15}$ 22. $\sqrt{38}$

Evaluate each cube root. (Lesson 3.2)
23. $\sqrt[3]{8}$
24. $\sqrt[3]{64}$
25. $\sqrt[3]{343}$

Identify each number as very large or very small. (Lesson 3.3)
26. 0.00014
27. 205,000,000

Write each number in scientific notation. (Lesson 3.3)
28. $78,000,000$
29. 200,000
30. 0.0028
31. 0.0000302

Write each number in standard form. (Lesson 3.3)
32. $8.1 \cdot 10^{6}$
33. $2.007 \cdot 10^{8}$
34. $4 \cdot 10^{3}$
35. $8.5 \cdot 10^{-4}$
36. $9.06 \cdot 10^{-6}$
37. $7 \cdot 10^{-7}$

Evaluate each expression. (Lesson $3 \cdot 4$)
38. $8+(9-5)^{2}-3 \cdot 4$
39. $3^{2}+6^{2} \div 9$
40. $(10-8)^{3}+4 \cdot 3-2$

base (Lesson 3-1)
cube (Lesson 3•1)
cube root (Lesson 3-2)
exponent (Lesson 3•1)
order of operations (Lesson 3•4)
perfect squares (Lesson 3.2)
power (Lesson 3•1)
scientific notation (Lesson 3.3)
square (Lesson 3•1)
square root (Lesson 3-2)

3.1 Powers and Exponents

Exponents

Multiplication is the shortcut for showing a repeated addition: $5 \cdot 3=3+3+3+3+3$. A shortcut for the repeated multiplication $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ is the power 3^{5}. The 3 , the factor to be multiplied, is called the base. The 5 is the exponent, which tells how many times the base is to be multiplied. The expression can be read as "three to the fifth power." When you write an exponent, it is written slightly higher than the base, and the size is usually a little smaller.

EXAMPLE Writing Products Using Exponents

Write $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ using an exponent.
All the factors are 2 . Check that the same factor is being used in the expression.

There are 7 factors of 2 .

- Count the number of times 2 is being multiplied.
The factor 2 is being
- Write the product using an exponent. multiplied 7 times, write 2^{7}.

So, $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{7}$.

Check It Out
Write each product, using an exponent.
(1) $4 \cdot 4 \cdot 4$
(2) $6 \cdot 6 \cdot 6$
(3) $x \cdot x \cdot x \cdot x$
(4) $y \cdot y \cdot y \cdot y \cdot y \cdot y$

Evaluating the Square of a Number

The square of a number applies the exponent 2 to the base. The square of 4 is written 4^{2}. To evaluate 4^{2}, identify 4 as the base and 2 as the exponent. Remember that the exponent tells you how many times to use the base as a factor. So 4^{2} means to use 4 as a factor 2 times.

$$
4^{2}=4 \cdot 4=16
$$

The expression 4^{2} can be read as "four to the second power." It can also be read as "four squared."

EXAMPLE Evaluating the Square of a Number

Evaluate (-9$)^{2}$.
The base is (-9), and

- Identify the base and the exponent. the exponent is 2 .

$$
\begin{array}{ll}
(-9)^{2}=(-9)(-9) & \text { - Write as an expression using } \\
& \text { multiplication. } \\
(-9)(-9)=81 & \text { - Evaluate. } \\
\text { So, }(-9)^{2}=81 . &
\end{array}
$$

Check It Out

Evaluate each square.
(5) 5^{2}
(6) $(-10)^{2}$
(7) 3 squared
(8) $\left(\frac{1}{4}\right)^{2}$

application Squaring Triangles

As you can see, some numbers can be pictured by using arrays of dots that form geometric figures. You might have already noticed that this sequence shows the first five square numbers: $1^{2}, 2^{2}, 3^{2}, 4^{2}$, and 5^{2}.

Can you think of places where you have seen numbers that form a triangular array? Think of cans stacked in a pyramid supermarket display, bowling pins, and 15 pool balls before the break. What are the next two triangular numbers?

Add each pair of consecutive triangular numbers to form a new sequence as shown here. What do you notice about this sequence?

Think about how you could use the dot arrays for the square numbers to show the same result. Hint: What line could you draw in each array? See HotSolutions for the answers.

Evaluating the Cube of a Number

The cube of a number applies the exponent 3 to a base. The cube of 2 is written 2^{3}.

Evaluating cubes is very similar to evaluating squares. For example, if you evaluate $2^{3}, 2$ is the base and 3 is the exponent. Remember that the exponent tells you how many times to use the base as a factor. So, 2^{3} means to use 2 as a factor 3 times:

$$
2^{3}=2 \cdot 2 \cdot 2=8
$$

The expression 2^{3} can be read as "two to the third power." It can also be read as "two cubed."

EXAMPLE Evaluating the Cube of a Number

Evaluate $(-5)^{3}$.
The base is (-5), and - Identify the base and the exponent. the exponent is 3 .
$(-5)^{3}=(-5)(-5)(-5) \quad$ - Write as an expression using multiplication.
$(-5)(-5)(-5)=-125 \quad$ - Evaluate.
So, $(-5)^{3}=-125$.

Check It Out

Evaluate each cube.
(9) 4^{3}
(10) $(-6)^{3}$
(11) 3 cubed
(12) (-8) cubed

Evaluating Higher Powers

You have evaluated the second power of numbers (squares) and the third power of numbers (cubes). You can evaluate higher powers of numbers as well.

To evaluate 5^{4}, identify 5 as the base and 4 as the exponent. The exponent tells you how many times to use the base as a factor. So, 5^{4} means to use 5 as a factor 4 times:

$$
5^{4}=5 \cdot 5 \cdot 5 \cdot 5=625
$$

Powers with exponents of four and higher do not have special names. Therefore, 5^{4} is read as "five to the fourth power."

EXAMPLE Evaluating Higher Powers

Evaluate 4 .

The base is 4 , and the exponent is 6 .
$4^{6}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$

- Write as an expression using multiplication.
$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=4,096$
- Evaluate.

So, $4^{6}=4,096$.

- Identify the base and the exponent.

Check It Out

Evaluate each power.
(13) $(-2)^{7}$
(14) 9^{5}
(15) (-3) to the fourth power
(16) 5 to the eighth power

Zero and Negative Exponents

Powers may contain negative exponents or exponents equal to zero.

Any nonzero number to the zero power is 1 .

$$
x^{0}=1, x \neq 0
$$

To evaluate 7^{0}, identify 7 as the base and 0 as the exponent.

$$
7^{0}=1
$$

Any nonzero number to the negative n power is equal to the

Exponential Form	Standard Form
10^{3}	1,000
10^{2}	100
10^{1}	10
10^{0}	1
10^{-1}	$\frac{1}{10}$
10^{-2}	$\frac{1}{100}$

For example, $10^{-2}=\frac{1}{10^{2}}$.
To evaluate 5^{-3}, identify 5 as the base and -3 as the exponent.
$5^{-3}=\frac{1}{5^{3}}=\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5}=\frac{1}{125}$

EXAMPLE Evaluating Zero and Negative Exponents

Evaluate 4^{0}.

The base is 4 , and the exponent is 0 .
$4^{0}=1$
Evaluate 3^{-2}.
The base is 3 , and the exponent is -2 .
$3^{-2}=\frac{1}{3^{2}}$

- Write the power using a positive exponent.
$\frac{1}{3^{2}}=\frac{1}{3 \cdot 3}=\frac{1}{9}$
So, $3^{-2}=\frac{1}{9}$.
- Identify the base and the exponent.
- Evaluate.
- Identify the base and the exponent.
- Evaluate.

Check It Out

Evaluate each power.
(17) 8^{0}
(18) 6^{-3}
(19) 2^{0}
(20) 9^{-2}

Powers of Ten

Our decimal system is based on 10 . For each factor of 10 , the decimal point moves one place to the right.

$$
\begin{array}{cll}
3.15 \\
\times 10
\end{array} \quad \begin{aligned}
& \text { 3. } \\
& \times 1.5
\end{aligned} \quad 30 \quad \begin{aligned}
& 14.25 \rightarrow 1,425 \\
& \\
& \\
& \times 10
\end{aligned}
$$

When multiplying by a negative power of 10 , the decimal point moves to the left. The number of places the decimal moves is the absolute value of the exponent.

$$
\underset{\times 10^{-2}}{\underbrace{3.17} \rightarrow 0.0317} \underset{\times 10^{-4}}{u^{-4}} \rightarrow 0.00058
$$

Negative powers are the result of repeated division.

$$
10^{-1}=\frac{1}{10}=1 \div 10
$$

When the decimal point is at the end of a number and the number is multiplied by 10 , a zero is added to the number.

Try to discover a pattern for the powers of 10 .

Power	As a Multiplication	Results	Number of Zeros
10^{3}	$10 \cdot 10 \cdot 10$	1,000	3
10^{7}	$10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$	$10,000,000$	7
10^{-3}	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{1000}$ or 0.001	3
10^{-5}	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{100000}$ or 0.00001	5
10^{-6}	$\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$	$\frac{1}{1000000}$ or 0.000001	6

Notice that the number of zeros before or after the 1 is the same as the power of 10 . This means that if you want to evaluate 10^{8}, you simply write a 1 followed by 8 zeros: $100,000,000$.

Check It Out

Evaluate each power of 10 .
(21) 10^{-4}
(22) 10^{6}
(23) 10^{9}
(24) 10^{-8}

Using a Calculator to Evaluate Powers

You can use a calculator to evaluate powers. On a calculator, you can multiply a number any number of times just by using the x key.

Many calculators have the key x^{2}. This key is used to calculate the square of a number. Enter the number that is the base, and then press x^{2}. The display will show the square of the number. On some calculators, you will have to press \square or ENTER to see the answer.

Some calculators have the key y^{x} or x^{y}. This key is used to calculate any power of a number. Enter the number that is the base, and press y^{x} or x^{y}. Then enter the number that is the exponent, and press \triangle.

Other calculators use the key \triangle for calculating powers. Enter the number that is the base, and press \triangle. Then enter the number that is the exponent, and press ENTER.

EXAMPLE Evaluating Powers

Find 12^{2}.

- Enter 12 in the calculator.
- Press x^{2}.
- Press $=$ or ENTER.

144 should be displayed on the calculator.
Find 9^{3}.

- Enter 9 in the calculator.
- Press y^{x} or x^{y} or \triangle.
- Enter 3.
- Press ENTER.

729 should be displayed on the calculator.

For more information on calculators, see Topic $9 \cdot 1$.

Check It Out

Use a calculator to evaluate each power.
(25) 18^{2}
(26) 5^{10}
(27) 2^{25}
(28) 29^{5}

3.1 Exercises

Write each product, using an exponent.
1.7•7•7
2. $9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9$
3. $a \cdot a \cdot a \cdot a \cdot a \cdot a$
4. $w \cdot w \cdot w$
5. $16 \cdot 16$

Evaluate each square.
6. 8^{2}
7. 15^{2}
8. $(-7)^{2}$
9. 1 squared
10. $\left(\frac{2}{3}\right)^{2}$

Evaluate each cube.
11. 7^{3}
12. 11^{3}
13. $(-6)^{3}$
14. 3 cubed
15. $\left(\frac{2}{3}\right)^{3}$

Evaluate each power.
16. 6^{4}
17. $(-2)^{5}$
18. 5^{5}
19. 4 to the seventh power
20. 1 to the fifteenth power
21. 9^{0}
22. 3^{-2}
23. 2^{-4}

Evaluate each power of $\mathbf{1 0}$.
24. 10^{2}
25. 10^{8}
26. 10^{13}
27. 10^{-7}
28. 10^{-9}

Use a calculator to evaluate each power.
29. 8^{6}
30. 6^{10}

3.2 Square and Cube Roots

Square Roots

In mathematics, certain operations are opposites of each other; that is, one operation "undoes" the other. Addition undoes subtraction: $9-5=4$, so $4+5=9$. Multiplication undoes division: $12 \div 4=3$, so $3 \cdot 4=12$.

The opposite of squaring a number is finding the square root. You know that $5^{2}=25$. The square root of 25 is the number that can be multiplied by itself to get 25 , which is 5 . The symbol for square root is $\sqrt{ }$. Therefore, $\sqrt{25}=5$.

EXAMPLE Finding the Square Root

Find $\sqrt{81}$.
$9 \cdot 9=81$

- Think: What number times itself makes 81 ?

Since $9 \cdot 9=81$, the

- Find the square root.
square root of 81 is 9 .
So, $\sqrt{81}=9$.

Check It Out

Find each square root.
(1) $\sqrt{16}$
(2) $\sqrt{49}$
(3) $\sqrt{100}$
(4) $\sqrt{144}$

Estimating Square Roots

The table shows the first ten perfect squares and their square roots.

Perfect square	1	4	9	16	25	36	49	64	81	100
Square root	1	2	3	4	5	6	7	8	9	10

You can estimate the value of a square root by finding the two consecutive numbers that the square root is between. Notice that in the table above, $\sqrt{40}$ lies between 36 and 49; therefore, the value of $\sqrt{40}$ is a number between 6 and 7 .

EXAMPLE Estimating a Square Root

Estimate $\sqrt{70}$.

70 is between 64 and 81 .
$\sqrt{64}=8$ and $\sqrt{81}=9 . \quad$ - Find the square roots of the perfect squares.

- Estimate the square root.

So, $\sqrt{70}$ is between 8 and 9 .

Check It Out

Estimate each square root.
(5) $\sqrt{55}$
(6) $\sqrt{18}$
(7) $\sqrt{7}$
(8) $\sqrt{95}$

Better Estimates of Square Roots

You can use a calculator to find a better estimate for the value of a square root. Most calculators have a $\sqrt{ }$ key for finding square roots.

On some calculators, the $\sqrt{ }$ function is shown on the same key as the x^{2} key on the calculator's keypad. If this is true for your calculator, you should then see a key that has either INV or 2nd on it. To use the $\sqrt{ }$ function, you would press $\boxed{I N V}$ or 2nd and then the key with $\sqrt{ }$ on it.

When finding the square root of a number that is not a perfect square, the answer will be a decimal, and the entire calculator display will be used. Generally, you round square roots to the nearest thousandth. Remember that the thousandths place is the third place after the decimal point.

EXAMPLE Estimating the Square Root of a Number

Estimate $\sqrt{42}$.
Press $42 \sqrt{\checkmark}$, or 42 INV x^{2}, •Use a calculator.
or press 2nd $x^{2} 42$ ENTER.
6.4807407 if your calculator - Read the display.
shows 8 digits or
6.480740698 if your
calculator shows 10 digits
Locate the digit in the third - Round to the nearest thousandth. place after the decimal, which is 0 . Then look at the digit to its right, which is 7 .
Because this digit is 5 or

- Estimate the square root. more, round up.
So, $\sqrt{42}=6.481$.

See Topic $9 \cdot 1$ for more about calculators.

Check It Out

Estimate each square root to the nearest thousandth.
(9) $\sqrt{2}$
(10) $\sqrt{50}$
(11) $\sqrt{75}$
(12) $\sqrt{99}$

Cube Roots

In the same way that finding a square root is the opposite of squaring of a number, finding a cube root is the opposite of cubing of a number. Finding a cube root answers the question "What number times itself three times makes the cube?" Because 2 cubed $=2 \cdot 2 \cdot 2=2^{3}=8$, the cube root of 8 is 2 . The symbol for cube root is $\sqrt[3]{ }$. Therefore, $\sqrt[3]{8}=2$.

EXAMPLE Finding the Cube Root of a Number

Find $\sqrt[3]{216}$.

- Think: What number times itself three times will make 216 ?

$$
6 \cdot 6 \cdot 6=216
$$

- Find the cube root.

So, $\sqrt[3]{216}=6$.

Check It Out

Find the cube root of each number.
(13) $\sqrt[3]{64}$
(14) $\sqrt[3]{343}$
(15) $\sqrt[3]{1000}$
(10) $\sqrt[3]{125}$

3.2 Exercises

Find each square root.

1. $\sqrt{9}$
2. $\sqrt{64}$
3. $\sqrt{121}$
4. $\sqrt{25}$
5. $\sqrt{196}$
6. $\sqrt{30}$ is between which two numbers?
A. 3 and 4
B. 5 and 6
C. 29 and 31
D. None of these
7. $\sqrt{84}$ is between which two numbers?
A. 4 and 5
B. 8 and 9
C. 9 and 10
D. 83 and 85
8. $\sqrt{21}$ is between what two consecutive numbers?
9. $\sqrt{65}$ is between what two consecutive numbers?
10. $\sqrt{106}$ is between what two consecutive numbers?

Estimate each square root to the nearest thousandth.
11. $\sqrt{3}$
12. $\sqrt{10}$
13. $\sqrt{47}$
14. $\sqrt{86}$
15. $\sqrt{102}$

Find the cube root of each number.
16. $\sqrt[3]{27}$
17. $\sqrt[3]{512}$
18. $\sqrt[3]{1331}$
19. $\sqrt[3]{1}$
20. $\sqrt[3]{8000}$

3.3 Scientißc Notation

Using Scientific Notation

Often, in science and in mathematics, numbers are used that are either very large or very small. Large numbers often have many zeros at the end. Small numbers often have many zeros in the beginning.

Large number: $\underbrace{450,000,000}$
many zeros at the end
Small number: $\quad \underbrace{}_{0.000000032}$
many zeros at the beginning

Check It Out

Identify each number as very large or very small.
(1) 0.000015
(2) $6,000,000$
(3) 0.00000901

Writing Large Numbers Using Scientific Notation

Scientific notation is a way of expressing large numbers as the product of a number between 1 and 10 and a power of 10 . To write a number in scientific notation, first move the decimal point so that it is to the right of the first nonzero digit. Second, count the number of places you moved the decimal point. Finally, find the power of 10 . If the absolute value of the original number is greater than 1 , the exponent is positive.

$$
35,700=3.57 \cdot 10^{4}
$$

EXAMPLE Writing Large Numbers in Scientific Notation

Write 4,250,000,000 in scientific notation.

4.250000000 .

9 places
$4.25 \cdot 10^{9}$

- Move the decimal point so that only one digit is to the left of the decimal.
- Count the number of decimal places that the decimal has to be moved to the right.
- Write the number without the ending zeros, and multiply by the correct power of 10 .

So, $4,250,000,000$ in scientific notation is $4.25 \cdot 10^{9}$.

Check It Out

Write each number in scientific notation.

68,000
(5) 7,000,000
(6) $73,280,000$
(7) $30,500,000,000$

application Bugs

Insects are the most successful form of life on Earth. About one million have been classified and named. It is estimated that there are up to four million more. That's not total insects we are talking about; that's different kinds of insects!

Estimates are that there are 200,000,000 insects for each person on the planet. Given a world population of approximately $6,000,000,000$, with about how many insects do we share Earth? Use a calculator to arrive at an estimate. Express the number in scientific notation. See HotSolutions for the answer.

Writing Small Numbers Using Scientific Notation

Scientific notation can also be used as a way of expressing small numbers as the product of a number between 1 and 10 and a power of 10 . To write a number in scientific notation, first move the decimal point to the right of the first nonzero digit. Second, count the number of places you moved the decimal point. Finally, find the power of 10 . If the absolute value of the original number is between 0 and 1 , the exponent is negative.

$$
0.000357=3.57 \cdot 10^{-4}
$$

EXAMPLE Writing Small Numbers in Scientific Notation

Write 0.0000000425 in scientific notation.

$4.25 \cdot 10^{-8}$	- Move the decimal point so that only one nonzero digit is to the left of the decimal.
-Count the number of decimal places that the decimal has to be moved to the left.	
- Write the number without the beginning	
zeros, and multiply by the correct power	
of 10. Use a negative exponent to move the	
decimal to the left.	

So, 0.0000000425 in scientific notation is $4.25 \cdot 10^{-8}$.

Check It Out

Write each number in scientific notation.
(8) 0.0038
(9) 0.0000004
(10) 0.0000000000603
(11) 0.0007124

Converting from Scientific Notation to Standard Form

Converting to Standard Form
 When the Exponent Is Positive

When the power of 10 is positive, each factor of 10 moves the decimal point one place to the right. When the last digit of the number is reached, some factors of 10 may still remain. Add a zero at the end of the number for each remaining factor of 10 .

EXAMPLE Converting to Standard Form

Write $7.035 \cdot 10^{6}$ in standard form.
The exponent is positive. - Study the exponent.
The decimal point moves to the right 6 places.
7.035000 .

Move the decimal point
to the right 6 places.

- Move the decimal point the correct number of places to the right. Add necessary zeros at the end of the number to fill to the decimal point.
- Write the number in standard form.

So, $7.035 \cdot 10^{6}=7,035,000$.

Check It Out

Write each number in standard form.
(12) $5.3 \cdot 10^{4}$
(13) $9.24 \cdot 10^{8}$
(14) $1.205 \cdot 10^{5}$
(15) $8.84073 \cdot 10^{12}$

Converting to Standard Form

When the Exponent Is Negative
When the power of 10 is negative, each factor of 10 moves the decimal point one place to the left. Because there is only one digit to the left of the decimal, you will have to add zeros at the beginning of the number.

EXAMPLE Converting to Standard Form

Write $4.16 \cdot 10^{-5}$ in standard form.

The exponent is negative.
The decimal point moves
5 places to the left.
0.00004 .16

Move the decimal point
to the left 5 places.

- Study the exponent.
- Move the decimal point the correct number of places to the left. Add zeros at the beginning of the number to fill to the decimal point.
- Write the number in standard form.

So, $4.16 \cdot 10^{-5}=0.0000416$.

Check It Out

Write each number in standard form.
(10) $7.1 \cdot 10^{-4}$
(17) $5.704 \cdot 10^{-6}$
(18) $8.65 \cdot 10^{-2}$
(19) $3.0904 \cdot 10^{-11}$

3.3 Exercises

Identify each number as very large or very small.

1. 0.000034
2. $83,900,000$
3. 0.000245
4. $302,000,000,000$

Write each number in scientific notation.

5. 420,000
6. $804,000,000$
7. $30,000,000$
8. $13,060,000,000,000$
9. 0.00037
10. 0.0000506
11. 0.002
12. 0.000000005507

Write each number in standard form.
13. $2.4 \cdot 10^{7}$
14. $7.15 \cdot 10^{4}$
15. $4.006 \cdot 10^{10}$
16. $8 \cdot 10^{8}$
17. $4.9 \cdot 10^{-7}$
18. $2.003 \cdot 10^{-3}$
19. $5 \cdot 10^{-5}$
20. $7.0601 \cdot 10^{-10}$
21. Which of the following expresses the number 5,030,000 in scientific notation?
A. $5 \cdot 10^{6}$
B. $5.03 \cdot 10^{6}$
C. $5.03 \cdot 10^{-6}$
D. $50.3 \cdot 10^{5}$
22. Which of the following expresses the number 0.0004 in scientific notation?
A. $4 \cdot 10^{4}$
B. $0.4 \cdot 10^{-3}$
C. $4 \cdot 10^{-4}$
D. $4 \cdot 10^{-3}$
23. Which of the following expresses the number $3.09 \cdot 10^{7}$ in standard form?
A. $30,000,000$
B. $30,900,000$
C. 0.000000309
D. 3,090,000,000
24. Which of the following expresses the number $5.2 \cdot 10^{-5}$ in standard form?
A. 0.000052
B. 0.0000052
C. 520,000
D. $5,200,000$
25. When written in scientific notation, which of the following numbers will have the greatest power of 10 ?
A. 93,000
B. 408,000
C. $5,556,000$
D. $100,000,000$

3.4 Laws of Exponents

Revisiting Order of Operations

When evaluating expressions using the order of operations, you complete the operations in the following order.

First, complete the operations within grouping symbols.
Then, evaluate powers and roots.
Next, multiply and divide in order from left to right.
Finally, add and subtract in order from left to right.

EXAMPLE Evaluating Expressions with Exponents

Evaluate $3(6-2)+4^{3} \div 8-3^{2}$.
$=3(4)+4^{3} \div 8-3^{2} \quad$ - Complete the operations within parentheses first.
$=3(4)+64 \div 8-9 \quad$ - Evaluate the powers.
$=12+8-9 \quad$ - Multiply and divide in order from left to right.
$=11$

- Add and subtract in order from left to right.
So, $3(6-2)+4^{3} \div 8-3^{2}=11$.

Check It Out

Evaluate each expression.
(1) $5^{2}-8 \div 4$
(2) $(7-3)^{2}+16 \div 2^{4}$
(3) $5+\left(3^{2}-2 \cdot 4\right)+12$
(4) $16-(4 \cdot 3-7)+2^{3}$

Product Laws

You can make calculations with exponents much simpler by following the laws of exponents.

To multiply powers that have the same base, add the exponents.

$$
a^{b} \cdot a^{c}=a^{b+c}
$$

To multiply bases with the same power, multiply the bases.

$$
a^{c} \cdot b^{c}=(a b)^{c}
$$

EXAMPLE Multiplying Powers

Simplify $2^{2} \cdot 2^{4}$. Express using exponents.
$2^{2} \cdot 2^{4}=2^{2+4}$
$2^{2+4}=2^{6}$
So, $2^{2} \cdot 2^{4}=2^{6}$.
Simplify $3^{2} \cdot 5^{2}$. Express using exponents.
$3^{2} \cdot 5^{2}=(3 \cdot 5)^{2}$
$(3 \cdot 5)^{2}=15^{2}$
So, $3^{2} \cdot 5^{2}=15^{2}$.

- Add the exponents.
- Simplify.

Check It Out

Simplify. Express using exponents.
(5) $3^{4} \cdot 3^{5}$
(6) $2^{6} \cdot 2^{12}$
(7) $2^{3} \cdot 4^{3}$
(8) $5^{2} \cdot 6^{2}$

The Quotient Law

To divide two powers that have the same base, subtract the exponents.

$$
\frac{a^{b}}{a^{c}}=a^{b-c} ; a \neq 0
$$

To divide two bases with the same power, divide the bases.

$$
\frac{a^{c}}{b^{c}}=\left(\frac{a}{b}\right)^{c} ; b \neq 0
$$

EXAMPLE Dividing Powers

Simplify $\frac{3^{4}}{3^{2}}$. Express using exponents.

$$
\begin{aligned}
& \begin{array}{ll}
\frac{3^{4}}{3^{2}}=3^{4-2} & \text { - Subtract the exponents. } \\
3^{4-2}=3^{2} & \text { - Simplify. } \\
\text { So, } \frac{3^{4}}{3^{2}}=3^{2} &
\end{array}
\end{aligned}
$$

Simplify $\frac{8^{3}}{4^{3}}$. Express using exponents.

$$
\begin{array}{ll}
& \frac{8^{3}}{4^{3}}=\left(\frac{8}{4}\right)^{3} \\
\left(\frac{8}{4}\right)^{3}=2^{3} & \text { - Divide the bases. } \\
\text { So, } \frac{8^{3}}{4^{3}}=2^{3} &
\end{array}
$$

Check It Out

Simplify. Express using exponents.

(9) $\frac{2^{3}}{2^{2}}$
(10) $\frac{5^{9}}{5^{6}}$
(11) $\frac{6^{4}}{3^{4}}$
(12) $\frac{18^{2}}{6^{2}}$

Power of a Power Law

To find the power of a power, multiply the exponents.

$$
\left(a^{b}\right)^{c}=a^{b c}
$$

To find the power of a product, apply the exponent to each factor and multiply.

$$
(a b)^{c}=a^{c} b^{c}
$$

EXAMPLE Finding the Power of a Power

Simplify $\left(4^{3}\right)^{5}$.
$\left(4^{3}\right)^{5}=4^{(3 \cdot 5)}$

- Multiply the exponents.
$4^{(3 \cdot 5)}=4^{15}$
So, $\left(4^{3}\right)^{5}=4^{15}$.
Simplify $(3 x y)^{2}$.
$(3 x y)^{2}=3^{2} x^{2} y^{2}$
$3^{2} x^{2} y^{2}=9 x^{2} y^{2}$
- Apply the exponent to each factor and
So, $(3 x y)^{2}=9 x^{2} y^{2}$.
multiply.
- Simplify.
- Simplify.

Check It Out

Simplify. Express using exponents.
(13) $\left(3^{2}\right)^{4}$
(14) $\left(3^{6}\right)^{3}$
(15) $(4 a b)^{3}$
(10) $\left(3 x y^{6}\right)^{3}$

3.4 Exercises

Evaluate each expression.

1. $4^{2} \div 2^{3}$
2. $(5-3)^{5}-4 \cdot 5$
3. $7^{2}-3\left(5+3^{2}\right)$
4. $8^{2} \div 4 \cdot 2$
5. $15 \div 3+(10-7)^{2} \cdot 2$
6. $7 \cdot 3-(8-2 \cdot 3)^{3}-1$
7. $5^{2}-2 \cdot 3^{2}$
8. $2 \cdot 5+3^{4} \div(4+5)$
9. $(7-3)^{2}-(9-6)^{3} \div 9$
10. $3 \cdot 4^{2} \div 6+2\left(3^{2}-5\right)$

Simplify each expression.
11. $a^{2} \cdot a^{5}$
12. $\frac{x^{8}}{x^{5}}$
13. $\left(m^{3}\right)^{4}$
14. $3^{5} \cdot 3^{7}$
15. $2^{4} \cdot 7^{4}$
16. $\left(6 x^{4}\right)\left(8 x^{7}\right)$
17. $\frac{3^{7}}{3^{5}}$
18. $\frac{15^{3}}{5^{3}}$
19. $\left(3^{3}\right)^{5}$
20. $\left[\left(4^{2}\right)^{3}\right]^{2}$
21. $(5 a b)^{4}$

Powers and Roots

What
 have you learned?

Problem Set

Write each product, using an exponent. (Lesson 3.1)
1.7•7•7•7•7•7•7•7•7
2. $n \cdot n \cdot n \cdot n$

Evaluate each square. (Lesson 3•1)
3. 3^{2}
4. 7^{2}
5. 12^{2}
6. $(-8)^{2}$
7. $\left(\frac{3}{4}\right)^{2}$

Evaluate each cube. (Lesson 3-1)
8. 4^{3}
9. 9^{3}
10. 5^{3}
11. $(-3)^{3}$
12. $\left(\frac{1}{2}\right)^{3}$

Evaluate each power. (Lesson 3.1)
13. 3^{8}
14. 7^{4}
15. 2^{11}
16. $(-2)^{5}$
17. 5^{0}
18. 9^{0}
19. 4^{-3}
20. 7^{-2}

Evaluate each power of 10. (Lesson 3.1)
21. 10^{2}
22. 10^{5}
23. 10^{9}

Evaluate each square root. (Lesson 3-2)
24. $\sqrt{9}$
25. $\sqrt{64}$
26. $\sqrt{169}$

Estimate each square root between two consecutive numbers. (Lesson 3-2)
27. $\sqrt{51}$
28. $\sqrt{18}$
29. $\sqrt{92}$

Estimate each square root to the nearest thousandth. (Lesson 3-2)
30. $\sqrt{23}$
31. $\sqrt{45}$

Evaluate each cube root. (Lesson 3.2)
32. $\sqrt[3]{27}$
33. $\sqrt[3]{125}$
34. $\sqrt[3]{729}$

Identify each number as very large or very small. (Lesson 3.3)
35. 0.000063
36. $8,600,000$

Write each number in scientific notation. (Lesson 3.3)
37. 9,300,000
38. $800,000,000$
39. 0.000054
40. 0.0605

Write each number in standard form. (Lesson 3.3)
41. $3.4 \cdot 10^{4}$
42. $7.001 \cdot 10^{10}$
43. $9 \cdot 10^{6}$
44. $5.3 \cdot 10^{-3}$
45. $6.02 \cdot 10^{-9}$
46. $4 \cdot 10^{-4}$

Evaluate each expression. (Lesson $3 \cdot 4$)
47. $3 \cdot 5^{2}-4^{2} \cdot 2$
48. $6^{2}-\left(8^{2} \div 2^{5}+3 \cdot 5\right)$
49. $(1+2 \cdot 3)^{2}-\left(2^{3}-4 \div 2^{2}\right)$

Write definitions for the following words.
base (Lesson 3•1)
cube (Lesson 3•1)
cube root (Lesson 3.2)
exponent (Lesson 3.1)
order of operations (Lesson 3•4)
perfect squares (Lesson 3.2)
power (Lesson $3 \cdot 1$)
scientific notation (Lesson 3.3)
square (Lesson 3•1)
square root (Lesson 3-2)

Hotidite 4

Data，Statistics，and Probability

What do you know？

You can use the problems and the list of words that follow to see what you already know about this chapter．The answers to the problems are in HotSolutions at the back of the book，and the definitions of the words are in HotWords at the front of the book．You can find out more about a particular problem or word by referring to the topic number （for example，Lesson 4－2）．

Problem Set

Use the following for Exercises 1－3．A student asked others riding on the school bus about their favorite Physical
Education time．The answers are shown below．（Lesson 4－1）

Favorite Physical Education Time			
	6th Graders	7th Graders	8th Graders
Early morning	III	H	
Late morning	IIII	为州	IIII
Early afternoon	H	H	1
Late afternoon	11	1	州1

1．When is the favorite Physical Education time among all students who gave answers？
2．Which grade had the most responses？
3．Is this a random sample？
4．In a class election，tally marks were used to count votes． What is the graph called that is made from these marks？ （Lesson 4－2）
5. In a scatter plot, the line of best fit rises from left to right. What kind of correlation is illustrated? (Lesson 4-3)
6. In Mr. Dahl's class of 27 students, the lowest test grade is 58%, the highest is 92%, and the most common is 84%. What is the range of grades? (Lesson 4-4)
7. In Exercise 6, which can you find: the mean, median, or mode? (Lesson 4•4)
8. $C(7,2)=$ (Lesson 4.5)
9. A bag contains 10 chips -3 red, 4 blue, 1 green, and 2 black. A chip is drawn. A second chip is drawn without replacing the first one drawn. What is the probability that both are blue? (Lesson 4•6)

howturls

biased sample (Lesson 4.1)
bimodal distribution
(Lesson 4-3)
box plot (Lesson 4-2)
combination (Lesson 4.5)
correlation (Lesson 4•3)
dependent events (Lesson 4.6)
event (Lesson 4.5)
experimental probability
(Lesson 4•6)
factorial (Lesson 4.5)
flat distribution (Lesson 4.3)
histogram (Lesson 4-2)
independent events (Lesson 4.6)
interquartile range
(Lesson 4•4)
line of best fit (Lesson 4.3)
lower quartile (Lesson 4•4)
mean (Lesson 4.4)
measures of variation
(Lesson 4•4)
median (Lesson 4-4)
mode (Lesson 4.4)
normal distribution
(Lesson 4•3)
outcome (Lesson 4.5)
outlier (Lesson 4.4)
permutation (Lesson 4.5)
population (Lesson 4.1)
probability (Lesson 4.6)
quartiles (Lesson 4.4)
random sample (Lesson 4•1)
range (Lesson 4.4)
sample (Lesson 4•1)
sampling with
replacement (Lesson 4.6)
scatter plot (Lesson 4.3)
skewed distribution (Lesson 4-3)
stem-and-leaf plot (Lesson 4-2)
theoretical probability
(Lesson 4•6)
tree diagram (Lesson 4.5)
upper quartile (Lesson 4.4)
weighted average (Lesson 4.4)

4.1 Collecting Data

Surveys

Have you ever been asked to name your favorite movie? Have you been asked what kind of pizza you like? These kinds of questions are often asked in surveys. A statistician studies a group of people or objects, called a population. They usually get information from a small part of the population, called a sample.

In a survey, eighth-grade students were chosen at random from three countries and asked if they spent three or more hours on a normal school day watching TV, hanging out with friends, playing sports, reading for fun, or studying. The following bar graph shows the percent of students who said yes in each category.

In this case, the population is all eighth-grade students in the United States, Japan, and Germany. The sample is the students who were actually surveyed.

In any survey,

- The population consists of the people or objects about which information is desired.
- The sample consists of the people or objects in the population that are actually studied.

Check It Out

Identify the population and the size of the sample.

(1) In a survey, 150,000 adults over the age of 45 were asked if they listened to radio station KROK.
(2) two hundred elk in Roosevelt National Forest

3 In a 2007 survey, 500 motor vehicle drivers in the state of California were asked their age.

Random Samples

When you choose a sample to survey for data, be sure that the sample is representative of the population. You also want to be sure it is a random sample, where each person in the population has an equal chance of being included.

Mr. Singh wants to determine whether his students want pizza, chicken fingers, ice cream, or bagels at a class party. He picks a sample by writing the names of his students on cards and drawing ten cards from a bag.

EXAMPLE Determining Whether a Sample is Random

Determine whether Mr. Singh's sample (above) is random.

The population is
Mr. Singh's class.
The sample consists
of ten students.
Every student in Mr. Singh's class has the same chance of being chosen.
So, the sample is random.

- Determine the population.
- Determine the sample.
- Determine if the sample is random.

Check It Out

(4) A student asked 20 of her parents' friends who they planned to vote for. Is the sample random?
(5) A student assigns numbers to his 24 classmates and then uses a spinner divided into 24 equal parts to pick ten numbers. He asks those ten students to identify their favorite movie. Is the sample random?

Biased Samples

A biased sample is determined in such a way that one or more parts of the population are favored over others. A biased sample may be used to obtain a specific outcome or conclusion.

A sample may be biased if you are sampling from a population that is convenient or only from those who want to participate in the survey. For example, a survey may intend to represent all middle school students, but if only one class is asked to participate, the sample is biased because not everyone in the total population has an equal chance of being surveyed.

EXAMPLE Determining Whether a Sample is Biased

Determine if the sample is biased. Explain your answer.
During Mr. Thompson's English class, the students who had finished their homework in class were able to participate in an eighth grade survey. Sixty out of the 112 students who finished their homework were asked to name their favorite school subject.

- Determine the population.

The population is Mr. Thompson's English class.

- Determine the sample.

The sample consists of sixty students.

- Determine if the sample is biased.

Not all eighth-grade students had an equal chance of participating in the survey.
So, the sample is biased.

Check It Out

(6) A country music radio station surveyed $1,400,000$ members of its audience to determine what kind of music people like best. Out of 100 listeners, 80 stated they liked country music the best. Is the sample biased? Explain.
(7) To determine what type of game 360 middle-school students want to play on reward day, a teacher randomly picks 100 out of 360 responses out of a box. Is the sample biased? Explain.

Questionnaires

When you write questions for a survey, it is important to be sure that the questions are not biased. That is, the questions should not make assumptions or influence the responses. The following two questionnaires are designed to find out what kind of food your classmates like and what they do after school. The first questionnaire uses biased questions. The second questionnaire uses questions that are not biased.

Questionnaire 1:

A. What kind of pizza do you like?
B. What is your favorite afternoon TV program?

Questionnaire 2:

A. What is your favorite food?
B. What do you like to do after school?

When you are developing a questionnaire,

- Decide the topic you want to ask about.
- Define a population and decide how to select an unbiased sample from that population.
- Develop questions that are not biased.

Check It Out

(8) Why is question A in Questionnaire 1 biased?
(9) Why is question B in Questionnaire 2 better than question B in Survey 1 ?
(10) Write a question that asks the same thing as the following question but is not biased. Are you a caring citizen who recycles newspapers?

Compiling Data

After Mr. Singh collected the data from his students, he had to decide how to show the results. As he asked students their food preference, he used tally marks to tally the answers in a table. The following frequency table shows their answers.

Food Preferred in Mr. Singh's Class	
Preferred Food	Number of Students
Pizza	HINIIII
Chicken fingers	INII
Ice cream	IIIIII
Bagels	III

Follow this procedure when you are making a table to compile data.

- List the categories or questions in the first column or row.
- Tally the responses in the second column or row.

Check It Out

(11) How many students chose chicken fingers?
(12) What was the food least preferred by the students surveyed?
(13) If Mr. Singh uses the survey to pick food to serve at the class party, what should he serve? Explain.

4．1 Exercises

1．Norma chose businesses to survey by obtaining a list of businesses in the city and writing each name on a slip of paper．She placed the slips of paper in a bag and drew 50 names．Is the sample random？
2．Jonah knocked on 25 doors in his neighborhood．He asked the residents who answered if they were in favor of the idea of the city building a swimming pool．Is the sample random？

Are the following questions biased？Explain．

3．Are you happy about the ugly building being built in your neighborhood？
4．How many hours do you watch TV each week？

Write unbiased questions to replace the following questions．

5．Do you prefer cute，cuddly kittens as pets，or do you like dogs better？
6．Are you thoughtful about not playing your stereo after 10 P．m．？
Ms．Chow asked her students which type of book they prefer to read and tallied the following data．

Book Preferences of Ms．Chow＇s Students		
Type of Book	Number of Seventh Graders	Number of Eighth Graders
Biography	州州	州州II
Mystery	H11	111
Fiction	州州II	H H $_{\text {H }}$
Science fiction	H111	州1
Nonfiction	III	州1

7．Which type of book was most popular？How many students preferred that type？
8．Which type of book was preferred by 13 students？
9．How many students were surveyed？

4.2
 Displaying Data

Interpret and Create a Table

You know that statisticians collect data about people or objects. One way to show the data is to use a table. Here are the number of letters in the words of the first two sentences in Black Beauty. 3554134831586414255224556423631142343

EXAMPLE Making a Table

Make a table to organize the data about letters in the words.

- Name the first row or column what you are counting.

Label the first row Number of Letters.

- Tally the amounts for each category in the second row or column.

Number of Letters	1	2	3	4	5	6	7	8	more than 8
Number of Words	III	H	$\begin{array}{\|l\|} \hline \text { H1 } \\ \text { II } \end{array}$	$\begin{aligned} & \text { WH } \\ & \text { III } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 11 \\ \text { II } \end{array}$	III		11	1

- Count the tallies and record the number in the second row or column.

Number of Letters	1	2	3	4	5	6	7	8	more than 8
Number of Words	3	5	7	8	7	3	0	2	1

The most common number of letters in a word is 4 . Three words have 1 letter.

Check It Out

(1) What information is lost by using the category "more than 8"?
2 Use the data below to make a table to show the number of gold medals won by each country in the 1994 Winter Olympics. 109117633240100210010010

Interpret a Box Plot

A box plot shows data by using the middle value of the data and the quartiles (p. 208), or 25% divisions of the data. The box plot below shows exam scores on a math test for a class of eighth graders.

On a box plot, 50% of the scores are above the median, and 50% are below it. The first quartile is the median score of the bottom half of the scores. The third quartile is the median score of the top half of the scores.

Exam Scores

This is what we can tell about the exam scores.

- The high score is 53 . The low score is 21 .
- The median score is 40 . The first quartile score is 35 , and the third quartile score is 50 .
- 50% of the scores are between 35 and 50 .

Check It Out

Use the following box plot for Exercises 3-5.

Grams of Fat in Typical Fast-Food Milkshake

(3) What is the greatest amount of fat in a fast-food milkshake?
(4) What is the median amount of fat in a fast-food milkshake?
(5) What percent of the milkshakes contain between 7 and 11.5 grams of fat?

Interpret and Create a Circle Graph

Another way to show data is to use a circle graph. A circle graph can be used to show parts of a whole.

Arturo conducted a survey to find out what kind of solid waste was thrown away. Arturo wants to make a circle graph to show the following data.

Solid Waste		
Type	Percent	Central Angle Measure
Paper	39%	$360^{\circ} \cdot 0.39=140.4^{\circ}$
Glass	6%	$360^{\circ} \cdot 0.06=21.6^{\circ}$
Metals	8%	$360^{\circ} \cdot 0.08=28.8^{\circ}$
Plastic	9%	$360^{\circ} \cdot 0.09=32.4^{\circ}$
Wood	7%	$360^{\circ} \cdot 0.07=25.2^{\circ}$
Food	7%	$360^{\circ} \cdot 0.07=25.2^{\circ}$
Yard Waste	15%	$360^{\circ} \cdot 0.15=54^{\circ}$
Miscellaneous Waste	9%	$360^{\circ} \cdot 0.09=32.4^{\circ}$

To make a circle graph,

- write each part of the data as a percent of the whole.
- find the degree measure of each part of the circle by multiplying the percent by 360°, the total number of degrees in a circle.
- draw a circle, measure each central angle, and complete the graph. Be sure to label the graph and include a title.

Solid Waste Thrown Away

From the graph, you can see that more than half of the solid waste is made up of paper and yard waste. Equal amounts of food and wood are discarded.

Check It Out

Use the circle graph at the right to answer Exercises 6 and 7.
(6) About what fraction of Where We Buy Used Cars people buy used cars from a dealership?
(7) About what fraction of people buy used cars from private owners?

(8) Make a circle graph to show the results of students' earnings.
Car wash: \$355
Bake sale: \$128
Recycling: \$155
Book sale: \$342

Interpret and Create a Line Plot

A line plot, sometimes called a frequency graph, displays data on a number line by using Xs to show the frequency of the data. Suppose that you collect the following data about the times your friends get up on a school day.

$$
5: 30,6,5: 30,8,7: 30,8,7: 30,9,8,8,6,6: 30,6,8
$$

To make a line plot:

- Draw a number line showing the numbers in your data set.
- Place an X to represent each result above the number line for each piece of data you have.
- Title the graph.

Your line plot should look like this:

Times My Friends Get Up

You can tell from the line plot that your friends get up anywhere between 5:30 and 9:00 on school days.

Check It Out

(9) What is the most common time for your friends to get up?
(10) How many friends get up before 7:00 A.M.?
(11) Make a line plot to show the number of letters in the words of the first two sentences in Black Beauty (p. 182).

Interpret a Line Graph

You know that a line graph can be used to show changes in data over time. The following line graph compares the monthly average vault scores of two gymnasts.

From the graph, you can see that Hani and Gabe had the same average scores in two months, September and March.

Check It Out

(12) In December, which gymnast had better scores?
(13) Which gymnast typically scores higher on the vault?

Interpret a Stem-and-Leaf Plot

The following numbers show the ages of the students in a T'ai Chi class.

81278343815189452439282066687545521856

It is difficult to analyze the data when displayed as a list. You know that you could make a table, a box chart, or a line graph to show this information. Another way to show the information is to make a stem-and-leaf plot. The stem-and-leaf plot at the right shows the ages of the students.

Ages of Students

| Stem | Leaf | | | |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 0 | 8 | 9 | | |
| 1 | 2 | 5 | 8 | 8 |
| 2 | 0 | 4 | 8 | |
| 3 | 4 | 8 | 9 | |
| 4 | 5 | 5 | | |
| 5 | 2 | 6 | | |
| 6 | 6 | 8 | | |
| 7 | 5 | 8 | | |

1| $2=12$ years old

Notice that the tens digits appear in the left-hand column. These are called stems. Each digit on the right is called a leaf. From looking at the plot, you can tell that more students are in their teens than in their twenties or thirties and that two students are younger than ten.

Check It Out

 The stem-and-leaf plot shows the average points per game of high-scoring players over several years.(14) How many players scored an average number of points between 30 and 31?
(15) What was the highest average number of points scored? the lowest?

Average Points Per Game

Stem	Leaf
27	2
28	4
29	368
30	1346678
31	115
32	3569
33	16
34	05
35	0
36	
37	1

30| $1=30.1$ points

Interpret and Create a Bar Graph

Another type of graph you can use to display data is called a bar graph. In this graph, either horizontal or vertical bars are used to show data. Consider the data showing Kirti's earnings from mowing lawns.

May	June	July	August	September
$\$ 78$	$\$ 92$	$\$ 104$	$\$ 102$	$\$ 66$

You can make a bar graph to show Kirti's earnings.
To make a bar graph:

- Choose a vertical scale and decide what to place along the horizontal scale.
- For each item on the horizontal scale, draw a bar of the appropriate height.
- Write a title for the graph.

A bar graph of Kirti's earnings is shown below.

From the graph, you can see that his earnings were highest in July.

Check It Out

(16) During which month were Kirti's earnings the lowest?
(17) Write a sentence describing Kirti's earnings.
(18) Use the data to make a bar graph to show the number of middle-school students on the honor role.
Sixth Grade 144
Seventh Grade 182
Eighth Grade 176

Interpret a Double-Bar Graph

If you want to show information about two or more things, you can use a double-bar graph. The following graph shows the sources of revenue for public schools for the past few years.

Source: National Education Association
You can see from the graph that the states usually contribute more toward public schools than do local and other sources. Note that the amounts are given in billions. That means $\$ 20$ on the graph represents $\$ 20,000,000,000$.

Check It Out

(19) About how much did states contribute to public schools in 1993-94?
(20) Write a sentence that describes the federal contribution during the years shown.

Interpret and Create a Histogram

A histogram is a special kind of bar graph that shows the frequency of data. Suppose that you ask several classmates how many hours, to the nearest hour, that they talk on the phone each week and collect the following data.

$$
4323120213421016
$$

To create a histogram:

- Make a table showing frequencies.

Hours	Tally	Frequency
0	II	2
1	IIII	4
2	IIII	4
3	III	3
4	II	2
5		0
6	I	1

- Make a histogram showing the frequencies.
- Title the graph.

In this case, you might call it "Hours Spent on the Phone."
Your histogram might look like this.

You can see from the diagram that as many students spent 1 hour on the phone as spent 2 hours.

Check It Out

21) Using the bar graph "Hours Spent on the Phone," determine how many classmates were surveyed.
(22) Make a histogram from the data about Black Beauty (p. 182). How many words have 5 or more letters?

4.2 Exercises

1. Make a table and a histogram to show the following data. Hours Spent Each Week Reading for Pleasure

$$
3254315023114351700302
$$

2. Which was the most common amount of time spent each week reading for pleasure?
3. Make a line plot to show the data in Exercise 1.
4. Use your line plot to describe the hours spent reading for pleasure.

Use the following graphs for Exercises 5 and 6. These two circle graphs show whether cars made a right turn, a left turn, or drove straight ahead at an intersection near school. (Lesson 4-2)
5. Between 8 A.M. and 9 A.M., what percent of the cars turn?

Intersection Choices

6. Do the graphs show that more cars go straight between 9 A.M. and 10 A.M. than between 8 A.M. and 9 A.M.?
7. Of the first ten presidents, two were born in Massachusetts, one in New York, one in South Carolina, and six in Virginia. Make a circle graph to show this information and write a sentence about your graph.
8. The stem-and-leaf plot shows the heights of 19 girls.

Girls' Heights

Stem	Leaf
5	344468
6	0034445688
7	012

5|3=53 inches
What can you say about the height of most of the girls?
9. The eighth-grade classes collected 56 pounds of aluminum in September, 73 pounds in October, 55 pounds in November, and 82 pounds in December. Make a bar graph to show the data.
10. The box plot shows the daily high temperatures in Seaside in July. What is the middle temperature? 50% of the temperatures are between 65° and what temperature?

Temperatures in Seaside in July

4.3 Analyzing Data

Scatter Plots

Once you have collected data, you may want to analyze and interpret it. You can plot points on a coordinate graph (p. 290) to make scatter plots. Then you can determine if the data are related.

Samuel collected information showing the number of candy boxes sold by each person in his soccer club and the number of years each person had been in the club.

Years in Club vs. Boxes Sold														
Years in Club	4	3	6	2	3	4	1	2	1	3	4	5	2	2
Boxes Sold	23	18	30	26	22	20	20	20	15	19	23	26	22	18

Make a scatter plot to determine whether there was any relationship between the two. First you write the data as ordered pairs, and then you graph the ordered pairs.

To make a scatter plot:

- Collect two sets of data that you can graph as ordered pairs.
- Label the vertical and horizontal axes and graph the ordered pairs.

The scatter plot shows an upward trend in the data. You can say that the longer a person is in the soccer club, the more boxes of candy they tend to sell.

Check It Out

(1) For the scatter plot below, determine whether the data are related. If they are, describe the relationship between the data.

Make a scatter plot showing the following data.

| Winning Times for the Men's 100-meter Run | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Summer Olympics
 Year 1900 1912 1924 1936 1948 1960 1972 1984
 Time (in sec) 11.0 10.8 10.6 10.3 10.3 10.2 10.1 9.99 | | | | | | | |

Correlation

The following scatter plots have slightly different appearances.

The studying and quiz scores scatter plot shows the relationship between the hours spent studying and quiz scores. A correlation is the way in which a change in one variable corresponds to a change in another. There is an upward trend in the scores. You call this a positive correlation.

This scatter plot shows the relationship between hours spent watching TV and quiz scores. There is a downward trend in the scores. You call this a negative correlation.

TV Watching and Quiz Scores			
	- .		
	- - ${ }^{\circ}$		
	01234567		
Hours SpentWatching TV			

The third scatter plot shows the relationship between the week a quiz was taken and the score. There does not appear to be any relationship. You call this no correlation.

Check It Out

(3) Which of the following scatter plots shows no relationship?

Miles Cycled and Hours	
	-
	- \cdot
	- ${ }^{\circ}$
	123

4. Describe the correlation in the scatter plot showing the relationship between age and number of cavities.
(5) Which scatter plot shows a positive correlation?

application How Risky ls It?

We are bombarded with statistics about risk. We are told that we are more likely to die as a result of Earth's collision with an asteroid than as a result of a tornado; more likely to come in contact with germs by handling paper money than by visiting someone in the hospital. We know the odds of finding radon in our houses (1 in 15) and how much one bad sunburn increases the risk of skin cancer (up to 50 percent).

How risky is modern life? Consider these statistics on life expectancy.

Year	Life Expectancy
1900	47.3
1920	54.1
1940	62.9
1960	69.7
1980	73.7
1990	75.4

Make a line graph of the data. What does the graph show about life expectancy? To what might you attribute this trend? See HotSolutions for the answers.

Line of Best Fit

When the points on a scatter plot have either a positive or negative correlation, you can sometimes draw a line of best fit. Consider the graph showing the relationship between age and number of cavities.

To draw a line of best fit:

- Decide if the points on the scatter plot show a trend.

The points on this graph show a negative correlation.

- Draw a line that seems to run through the center of the group of points.

You can use the line to make predictions. From the line it appears that people at the age of 60 would be expected to have fewer than one new cavity, and people at the age of 70 would have no new cavities.

You use the line to help you predict, but the line can show data that is not possible. Always think about whether your prediction is reasonable. For example, people at the age of 60 would not get $\frac{1}{4}$ of a cavity. You would probably predict 1 or 0 cavities.

Check It Out

(6) Use the following data to make a scatter plot and draw a line of best fit.

Latitude ($\left.{ }^{\circ} \mathrm{N}\right)$	35	34	39	42	35	42	33	42	21
Mean April Temperature ($\left.{ }^{\circ} \mathrm{F}\right)$	55	62	54	49	61	49	66	47	76

(7) Predict the mean April temperature of a city, which has a latitude of $28^{\circ} \mathrm{N}$.

Distribution of Data

A veterinarian measured the weights of 25 cats to the nearest pound and recorded the data on the following histogram. Notice the symmetry of the histogram. If you draw a curve over the histogram, the curve illustrates a normal distribution.

Often a histogram has a skewed distribution. These two histograms show the heights of students on a gymnastic team and a basketball team. Again, you can draw a curve to show the shape of the histogram. The graph showing the gymnastic team heights is skewed to the left. The graph showing the basketball team heights is skewed to the right.

The graph on the left below illustrates heights of adults. This curve has two peaks, one for female heights and one for male heights. This kind of distribution is called a bimodal distribution. The one on the right shows the number of dogs boarded each week at a pet kennel. It is called a flat distribution.

Check It Out

Identify each type of distribution as normal, skewed to the right, skewed to the left, bimodal, or flat.
8

(9)

(10)

(11)

(12)

4.3 Exercises

1. Make a scatter plot of the following data.

Times at Bat	5	2	4	1	5	6	1	3	2	6
Hits	4	0	2	0	2	4	1	1	2	3

2. Describe the correlation in the scatter plot in Exercise 1.
3. Draw a line of best fit for the scatter plot in Exercise 1. Use it to predict the number of hits for 8 times at bat.

Describe the correlation in each of the following scatter plots.
4.

5.

6.

Tell whether each of the following distributions is normal, skewed to the right, skewed to the left, bimodal, or flat.
7.

8.

9.

10.

4.4 Statistics

Laila collected the following data about the amount her classmates spend on CDs each month.
\$15, \$15, \$15, \$15, \$15, \$15, \$15
\$25, \$25, \$25, \$25, \$25
\$30, \$30, \$30
\$45
\$145
Laila said her classmates typically spend $\$ 15$ per month, but Jacy disagreed. He said the typical amount was $\$ 25$. A third classmate, Maria, said they were both wrong-the typical expenditure was $\$ 30$. Each was correct because each was using a different common measure to describe the central tendency of the data.

Mean

One measure of central tendency of a set of data is the mean. To find the mean, or average, add the amounts the students spend and divide by the total number of amounts.

EXAMPLE Finding the Mean

Find the mean amount of money spent monthly on CDs by students in Laila's class.
$\$ 15+\$ 15+\$ 15+\$ 15+\$ 15+\quad$. Add the amounts.
$\$ 15+\$ 15+\$ 25+\$ 25+\$ 25+$
$\$ 25+\$ 25+\$ 30+\$ 30+\$ 30+$
$\$ 45+\$ 145=\$ 510$
In this case, there are 17 amounts. - Divide the sum by the total
$\$ 510 \div 17=\$ 30$ number of amounts.

So, the mean amount each student spends on CDs is $\$ 30$.
Maria used the mean to describe the amounts when she said that each student typically spent $\$ 30$.

Check It Out

Find the mean.

(1) $15,12,6,4.5,12,2,11.5,1,8$
(2) $100,79,88,100,45,92$
(3) The low temperatures in Pinetop the first week in February were $38^{\circ}, 25^{\circ}, 34^{\circ}, 28^{\circ}, 25^{\circ}, 15^{\circ}$, and 24°. Find the mean temperature.
(4) Ling averaged 86 points on five tests. What would she have to score on the sixth test to bring her average up one point?

Median

Another important measure of central tendency is the median. The median is the middle number in the data when the numbers are arranged in order from least to greatest. Recall the amounts spent on CDs.
\$15, \$15, \$15, \$15, \$15, \$15, \$15
\$25, \$25, \$25, \$25, \$25
\$30, \$30, \$30
\$45
\$145

EXAMPLE Finding the Median

Find the median of amounts spent on CDs.

- Arrange the data in numerical order from least to greatest or greatest to least.

Looking at the amounts spent on CDs, we can see that they are already arranged in order.

- Find the middle number.

There are 17 numbers. The middle number is $\$ 25$ because there are eight numbers above $\$ 25$ and eight below it. So, the median amount each student spends on CDs is $\$ 25$. Jacy was using the median when he said that the typical amount spent on CDs was $\$ 25$.

When the number of amounts is even, you can find the median by finding the mean of the two middle numbers. To find the median of the numbers $1,6,4,2,5$, and 8 , you must find the two numbers in the middle.

EXAMPLE Finding the Median of an Even Number of Data

Find the median of the data 164258.
124568 or
865421
The two middle numbers are 4 and 5 .
$(4+5) \div 2=4.5$
So, the median is 4.5 . Half the numbers are greater than 4.5 and half the numbers are less than 4.5 .

Check It Out

Find the median.
(5) $11,15,10,7,16,18,9$
(6) $1.4,2.8,5.7,0.6$
(7) 11, 27, 16, 48, 25, 10, 18
(8) The top ten scoring totals in the NBA are: 24,489; 31,419; 23,$149 ; 25,192 ; 20,880 ; 20,708 ; 23,343 ; 25,389 ; 26,710$; and 14,260 points. Find the median scoring total.

Mode

Another way to describe the central tendency of a set of numbers is the mode. The mode is the number in the set that occurs most frequently. Recall the amounts spent on CDs.
\$15, \$15, \$15, \$15, \$15, \$15, \$15
\$25, \$25, \$25, \$25, \$25
\$30, \$30, \$30
\$45
\$145
To find the mode, group like numbers together and look for the one that appears most frequently.

EXAMPLE Finding the Mode

Find the mode of amounts spent on CDs.

Amount	Frequency
$\$ 15$	7
$\$ 25$	5
$\$ 30$	3
$\$ 45$	1
$\$ 145$	1

- Arrange the numbers in order or make a frequency table of the numbers.

The most frequent amount spent is $\$ 15$.

- Select the number that appears most frequently.

So, the mode of the amount each student spends on CDs is $\$ 15$.
So Laila was using the mode when she said $\$ 15$ was the typical amount students spent on CDs.

A group of numbers may have no mode or more than one mode. Data that have two modes is called bimodal.

Check It Out

Find the mode.

(9) $1,3,3,9,7,2,7,7,4,4$
(10) $1.6,2.7,5.3,1.8,1.6,1.8,2.7,1.6$
(11) $2,10,8,10,4,2,8,10,6$
(12) The top 25 home run hitters of 1961 hit the following numbers of home runs in one season: $61,49,54,49,49$, $60,52,50,49,52,59,54,51,49,58,54,56,54,51,52,51$, $49,51,58,49$. Find the mode.

application Olympic Decimals

In Olympic gymnastics, the competitors perform a set of specific events. Scoring is based on a 10 -point scale, where 10 is a perfect score.

For some of the events, gymnasts are judged on their technical merit and for composition and style.

	Technical Merit	Composition and Style
USA	9.4	9.8
China	9.6	9.7
France	9.3	9.9
Germany	9.5	9.6
Australia	9.6	9.7
Canada	9.5	9.6
Japan	9.7	9.8
Russia	9.6	9.5
Sweden	9.4	9.7
England	9.6	9.7

Marks for technical merit are based on the difficulty and variety of the routines and the skills of the gymnasts. Marks for composition and style are based on the originality and artistry of the routines.

Use these marks to determine the mean scores for technical merit and for composition and style. See HotSolutions for the answer.

Weighted Averages

When analyzing data where the numbers appear more than one time, the mean can be calculated using a weighted average. Consider the amounts spent on CDs by Laila's classmates:

$$
\$ 15, \$ 25, \$ 30, \$ 45, \$ 145
$$

Since more people spent $\$ 15$ on a CD than $\$ 45$, a weighted average might give you a more accurate picture of the mean amount spent on CDs. A weighted average is where a data set is given different "weights."

EXAMPLE Finding the Weighted Average

Find the weighted average of amounts spent on CDs.

- Determine each amount and the number of times it occurs in the set.
\$15-7 times
\$25-5 times
\$30-3 times
\$45-1 time
\$145-1 time
- Multiply each amount by the number of times it occurs.
$\$ 15 \cdot 7=\$ 105$
$\$ 25 \cdot 5=\$ 125$
$\$ 30 \cdot 3=\$ 90$
$\$ 45 \cdot 1=\$ 45$
$\$ 145 \cdot 1=\$ 145$
- Add the products and divide by the total of the weights.

$$
\begin{aligned}
& (\$ 105+\$ 125+\$ 90+\$ 45+\$ 145) \div(7+5+3+1+1) \\
& =\$ 510 \div 17=\$ 30
\end{aligned}
$$

So, the weighted average spent on CDs was $\$ 30$.

Check It Out

Find the weighted average.

(13) 45 occurs 5 times, 36 occurs 10 times, and 35 occurs 15 times
(14) The average number of checkout lanes in a Well-made department store is 8 , and the average number in a Cost-easy store is 5 . If there are 12 Well-made stores and 8 Cost-easy stores, find the average number of checkout lanes.

Measures of Variation

Measures of variation are used to describe the distribution or spread of a set of data.

Range

A measure of variation is the range. The range is the difference between the greatest and least numbers in a set.
Consider the following miles of coastline along the Pacific Coast in the United States.

State	Miles of Coastline
California	1,200
Oregon	363
Washington	157
Hawaii	750
Alaska	6,640

To find the range, you subtract the least number of miles from the greatest.

EXAMPLE Finding the Range

Find the range of miles of Pacific coastline.
The greatest value is $5,580 \mathrm{mi}$ - Find the greatest and least values. and the least value is 157 mi .
$5,580 \mathrm{mi}-157 \mathrm{mi}=5,423 \mathrm{mi}$ - Subtract.
So, the range is 5,423 miles.

Check It Out

Find the range.
(13) $1.4,2.8,5.7,0.6$
(16) $56^{\circ}, 43^{\circ}, 18^{\circ}, 29^{\circ}, 25^{\circ}, 70^{\circ}$
(17) The winning scores for the Candlelights basketball team are $78,83,83,72,83,61,75,91,95$, and 72 . Find the range in the scores.

Quartiles

Sometimes it is easier to summarize a set of data if you divide the set into equal-size groups. Quartiles are values that divide a set of data into four equal parts. A data set has three quartiles: the lower quartile, the median, and the upper quartile.

Remember that the median (p. 202) is the middle value of a set of data; therefore, there is an equal number of data points above and below the median. The lower quartile is the median of the lower half of the data set. The upper quartile is the median of the upper half of the data set. Suppose that you want to buy a cell phone. You can use quartiles to compare the prices of cell phones.

Prices of Cell Phones		
$\$ 30$	$\$ 80$	$\$ 250$
$\$ 100$	$\$ 40$	$\$ 300$
$\$ 120$	$\$ 130$	$\$ 350$
$\$ 20$	$\$ 150$	$\$ 180$

To find the quartiles, arrange the data in ascending order and divide the data into four equal parts. Then, separate the data into two equal parts by finding the median. Remember that if the data is an even amount of numbers, you find the mean of the two middle numbers. Then find the median of the lower half of the data. This is the lower quartile. Then find the median of the upper half of the data. This is the upper quartile.

EXAMPLE Finding Quartiles

Find the lower quartile of prices of cell phones.

- Arrange the data in numerical order from least to greatest and find the median of the set of data.
\$20 \$30 \$40 \$80 \$100 \$120 \$130 \$150 \$180 \$250 \$300 \$350

- Find the median of the lower half of the data.
\$20 \$30 \$40 \$80 \$100 \$120 \$130 \$150 \$180 \$250 \$300 \$350

$$
\frac{40+80}{2}=\$ 60
$$

The median of the lower half of the data is 60 . So, the lower quartile is 60 . Therefore, one fourth of the phones are priced at or below $\$ 60$.

Find the upper quartile of prices of cell phones.

- Find the median of the upper half of the data.
\$20 \$30 \$40 \$80 \$100 \$120 \$130 \$150 \$180 \$250 \$300 \$350

$$
\frac{180+250}{2}=\$ 215
$$

The median of the upper half of the data is 215 . So, the upper quartile is 215 . Therefore, one fourth of the phones are priced at or above $\$ 215$.

Check It Out

Find the lower quartile and upper quartile for each set of data.
(18) $240,253,255,270,311$
(19) $73,70,66,61,60,58,58,58,57$
(20) $3.35,3.38,3.32,3.12,3.12,3.13,3.07,3.07$

Interquartile Range

Another measure of variation is the interquartile range. The interquartile range is the range of the middle half of the data. The interquartile range is a more stable measure than the range because the range depends on the greatest and least value. Also, the interquartile range is not affected by extremely large or small values.

To find the interquartile range, find the difference between the upper quartile and lower quartile. Recall the prices of cell phones.

EXAMPLE Finding the Interquartile Range

Find the interquartile range of prices of cell phones.
Interquartile range $=$
upper quartile - lower quartile $\$ 155=\$ 215-\$ 60$
So, the interquartile range is $\$ 155$.
The price of cell phones range from approximately $\$ 60$ to $\$ 215$. Therefore, there is a difference of approximately $\$ 155$ between the prices of cell phones.

Check It Out

Find the interquartile range for each set of data.
(21) $240,253,255,270,311$
(22) $73,70,66,61,60,58,58,58,57$
(23) $3.35,3.38,3.32,3.12,3.12,3.13,3.07,3.07$

Outliers

The interquartile range can also be used to tell when data values are "too far" from the median. An outlier is a data value that is either much larger or much smaller than the median, which can affect measures used to interpret the data. The data value is considered an outlier if it is more than 1.5 times the interquartile range beyond either quartile.

Suppose in science class you are constructing a model bridge to measure how much weight it can hold. You want to determine which measure of variation, the mean or median, best describes the set of data. The following data is the weight held by the toothpick bridges.

$$
2.3,4.5,5.6,5.8,6.4,6.5,7.2,7.6,7.8,12.1
$$

EXAMPLE Finding the Outliers

Find any outliers of weights held by toothpick bridges. upper quartile $=7.6 \quad$ - Find the upper and lower quartiles. lower quartile $=5.6$

$7.6-5.6=2$	- Find the interquartile range by subtracting the lower quartile from the upper quartile.
$2 \cdot 1.5=3$	- Multiply the interquartile range by 1.5
$5.6-3=2.6$	- Find the outliers by subtracting 3 from
the lower quartile and adding 3 to the	
upper quartile.	

So, the outliers of the data set are 2.3 and 12.1 because they are more than 1.5 times the interquartile range.

In this example, it is best to use the median as the measure of variance, since there are two outliers that skew the mean.

Check It Out

Find the outliers for each set of data.
(24) $8,12,14,16,20,2,13,13,17,17,17,18,18$
(25) $42,18,17,14,12,12,8$
(26) $36.1,9.0,7.6,6.4,5.2,4.0,4.0,2.9$

4.4 Exercises

Find the mean, median, mode, and range.

1. $2,2,4,4,6,6,8,8,8,8,10,10,12,14,18$
2. $5,5,5,5,5,5,5,5,5$
3. $50,80,90,50,40,30,50,80,70,10$
4. $271,221,234,240,271,234,213,253,196$
5. Are any of the sets of data above bimodal? Explain.
6. Find the weighted average: 15 occurs 3 times, 18 occurs 1 time, 20 occurs 5 times, and 80 occurs 1 time.
7. Kelly had $85,83,92,88$, and 69 on her first five math tests. She needs an average of 85 to get a B. What score must she get on her last test to get a B ?
8. Which measure-the mean, median, or mode-must be a member of the set of data?
9. The following times represent the lengths of phone calls, in minutes, made by an eighth grader one weekend. 10216855218119547 Find the mean, median, and mode of the calls. Which measure best represents the data? Explain.
10. The price of a house is higher than half of the other houses in the area. Would you use the mean, median, mode, or range to describe it?

For Exercises 11-14, use the data in the table at the right.
11. What is the range of the data?
12. Find the median, lower quartile, upper quartile, and the interquartile range for the data.
13. Identify any outliers.
14. Use the measures of variation to describe the data in the table.

Population of U.S. Cities	
Detroit, MI	918,849
San Francisco, CA	744,041
Columbus, OH	733,203
Austin, TX	709,893
Providence, RI	175,255

4.5 Combinations and Permutations

Tree Diagrams

A tree diagram is a diagram used to show the total number of possible outcomes in a probability experiment.

An outcome is any one of the possible results of an action. For example, there are 6 possible outcomes when a standard number cube is rolled. An event is an outcome or a collection of outcomes. An organized list of all possible outcomes is called a sample space.

You often need to count outcomes. For example, suppose you have two spinners. One spinner has equally-sized regions numbered 1 through 3 and the other spinner has equally-sized regions numbered 1 and 2 . Suppose that you want to find the number of different two-digit numbers you can make by spinning the first spinner and then the second one. You can make a tree diagram.

To make a tree diagram, list the possible outcomes of the first spinner.

First spin results

Then, to the right of each result, list the possible outcomes of the second spinner.

After listing all of the possibilities, you can count to see that there are six possible number combinations.

EXAMPLE Making a Tree Diagram

Make a tree diagram to find out how many possible ways three coins can land if you toss them into the air one at a time.

- List what happens with the first trial.

The first coin can come up heads or tails.

- List what happens with the second and third (and so on) trials. List the results.

So, there are eight ways the coins can land.

You can also find the number of possibilities by multiplying the number of choices at each step. For the three coins problem, $2 \cdot 2 \cdot 2=8$ represents two possibilities for coin one, two possibilities for coin two, and two possibilities for coin three.

Check It Out

In Exercises 1-3, use multiplication to solve. Use a tree diagram if helpful.

(1) If you toss three number cubes, each showing the numbers $1-6$, how many possible three-digit numbers can you form?
2. How many possible routes are there from Creekside to Mountainville?

(3) You are making cupcakes. Each cupcake is made with either chocolate or vanilla cake, and chocolate, vanilla, or strawberry frosting. Each cupcake also has either chopped nuts or sprinkles. How many different kinds of cupcakes can you make?

Permutations

You know that you can use a tree diagram to count all possible outcomes. A tree diagram also shows ways things can be arranged or listed. A listing in which the order is important is called a permutation. Suppose that you want to line up Rita, Jacob, and Zhao for a photograph. You can use a tree diagram to show all the different ways they could line up.

There are 3 ways to choose the first person, 2 ways to choose the second, and 1 way to choose the third, so the total number of permutations is $3 \cdot 2 \cdot 1=6$. Remember that Rita, Jacob, Zhao is a different permutation from Zhao, Jacob, Rita.
$P(3,3)$ represents the number of permutations of 3 things taken 3 at a time. Thus $P(3,3)=6$.

EXAMPLE Finding Permutations

Find $P(6,5)$.
There are 6 choices for the first place, 5 for the second, 4 for the third, 3 for the fourth, and 2 for the fifth.
$6 \cdot 5 \cdot 4 \cdot 3 \cdot 2=720 \quad$ - Find the product.
So, $P(6,5)=720$.

Factorial Notation

You saw that to find the number of permutations of 8 things, you find the product $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$. The product $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ is called 8 factorial. The shorthand notation for a factorial is 8 ! So, $8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.

Check It Out

Find each value.

(4) $P(15,2)$
(5) $P(6,6)$

6 The Grandview Middle School has a speech contest. There are 8 finalists. In how many different orders can the speeches be given?
(7) One person from a class of 35 students is to be chosen as a delegate to Government Day, and another person is to be chosen as an alternate. In how many ways can a delegate and an alternate be chosen?

Find the value. Use a calculator if available.
(8) 3 !
(9) 5 !
(10) 9 !

Combinations

When you find the number of ways to select a delegate and an alternate from a class of 35 , the order in which you select the students is important. Suppose, instead, that you simply pick two delegates. Then the order is not important. That is, choosing Elena and Rahshan is the same as choosing Rahshan and Elena when picking two delegates. An arrangement or listing in which order is not important is called a combination.

You can use the number of permutations to find the number of combinations. Say you want to select 2 students to be delegates from a group of 6 students (Elena, Rahshan, Felicia, Hani, Toshi, and Kelly).

To find the number of combinations of six students taken two at a time, you start by finding the permutations. You have six ways to choose the first delegate and five ways to choose the second, so this is $6 \cdot 5=30$. But the order does not matter, so some combinations are counted more than once. Therefore, you need to divide by the number of different ways the two delegates can be arranged (2!).

$$
C(6,2)=\frac{P(6,2)}{2!}=\frac{6 \cdot 5}{2 \cdot 1}=15
$$

EXAMPLE Finding Combinations

Find $C(6,3)$.
$P(6,3)=6 \cdot 5 \cdot 4=120 \quad$ - Find the number of permutations.
$\frac{120}{3!}=\frac{120}{3 \cdot 2 \cdot 1}=20 \quad$ - Divide by the number of ways the objects can be arranged.
So, $C(6,3)=20$.

Check It Out

Find each combination.
(11) $C(9,6)$
(12) $C(14,2)$
(13) How many different combinations of three plants can you choose from a dozen plants?
(14) Are there more combinations or permutations of two books from a total of four? Explain.

4.5 Exercises

1. Make a tree diagram to show the results when you toss a coin and roll a number cube containing the numbers 1 through 6 .
2. Write all the combinations of the digits 3,5 , and 7 , using only two numbers at a time.

Find each value.

3. $P(7,5)$
4. $C(8,8)$
5. $P(9,4)$
6. $C(7,3)$
7. 5! 4 !
8. $P(8,8)$
9. $P(4,3)$

Solve.

10. Eight friends want to play enough games of tennis (singles) to be sure that everyone plays everyone else. How many games will they have to play?
11. At a chess tournament, trophies are given for first, second, third, and fourth places. Twenty students enter the tournament. How many different arrangements of four winning students are possible?
12. Determine whether the following is a permutation or a combination.
a. choosing a team of 5 players from 20 people
b. arranging 12 people in a line for a photograph
c. choosing first, second, and third places from 20 show dogs

4.6 Probability

The probability of an event is a number from 0 to 1 that measures the chance that an event will occur.

Experimental Probability

One way to find the probability of an event is to conduct an experiment. Suppose that a pair of dice (one red, one blue) is cast 20 times, and on 6 of the occasions, the sum of the numbers facing up is 9 . You compare the number of times the sum equals 9 to the number of times you cast the dice to find the probability. In this case, the experimental probability of the outcome 9 is $\frac{6}{20}$ or $\frac{3}{10}$.

EXAMPLE Determining Experimental Probability

Find the experimental probability of drawing a red marble from a bag of 10 colored marbles.

- Conduct an experiment. Record the number of trials and the result of each trial.

Choose a marble from the bag, record its color, and replace it. Repeat 10 times. Suppose that you draw red, green, blue, green, red, blue, blue, red, green, blue.

- Compare the number of occurrences of one result to the number of trials. That is the probability for that result.
Compare the number of red marbles to the total number of draws.
So, the experimental probability of drawing a red marble is $\frac{3}{10}$.

Check It Out

Three pennies are tossed $\mathbf{1 0 0}$ times. The results are shown on the circle graph.

(1) Find the experimental probability of getting two heads.

2 Find the experimental probability of getting no heads.
(3) Drop a flat-head thumbtack 50 times and record the number of times it lands point up. Find the experimental probability of the tack landing point up. Compare your answers with other student answers.

Theoretical Probability

You know that you can find the experimental probability of tossing a head when you toss a coin by doing the experiment and recording the results. You can also find the theoretical probability, the probability based on known characteristics or facts.

$$
P(\text { event })=\frac{\text { number of ways an event occurs }}{\text { number of outcomes }}
$$

For example, the outcomes when tossing a coin are head and tail. An event is a specific outcome, such as heads. So the probability of getting a head $P(H)=\frac{\text { number of heads }}{\text { number of outcomes }}=\frac{1}{2}$.

EXAMPLE Determining Theoretical Probability

Find the theoretical probability of drawing a red marble from a bag containing 5 red, 8 blue, and 7 white marbles.

- Determine the number of ways the event occurs.

In this case, the event is drawing a red marble. There are 5 red marbles.

- Determine the total number of outcomes. Use a list, multiply, or make a tree diagram (p. 213).

There are 20 marbles in the bag.

- Use the formula.
$P($ event $)=\frac{\text { number of ways an event occurs }}{\text { number of outcomes }}$
- Find the probability of the target event.

In this case, drawing a red marble is represented by P (red).
$P($ red $)=\frac{5}{20}=\frac{1}{4}$
So, the probability of drawing a red marble is $\frac{1}{4}$.

Check It Out

Find each probability. Use the spinner for Exercises 4 and 5.
(4) P (even number)
(5) $P($ number greater than 10$)$

(6) $P(2)$ when tossing a number cube
(7) The letters of the word Mississippi are written on identical slips of paper and placed in a box. If you draw a slip at random, what is the probability that it will be a vowel?

Expressing Probabilities

You can express a probability as a fraction, as shown before. But, just as you can write a fraction as a decimal, ratio, or percent, you can also write a probability in any of those forms (p. 125).

The probability of getting a head when you toss a coin is $\frac{1}{2}$. You can also express the probability as follows:

Fraction	Decimal	Ratio	Percent
$\frac{1}{2}$	0.5	$1: 2$	50%

Check It Out

Express each of the following probabilities as a fraction,

 decimal, ratio, and percent.8 the probability of drawing a red marble from a bag containing 4 red marbles and 12 green ones
(9) the probability of getting an 8 when spinning a spinner divided into eight equal divisions numbered 1 through 8
(10) the probability of getting a green gumball out of a machine containing 25 green, 50 red, 35 white, 20 black, 5 purple, 50 blue, and 15 orange gumballs
(11) the probability of being chosen to do your oral report first if your teacher puts all 25 students' names in a bag and draws

application Lottery Fever

You read the headline. You say to yourself, "Somebody's bound to win this time." But the truth is, you would be wrong! The chances of winning a Pick-6 lottery are always the same, and very, very, very small.

Start with the numbers from 1 to 7. There are always 7 different ways to choose 6 out of 7 things. (Try it for yourself.) So, your chances of winning a 6 -out-of-7 lottery would be $\frac{1}{7}$ or about 14.3%. Suppose you try using 6 out of 10 numbers. There are 210 different ways you can do that, making the likelihood of winning a 6 -out-of-10 lottery $\frac{1}{210}$ or 0.4%. For a 6 -out-of- 20 lottery, there are 38,760 possible ways to pick 6 numbers, and only 1 of these would be the winner. That's about a 0.003% chance of winning. Get the picture?

The chances of winning a 6 -out-of- 50 lottery are 1 in $15,890,700$ or 1 in about 16 million. For comparison, think about the chances that you will get struck by lightning-a rare occurrence. It is estimated that in the U.S. roughly 260 people are struck by lightning each year. Suppose the population of the U.S. is about 260 million. Would you be more likely to win the lottery or be struck by lightning? See HotSolutions for the answer.

Outcome Grids

Another way to show the possible outcomes of an experiment is to use an outcome grid. The following outcome grid shows the outcomes when rolling two number cubes and observing the sum of the two numbers.

	2nd Number Cube					
	1	2	3	4	5	6
- 1	2	3	4	5	6	7
3 2	3	4	5	6	7	8
¢ 3	4	5	6	7	8	9
E 4	5	6	7	8	9	10
25	6	7	8	9	10	11
6	7	8	9	10	11	12

You can use the grid to find the sum that occurs most often, which is 7 .

EXAMPLE Making Outcome Grids

Make an outcome grid to show the results of tossing a coin and rolling a number cube.

Number Cube

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Head	H 1	H 2	H 3	H 4	H 5	H 6
Tail	T 1	T 2	T 3	T 4	T 5	T 6

- List the outcomes of the first type down the side. List the outcomes of the second type across the top.
- Fill in the outcomes.

Once you have completed the outcome grid, it is easy to count target outcomes and determine probabilities.

Check It Out

(12) Make an outcome grid to show the two-letter outcomes when spinning the spinner twice.
Second Spin

	R	B	G	Y
R				
言 B				
京 G				
Y				

(13) What is the probability of getting green as one color when you spin the spinner in Exercise 12 twice?

Probability Line

You know that the probability of an event is a number from 0 to 1 . One way to show probabilities and how they relate to each other is to use a probability line. The following probability line shows the possible ranges of probability values.

The line shows that events which are certain have a probability of 1 . Such an event is the probability of getting a number between 0 and 7 when rolling a standard number cube. An event that cannot happen has a probability of zero. The probability of getting an 8 when spinning a spinner that shows 0,2 , and 4 is 0 . Events that are equally likely, such as getting a head or a tail when you toss a coin, have a probability of $\frac{1}{2}$.

EXAMPLE Showing Probability on a Probability Line

Suppose you roll two standard number cubes. Show the probabilities of rolling a sum of 4 and a sum of 7 on a probability line.
From the outcome grid on page 226, you can - Calculate the see that there are 3 sums of 4 , and 6 sums of 7 , out of 36 possible sums.
$P($ sum of 4$)=\frac{3}{36}=\frac{1}{12}$
$P($ sum of 7$)=\frac{6}{36}=\frac{1}{6}$
 probabilities of the given events.

Check It Out

Draw a probability line for each event.

(14) the probability of tossing a tail on one flip of a coin
(15) the probability of rolling a 1 or a 2 on one roll of a die
(16) the probability of being chosen if there are four people and an equal chance of any of them being chosen
(17) the probability of getting a green gumball out of the machine if there are 25 each of green, yellow, red, and blue gumballs

Dependent and Independent Events

If you toss a coin and roll a number cube, the result of one does not affect the other. These are examples of independent events. For independent events, the outcome of one event does not affect the other event. To find the probability that we get a head and then a 5 , you can find the probability of each event and then multiply. The probability of getting a head is $\frac{1}{2}$ and the probability of getting a 5 on a roll of the number cube is $\frac{1}{6}$. So the probability of getting a head and a 5 is $\frac{1}{2} \cdot \frac{1}{6}=\frac{1}{12}$.
Suppose that you have 4 oatmeal and 6 raisin cookies in a bag. The probability that you get an oatmeal cookie if you choose a cookie at random is $\frac{4}{10}=\frac{2}{5}$. However, once you have taken an oatmeal cookie out, there are only 9 cookies left, 3 of which are oatmeal. So the probability that a friend picks an oatmeal cookie once you have drawn is $\frac{3}{9}=\frac{1}{3}$. These events are called dependent events because the probability of one depends on the other.

In the case of dependent events, you still multiply to get the probability of both events. So the probability that your friend gets an oatmeal cookie after you have picked one is $\frac{2}{5} \cdot \frac{1}{3}=\frac{2}{15}$.
To find the probability of dependent and independent events:

- Find the probability of the first event.
- Find the probability of the second event.
- Find the product of the two probabilities.

Check It Out

Find the probability. Then determine whether the events are dependent or independent.
18 Find the probability of getting an even number and an odd number if you roll two number cubes. Are the events dependent or independent?
(19) You draw two marbles from a bag containing six red marbles and fourteen white marbles. What is the probability that you get two white marbles? Are the events dependent or independent?

Sampling With and Without Replacement

If you draw a card from a deck of cards, the probability that it is an ace is $\frac{4}{52}$, or $\frac{1}{13}$. If you put the card back in the deck and draw another card, the probability that it is an ace is still $\frac{1}{13}$, and the events are independent. This is called sampling with replacement.

If you do not put the card back in, the probability of drawing an ace the second time depends on what you drew the first time. If you drew an ace, there will be only three aces left of 51 cards, so the probability of drawing a second ace will be $\frac{3}{51}$, or $\frac{1}{17}$. In sampling without replacement, the events are dependent.

Check It Out

Find the probability for each event.

(20) You draw a card from a deck of cards and then put it back. Then you draw another card. What is the probability you get a spade and then a heart?
(21) Answer the question again if you do not replace the card.
(22) There are 8 balls in a box, 4 black and 4 white. If you draw a black ball out, what is the probability that the next ball will be black?
(23) You have a bag of 5 yellow marbles, 6 blue marbles, and 4 red marbles. If two marbles are drawn one right after the other, and not replaced, what is the probability that each marble is either red or yellow?

4.6 Exercises

Use the spinner shown for Exercises 1 and 2. Find each probability as a fraction, decimal, ratio, and percent.

1. $P(4)$
2. P (odd number)
3. If you toss a coin 48 times and get 26 heads, what is the probability of getting a head? Is this experimental or theoretical probability?
4. If you roll a number cube, what is the probability of getting a 6 ? Is this experimental or theoretical probability?
5. Draw a probability line to show the probability of getting a number greater than 6 when rolling a number cube numbered 1 through 6 .
6. Make an outcome grid to show the outcomes of spinning two spinners divided into four equal sections labeled 1 through 4.
7. Find the probability of drawing two red kings from a deck of cards if you replace the card between drawings.
8. Find the probability of drawing two red kings from a deck of cards if you do not replace the cards between drawings.
9. Look again at Exercises 7 and 8. In which exercise are the events dependent?
10. You want to choose a volleyball team from a combined group of 11 boys and 13 girls. The team consists of 6 players. What is the probability of picking a girl second if a boy was picked first?

Data, Statistics, and Probability

What
 have you
 learned?

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 4-2).

Problem Set

1. Taking a survey at the mall, Salvador asked, "What do you think of the beautiful new landscaping at the mall?" Was the question biased or unbiased? (Lesson 4•1)

Use the following box plot to answer Exercises 2-4. (Lesson 4-2)
Best Highway Gas Mileage (mpg)

2. According to the box plot, what is the greatest miles per gallon on the highway you can expect from a vehicle?
3. What is the median highway miles per gallon?
4. What percent of vehicles get less than 31 miles per gallon on the highway?

Use this information for Exercises 5 and 6. A bookstore manager compared the prices of 100 new books to the number of pages in each book to see if there was a relationship between them. For each book, the manager made an ordered pair of the form (number of pages, price). (Lesson 4.3)
5. What kind of graph will these data make?
6. On the graph, many of these 100 points seem to lie on a straight line. What is this line called?
7. Find the mean, median, mode, and range of the numbers $42,43,19,16,16,36$, and 17. (Lesson 4•4)
8. $C(6,3)=$ \qquad (Lesson 4.5)

Use the following information to answer Exercises 9 and 10. A bag contains 4 red, 3 blue, 2 green, and 1 black marble. (Lesson 4•6)
9. One marble is drawn. What is the probability that it is red?
10. Three marbles are drawn. What is the probability that 2 are black and 1 is green?

Howartic
biased sample (Lesson 4•1) bimodal distribution
(Lesson 4•3)
box plot (Lesson 4.2)
combination (Lesson 4.5)
correlation (Lesson 4.3)
dependent events (Lesson 4.6)
event (Lesson 4.5)
experimental probability
(Lesson 4.6)
factorial (Lesson 4.5)
flat distribution (Lesson 4-3)
histogram (Lesson 4-2)
independent events (Lesson 4•6)
interquartile range
(Lesson 4.4)
line of best fit (Lesson 4.3)
lower quartile (Lesson 4•4)
mean (Lesson 4.4)
measures of variation
(Lesson 4•4)
median (Lesson 4-4)

Write definitions for the following words.
mode (Lesson 4.4)
normal distribution
(Lesson 4•3)
outcome (Lesson 4.5)
outlier (Lesson 4-4)
permutation (Lesson 4.5)
population (Lesson 4-1)
probability (Lesson 4.6)
quartiles (Lesson 4•4)
random sample (Lesson 4.1)
range (Lesson 4•4)
sample (Lesson 4-1)
sampling with
replacement (Lesson 4.6)
scatter plot (Lesson 4.3)
skewed distribution (Lesson 4.3)
stem-and-leaf plot (Lesson 4-2)
theoretical probability
(Lesson 4.6)
tree diagram (Lesson 4.5)
upper quartile (Lesson 4•4)
weighted average (Lesson 4-4)

Hotionit 5

Logic

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 5-2).

Problem Set

(T) Tell whether each statement is true or false.

1. You form the inverse of a conditional statement by switching the hypothesis and the conclusion. (Lesson 5.1)
2. If a conditional statement is true, then its related converse is always false. (Lesson 5•1)
3. Every set is a subset of itself. (Lesson $5 \cdot 3$)
4. A counterexample shows that a statement is false. (Lesson 5-2)
5. You form the union of two sets by combining all the elements in both sets. (Lesson 5.3)
6. The intersection of two sets can be the empty set. (Lesson 5.3)

Write each conditional in if/then form. (Lesson 5.1)
7. The jet flies to Belgium on Tuesday.
8. The bank is closed on Sunday.

Write the converse of each conditional statement. (Lesson 5-1)
9. If $x=7$, then $x^{2}=49$.
10. If an angle has a measure less than 90°, then the angle is acute.

Write the negation of each statement. (Lesson 5•1)
11. The playground will close at sundown.
12. These two lines form an angle.

Write the inverse of the conditional statement. (Lesson 5.1)
13. If two lines intersect, then they form four angles.

Write the contrapositive of the conditional statement. (Lesson 5-1)
14. If a pentagon has five equal sides, then it is equilateral.

Find a counterexample that shows that each of these statements is false. (Lesson 5-2)
15. Tuesday is the only day of the week that begins with the letter T .
16. The legs of a trapezoid are equal.

Use the Venn diagram for Exercises 17-20. (Lesson 5.3)

17. List the elements in set A .
18. List the elements in set B.
19. Find $A \cup B$.
20. Find $A \cap B$.

5.1 If/Then Statements

Conditional Statements

A conditional statement is a statement that you can express in if/then form. The if part of a conditional is the hypothesis, and the then part is the conclusion. Often you can rewrite a statement that contains two related ideas as a conditional by making one of the ideas the hypothesis and the other the conclusion.

Statement: All members of the varsity swim team are seniors.
The conditional statement:
hypothesis
If a person is a varsity swim team member, then the person is a senior.
conclusion

EXAMPLE Forming Conditional Statements

Write this conditional in if/then form:
Julie goes swimming only in water that is above $80^{\circ} \mathrm{F}$.

- Find the two ideas.
(1) Julie goes swimming. (2) Water is above $80^{\circ} \mathrm{F}$.
- Decide which idea will be the hypothesis and which will be the conclusion.

Hypothesis: Julie goes swimming.
Conclusion: Water is above $80^{\circ} \mathrm{F}$.

- Place the hypothesis in the if clause and the conclusion in the then clause.

If necessary, add words so that your sentence makes sense.
If Julie goes swimming, then the water is above $80^{\circ} \mathrm{F}$.

Check It Out

Write each statement in if/then form.
(1) Perpendicular lines meet to form right angles.
(2) An integer that ends in 0 or 5 is a multiple of 5 .
(3) Runners participate in marathons.

Converse of a Conditional

When you switch the hypothesis and conclusion in a conditional statement, you form a new statement called the converse.

Conditional:
If angles have the same measure, then they are congruent.

If angles are congruent, then they have the same measure. hypothesis

The converse of a conditional may or may not have the same truth value as the conditional on which it is based. In other words, the truth of the converse can be logically unrelated to the truth of the initial statement.

Check It Out

Write the converse of each conditional.
(4) If an integer ends with $1,3,5,7$, or 9 , then the integer is odd.
(5) If Jacy is 15 years old, then he is too young to vote.
(6) If it is raining, then you will see a cumulus cloud.

Negations and the Inverse of a Conditional

A negation of a given statement has the opposite truth value of the given statement. This means that if the given statement is true, the negation is false; if the given statement is false, the negation is true.

Statement: A square is a quadrilateral. (true)
Negation: A square is not a quadrilateral. (false)
Statement: A pentagon has four sides. (false)
Negation: A pentagon does not have four sides. (true)
When you negate the hypothesis and the conclusion of a conditional statement, you form a new statement called the inverse.

Conditional: If $3 x=6$, then $x=2$.

Inverse: If $3 x \neq 6$, then $x \neq 2$.
The inverse of a conditional may or may not have the same truth value as the conditional.

Check It Out

Write the negation of each statement.
(7) A rectangle has four sides.
(8) The donuts were eaten before noon.

Write the inverse of each conditional.
(9) If an integer ends with 0 or 5 , then it is a multiple of 5 .
(10) If I am in Seattle, then I am in the state of Washington.

Contrapositive of a Conditional

You form the contrapositive of a conditional when you negate the hypothesis and conclusion and then interchange them.

Contrapositive: If $x \neq 2$, then $3 x \neq 6$.
The contrapositive of a conditional statement has the same truth value as the conditional.

Check It Out

Tell whether the statement is true or false.

(11) If a conditional statement is true, then its related contrapositive is always true.

Write the contrapositive of each conditional.
(12) If an angle has a measure of 90°, then the angle is a right angle.
(13) If $x \neq 3$, then $2 x \neq 6$.

14 If it snows, then school will be canceled.
(15) If you are over 12 years old, then you buy an adult ticket.

16 If you bought your tickets in advance, then you paid less.

5.1 Exercises

Write each conditional in if/then form.

1. Perpendicular lines form right angles.
2. Positive integers are greater than zero.
3. Everyone in that town voted in the last election.
4. Equilateral triangles have three equal sides.
5. Numbers that end with $0,2,4,6$, or 8 are even numbers.
6. Elena visits her aunt every Friday.

Write the converse of each conditional.
7. If a triangle is equilateral, then it is isosceles.
8. If Chenelle is over 21 , then she can vote.
9. If a number is a factor of 8 , then it is a factor of 24 .
10. If $x=4$, then $3 x=12$.

Write the negation of each statement.
11. All the buildings are three stories tall.
12. x is a multiple of y.
13. The lines in the diagram intersect at point P.
14. A triangle has three sides.

Write the inverse of each conditional.
15. If $5 x=15$, then $x=3$.
16. If the weather is good, then I will drive to work.

Write the contrapositive of each conditional.
17. If $x=6$, then $x^{2}=36$.
18. If the perimeter of a square is 8 inches, then each side length is 2 inches.

For each conditional, write the converse, inverse, and contrapositive.
19. If a rectangle has a length of 4 feet and a width of 2 feet, then its perimeter is 12 feet.
20. If a triangle has three sides of different lengths, then it is scalene.

5.2 Counterexamples

Counterexamples

In the fields of logic and mathematics, if/then statements are either true or false. To show that a statement is false, find one example that agrees with the hypothesis but not with the conclusion. Such an example is called a counterexample.

When reading the conditional statement below, you may be tempted to think that it is true.

If a polygon has four equal sides, then it is a square. The statement is false, however, because there is a counterexamplethe rhombus. A rhombus agrees with the hypothesis (it has four equal sides), but it does not agree with the conclusion (a rhombus is not a square).

Check It Out

Tell whether each statement and its converse are true or false. If a statement is false, give a counterexample.
(1) Statement: If two lines in the same plane are parallel, then they do not intersect.
Converse: If two lines in the same plane do not intersect, then they are parallel.
(2) Statement: If an angle has a measure of 90°, then it is a right angle.
Converse: If an angle is a right angle, then it has a measure of 90°.

APPLICATION 150,000..., But Who's Counting

Do you think there are two people in the United States with exactly the same number of hairs on their head? In fact, you can prove that there are-not by counting the hairs on everyone's head, but by logic.

Consider these statements:
A. At the maximum, there are approximately 150,000 hairs on the human scalp.
B. The population of the United States is greater than 150,000 .

Because statements A and B are both true, then there are two people in the United States with exactly the same number of hairs on their head.

Here's how to think about this. If you did count hairs, the first 150,000 people could each have a different number. Person 1 could have 1 hair; person 2, 2 hairs, and so on to 150,000 . Person 150,001 would have to have a number of hairs between 1 and 150,000, and this would be a duplicate of one of the heads you have already counted.

Can you prove that there are two people in your town with the same number of hairs on their head?

See HotSolutions for the answer.

5.2 Exercises

Find a counterexample that shows that each statement is false.

1. If a number is a factor of 18 , then it is a factor of 24 .
2. If a figure is a quadrilateral, then it is a parallelogram.
3. If $x+y$ is an even number, then x and y are even numbers.

Tell whether each conditional is true or false. If false, give a counterexample.
4. If a number is prime, then it is an odd number.
5. If $x y$ is an odd number, then both x and y are odd.
6. If you draw a line through a square, then you form two triangles.

Tell whether each statement and its converse are true or false. If false, give a counterexample.
7. Statement: If two angles have measures of 30°, then the angles are congruent.
Converse: If two angles are congruent, then they have measures of 30°.
8. Statement: If $6 x=54$, then $x=9$.

Converse: If $x=9$, then $6 x=54$.
Tell whether the statement and its inverse are true or false. If false, give a counterexample.
9. Statement: If an angle has a measure of 120°, then it is an obtuse angle.
Inverse: If an angle does not have a measure of 120°, then it is not an obtuse angle.

Tell whether the statement and its contrapositive are true or false. If false, give a counterexample.
10. Statement: If a triangle is isosceles, then it is equilateral.

Contrapositive: If a triangle is not equilateral, then it is not isosceles.
11. Write your own false conditional, and then give a counterexample that shows it is false.

5.3 Sets

Sets and Subsets

A set is a collection of objects. Each object is called a member or element of the set. Sets are often named with capital letters.

$$
A=\{1,2,3,4\} \quad B=\{a, b, c, d\}
$$

When a set has no elements, it is the empty set. You write $\}$ or \varnothing to indicate the empty set.

When all the elements of a set are also elements of another set, the first set is a subset of the other set.
$\{2,4\} \subset\{1,2,3,4\} \quad(\subset$ is the subset symbol.)
Remember that every set is a subset of itself and that the empty set is a subset of every set.

Check It Out

Tell whether each statement is true or false.

(1) $\{5\} \subset\{$ even numbers $\}$
(2) $\varnothing \subset\{3,5\}$
(3) $\{2\} \subset\{2\}$

Find all the subsets of each set.
(4) $\{1,4\}$
5 \{m\}
(6) $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

Union of Sets

You find the union of two sets by creating a new set that contains all of the elements from the two sets.

$$
\begin{aligned}
& J=\{1,3,5,7\} \quad L=\{2,4,6,8\} \\
& J \cup L=\{1,2,3,4,5,6,7,8\} \quad(\cup \text { is the union symbol. })
\end{aligned}
$$

When the sets have elements in common, list the common elements only once in the intersection.

$$
\begin{aligned}
& P=\{r, s, t, v\} \quad Q=\{a, k, r, t, w\} \\
& P \cup Q=\{a, k, r, s, t, v, w\}
\end{aligned}
$$

Check It Out

Find the union of each pair of sets.
(7) $\{1,2\} \cup\{9,10\}$
(8) $\{\mathrm{m}, \mathrm{a}, \mathrm{t}, \mathrm{h}\} \cup\{\mathrm{m}, \mathrm{a}, \mathrm{p}\}$
(9) $\{\star, \$, 5, \%, \boldsymbol{\Delta}, \infty\} \cup\{\infty, \%, \$, \#\}$

Intersection of Sets

You find the intersection of two sets by creating a new set that contains all of the elements that are common to both sets.

$$
A \cap B=\{8,12\} \quad(\cap \text { is the intersection symbol.) }
$$

If the sets have no elements in common, the intersection is the empty set \varnothing.

Check It Out

Find the intersection of each pair of sets.
(10 $\{9\} \cap\{9,18\}$
(11) $\{\mathrm{a}, \mathrm{c}, \mathrm{t}\} \cap\{\mathrm{b}, \mathrm{d}, \mathrm{u}\}$
(12) $\{\boldsymbol{\star}, \$, \delta, \%, \boldsymbol{\Delta}, \infty\} \cap\{\infty, \%, \$, \#\}$

Venn Diagrams

A Venn diagram shows how the elements of two or more sets are related. When the circles in a Venn diagram overlap, the overlapping part contains the elements that are common to both sets.

When evaluating Venn diagrams, you have to look carefully to identify the overlapping parts to see which elements of the sets are in those parts. The white part of the diagram shows where all three sets overlap one another.

$$
\begin{aligned}
& H=\{1,3,5,7\} \\
& J=\{2,3,4,7\} \\
& K=\{4,5,6,7\} \\
& H \cup J=\{1,2,3,4,5,7\} \\
& H \cup K=\{1,3,4,5,6,7\} \\
& J \cup K=\{2,3,4,5,6,7\} \\
& H \cup J \cup K=\{1,2,3,4,5,6,7\} \\
& \\
& H \cap J=\{3,7\} \\
& H \cap K=\{5,7\} \\
& J \cap K=\{7,4\} \\
& H \cap J \cap K=\{7\}
\end{aligned}
$$

Check It Out

Use the Venn diagram below for Exercises 13-16. List the elements in the following sets.
(13) X
(14) $X \cup Z$
(15) $Y \cap Z$
(16) $X \cap Y \cap Z$

Z

5.3 Exercises

Tell whether each statement is true or false.

1. $\{1,2,3\} \subset\{$ counting numbers $\}$
2. $\{1,2,3\} \subset\{1,2\}$
3. $\{1,2,3\} \subset\{$ even numbers $\}$
4. $\varnothing \subset\{1,2,3\}$

Find the union of each pair of sets.
5. $\{2,3\} \cup\{4,5\}$
6. $\{x, y\} \cup\{y, z\}$
7. $\{\mathrm{r}, \mathrm{o}, \mathrm{y}, \mathrm{a}, \mathrm{l}\} \cup\{\mathrm{m}, \mathrm{o}, \mathrm{a}, \mathrm{t}\}$
8. $\{2,5,7,10\} \cup\{2,7\}$

Find the intersection of each pair of sets.
9. $\{1,3,5,7\} \cap\{6,7,8\}$
10. $\{6,8,10\} \cap\{7,9,11\}$
11. $\{\mathrm{r}, \mathrm{o}, \mathrm{y}, \mathrm{a}, \mathrm{l}\} \cap\{\mathrm{m}, \mathrm{o}, \mathrm{a}, \mathrm{t}\}$
12. $\varnothing \cap\{4,5\}$

Use the Venn diagram at the right for Exercises 13-16.
13. List the elements of set T .
14. List the elements of set R.
15. Find $T \cup R$.
16. Find $T \cap R$.

Use the Venn diagram at the right for Exercises 17-25.
17. List the elements of set M.
18. List the elements of set N .
19. Find P.
20. Find $M \cup N$.
21. Find $N \cup P$.
22. Find $M \cup P$.
23. Find $M \cap N$.
24. Find $P \cap N$.

25. Find $M \cap N \cap P$.

Logic

What
 have you
 learned?

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 5-2).

Problem Set

Tell whether each statement is true or false.

1. A conditional statement is always true. (Lesson 5-1)
2. You form the converse of a conditional by interchanging the hypothesis and the conclusion. (Lesson 5-1)
3. If a conditional statement is true, then its related inverse is always true. (Lesson 5.2)
4. A counterexample of a conditional agrees with the hypothesis but not with the conclusion. (Lesson 5-2)
5. The empty set is a subset of every set. (Lesson $5 \cdot 3$)
6. One counterexample is enough to show that a statement is false. (Lesson 5-2)

Write each conditional in if/then form. (Lesson 5-1)
7. A square is a quadrilateral with four equal sides and four equal angles.
8. A right angle has a measure of 90°.

Write the converse of each conditional statement. (Lesson 5-1)
9. If $y=9$, then $y^{2}=81$.
10. If an angle has a measure greater than 90° and less than 180°, then the angle is obtuse.

Write the negation of each statement. (Lesson 5.1)
11. I am glad it's Friday!
12. These two lines are perpendicular.

Write the inverse of the conditional statement. (Lesson 5.1)
13. If the weather is warm, then we will go for a walk.

Write the contrapositive of the conditional statement. (Lesson 5-1)
14. If a quadrilateral has two pairs of parallel sides, then it is a parallelogram.

Find a counterexample that shows that the statement is false. (Lesson 5.2)
15. The number 24 has only even factors.
16. Find all the subsets of $\{7,8,9\}$.

Use the Venn diagram for Exercises 17-21. (Lesson 5-3)
17. List the elements in set A.
18. List the elements in set C .
19. Find $A \cup B$.
20. Find $B \cap C$.
21. Find $A \cap B \cap C$.

C

contrapositive (Lesson 5•1) converse (Lesson 5•1)
counterexample (Lesson 5•2)
intersection (Lesson 5.3)

Write definitions for the following words.
inverse (Lesson 5•1)
set (Lesson 5.3)
union (Lesson 5.3)
Venn diagram (Lesson 5.3)

Hotinile

Algebra

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 6.2).

Problem Set

Write an equation for the sentence. (Lesson 6.1)

1. 4 times the sum of a number and 2 is 4 less than twice the number.

Simplify each expression. (Lesson 6-2)
2. $2 a+5 b-a-2 b$
3. $4(3 n-1)-(n+6)$
4. If a car travels at 55 miles per hour, how long does it take to travel 165 miles? (Lesson 6.3)

Solve each equation. Check your solution. (Lesson 6.4)
5. $\frac{y}{6}-1=8$
6. $5(2 n-3)=4 n+9$

Use a proportion to solve Exercise 7. (Lesson 6.5)

7. In a class, the ratio of boys to girls is $\frac{3}{4}$. If there are 12 boys in the class, how many girls are there?

Solve each inequality. Graph the solution. (Lesson 6.6)
8. $x+7<5$
9. $3 x+5 \geq 17$
10. $-4 n+11<3$

Locate each point on the coordinate plane and identify in which quadrant or on which axis it lies. (Lesson 6.7)
11. $A(4,-3)$
12. $B(-2,-1)$
13. $C(0,1)$
14. $D(-3,0)$

Write the equation of the line that contains the points. (Lesson 6.8)
15. $(-2,-6)$ and $(5,1)$

HolWherls

Addition Property of Equality (Lesson 6.4)
additive inverse (Lesson 6.4)
arithmetic sequences
(Lesson 6.7)
Associative Property
(Lesson 6.2)
coefficient (Lesson 6.2)
Commutative Property
(Lesson 6.2)
constant of variation
(Lesson 6.9)
cross product (Lesson 6.5)
direct variation (Lesson 6.9)
Distributive Property
(Lesson 6.2)
Division Property of
Equality (Lesson 6.4)
domain (Lesson 6.7)
equation (Lesson 6.1)
equivalent (Lesson 6.1)
equivalent expression
(Lesson 6.2)
expression (Lesson 6.1)
function (Lesson 6.7)
Identity Property (Lesson 6-2)
inequality (Lesson 6.6)
like terms (Lesson 6.2)
Multiplication Property of
Equality (Lesson 6.4)
ordered pair (Lesson 6.7)
origin (Lesson 6.7)
point (Lesson 6.7)
product (Lesson 6.1)
proportion (Lesson 6.5)
quadrant (Lesson 6.7)
quotient (Lesson 6.1)
range (Lesson 6.7)
rate (Lesson 6.5)
ratio (Lesson 6.5)
rise (Lesson 6.8)
run (Lesson 6.8)
slope (Lesson 6.8)
Subtraction Property of
Equality (Lesson 6.4)
system of equations
(Lesson 6-10)
term (Lesson 6.1)
unit rate (Lesson 6.5)
variable (Lesson 6.1)
x-axis (Lesson 6.7)
y-axis (Lesson 6.7)
y-intercept (Lesson 6.8)

6.1 Writing Expressions and Equations

Expressions

In mathematics, the value of a particular number may be unknown. A variable is a symbol, usually a letter, that is used to represent an unknown number. Some commonly used variables follow.

$$
\begin{array}{llll}
x & n & y & a
\end{array}
$$

A term is a number, a variable, or a number and variable combined by multiplication or division. Some examples of terms follow.

$$
w \quad 5 \quad 3 x \quad \frac{y}{8}
$$

An expression is a term or a collection of terms separated by addition or subtraction signs. Some expressions, with the number of terms, are listed below.

Expression	Number of Terms	Description
$4 z$	1	a number multiplied by a variable
$5 y+3$	2	terms separated by $a+$
$2 x+8 y-6$	3	terms separated by $a+$ or -
$\frac{7 a c}{b}$	1	all multiplication and division

Check It Out

Count the number of terms in each expression.
(1) $5 x+12$
(2) $3 a b c$
(3) $9 x y-3 c-8$
(4) $3 a^{2} b+2 a b$

Writing Expressions Involving Addition

To write an expression, you will often have to interpret a written phrase. For example, the phrase "three added to some number" could be written as the expression $x+3$, where the variable x represents the unknown number.

Notice that the words "added to" indicate that the operation between three and the unknown number is addition. Other words and phrases that indicate addition are "more than," "plus," and "increased by." Another word that indicates addition is "sum." The sum is the result of adding terms together.

Some common addition phrases and their corresponding expressions are listed below.

Phrase	Expression
four more than some number	$y+4$
a number increased by eight	$n+8$
five plus some number	$5+a$
the sum of a number and seven	$x+7$

Check It Out

Write an expression for each phrase.

(5) a number added to seven
(6) the sum of a number and ten
(7) a number increased by three
(8) one more than some number

Writing Expressions Involving Subtraction

The phrase "five subtracted from some number" could be written as the expression $x-5$, where the variable x represents the unknown number. Notice that the words "subtracted from" indicate that the operation between the unknown number and five is subtraction.

Some other words and phrases that indicate subtraction are "less than," "minus," and "decreased by." Another word that indicates subtraction is "difference." The difference is the result of subtracting two terms.

In a subtraction expression, the order of the terms is very important. You have to know which term is being subtracted and which is being subtracted from. To help interpret the phrase "six less than a number," replace "a number" with a numerical example like 10 . What is 6 less than 10 ? The answer is 4 , which is expressed $10-6$, not $6-10$. Therefore, the phrase "six less than a number" translates to the expression $x-6$.

Below are some common subtraction phrases and their corresponding expressions.

Phrase	Expression
two less than some number	$z-2$
a number decreased by six	$a-6$
nine minus some number	$9-n$
the difference between a number and three	$x-3$

Check It Out

Write an expression for each phrase.
(9) a number subtracted from 14
(10) the difference between a number and two
(11) some number decreased by eight
(12) nine less than some number

Writing Expressions Involving Multiplication

The phrase "six multiplied by some number" could be written as the expression $6 x$, where the variable x represents the unknown number. Notice that the words "multiplied by" indicate that the operation between the unknown number and six is multiplication.

Some other words and phrases that indicate multiplication are "times," "twice," and "of." "Twice" is used to mean "two times." "Of" is used primarily with fractions and percents. Another word that indicates multiplication is product. The product is the result of multiplying terms.

Here are some common multiplication phrases and their corresponding expressions.

Phrase	Expression
seven times some number	$7 x$
twice a number	$2 y$
one-third of some number	$\frac{1}{3} n$
the product of a number and four	$4 a$

Check It Out

Write an expression for each phrase.
(13) a number multiplied by three
(14) the product of a number and seven
(15) 35% of some number
(10) 12 times some number

Writing Expressions Involving Division

The phrase "seven divided by some number" could be written as the expression $\frac{7}{x}$, where the variable x represents the unknown number. Notice that the words "divided by" indicate that the operation between the unknown number and seven is division.

Some other words and phrases that indicate division are "ratio of" and "divide." Another word that indicates division is quotient. The quotient is the result of dividing two terms.

Some common division phrases and their corresponding expressions are listed below.

Phrase	Expression
the quotient of 18 and some number	$\frac{18}{n}$
a number divided by 4	$\frac{x}{4}$
the ratio of 12 and some number	$\frac{12}{y}$
the quotient of a number and 9	$\frac{n}{9}$

Check It Out

Write an expression for each phrase.
(17) a number divided by 7
(18) the quotient of 16 and a number
(19) the ratio of 40 and some number
(20) the quotient of some number and 11

Writing Expressions Involving Two Operations

To write the phrase "four added to the product of five and some number" as an expression, first notice that "four added to" means "something plus four." That "something" is "the product of five and some number," which can be expressed as $5 x$, since "product" indicates multiplication. Therefore, the mathematical expression is $5 x+4$. Here are a few more examples.

Phrase	Expression	Think
two less than the quotient of a number and five	$\frac{x}{5}-2$	"two less than" means "something $-2 " ;$ "quotient" indicates division.
three times the sum of a number and four	$3(x+4)$	Write the sum inside parentheses so that the entire sum is multiplied by three.
five more than six times anumber	$6 x+5$	"five more than" means "something $+5 " ;$ "times" indicates multiplication.

Check It Out

Write each phrase as an expression.

211 12 less than the product of eight and a number
22 1 subtracted from the quotient of four and a number
23 twice the difference between a number and six

Writing Equations

An expression is a phrase; an equation is a mathematical sentence. An equation indicates that two expressions are equivalent, or equal. The symbol used in an equation is the equal sign $=$.

To write the following sentence as an equation, first identify the word or phrase that indicates equals. "Two less than the product of a number and five is the same as six more than the number." In this sentence, equals is indicated by the phrase "is the same as." In other sentences, equals may be indicated by "is," "the result is," "you get," or "equals."

Once you have identified the location of the equal sign, you can translate and write the expressions that go on the left and the right sides of the equation.

$\underbrace{$| 2 less than the product |
| :---: |
| of a number and 5 |}$_{5 x-2} \quad \underbrace{\text { is the same as }}_{=} \quad \underbrace{6 \text { more than the number }}_{x+6}$

Check It Out

Write an equation for each sentence.

(24) Eight subtracted from a number is the same as the product of five and the number.
25) Five less than four times a number is four more than twice the number.
26 When one is added to the quotient of a number and six, the result is nine less than the number.

6.1 Exercises

Count the number of terms in each expression.

1. $4 x+2 y-3 z$
2. $4 n-20$

Write an expression for each phrase.

3. eight more than a number
4. the sum of a number and nine
5. five less than a number
6. the difference between a number and four
7. one-half of some number
8. twice a number
9. the product of a number and six
10. a number divided by eight
11. the ratio of ten and some number
12. the quotient of a number and five
13. four more than the product of a number and three
14. five less than twice a number
15. twice the sum of eight and a number

Write an equation for each sentence.

16. Eight more than the quotient of a number and six is the same as two less than the number.
17. If nine is subtracted from twice a number, the result is eleven.
18. Three times the sum of a number and five is four more than twice the number.
19. Which of the following words is used to indicate multiplication?
A. sum
B. difference
C. product
D. quotient
20. Which of the following does not indicate subtraction?
A. less than
B. difference
C. decreased by
D. ratio of

6.2 Simplifying Expressions

Terms

A term that contains a number only is called a constant term. Compare the terms 7 and $5 x$. Notice that the value of 7 never changes-it remains constant. The value of $5 x$ will change as the value of x changes. If $x=2$, then $5 x=5(2)=10$, and if $x=3$, then $5 x=5(3)=15$.

The numerical factor of a term that contains a variable is called the coefficient of the variable. In the term $5 x$, the 5 is the coefficient of x.

Check It Out

Decide whether each term is a constant term.
(1) $6 x$
(2) 9
(3) $8(n+2)$ (4) 5

The Commutative Property of Addition and Multiplication

The Commutative Property of Addition states that the order of terms being added may be switched without changing the sum.

$$
4+9=9+4 \text { and } x+5=5+x .
$$

The Commutative Property of Multiplication states that the order of terms being multiplied may be switched without changing the product.

$$
2(8)=8(2) \text { and } y \cdot 6=6 y .
$$

The Commutative Property does not hold true for subtraction or division. The order of the terms does affect the result.

$$
\begin{aligned}
& 7-3=4 \text { but } 3-7=-4 . \\
& 6 \div 2=3 \text { but } 2 \div 6=\frac{1}{3} .
\end{aligned}
$$

Rewrite each expression using the Commutative Property of Addition or Multiplication.
(5) $2 x+5$
(6) $n \cdot 7$
(7) $9+4 y$
(8) $5 \cdot 6$

The Associative Property of Addition and Multiplication

The Associative Property of Addition states that the grouping of terms being added does not affect the sum.

$$
(2+3)+4=2+(3+4) \text { and }(y+5)+9=y+(5+9) .
$$

The Associative Property of Multiplication states that the grouping of terms being multiplied does not affect the product.
$(3 \cdot 4) \cdot 5=3 \cdot(4 \cdot 5)$ and $6 \cdot(4 y)=(6 \cdot 4) y$.
The Associative Property does not hold true for subtraction or division. The grouping of the numbers does affect the result.

$$
\begin{aligned}
& (9-7)-5=-3 \text { but } 9-(7-4)=6 \\
& (12 \div 6) \div 2=1 \text { but } 12 \div(6 \div 2)=4
\end{aligned}
$$

Check It Out

Rewrite each expression using the Associative Property of Addition or Multiplication.

$$
\begin{aligned}
& \text { (9) }(4+8)+11 \\
& \text { (1) }(5 \cdot 2) \cdot 9 \\
& \text { (11) }(2 x+5 y)+4 \\
& \text { (12) } 7 \cdot(8 n)
\end{aligned}
$$

The Distributive Property

The Distributive Property of Multiplication over Addition states that multiplying a sum by a number is the same as multiplying each addend by that number and then adding the products.
So, $4(3+5)=(4 \cdot 3)+(4 \cdot 5)$.

How would you multiply 6-99 in your head? You might think $600-6=594$. If you did, you used the Distributive Property.
$6(100-1)=6(100+(-1)) \quad$ •Rewrite $100-1$ as $100+(-1)$.

- Distribute the factor of 6 to each term inside the parentheses.
$=6 \cdot 100-6 \cdot 1 \quad$ - Simplify, using the order of
$=600-6=594$ operations.

The Distributive Property does not hold for division. $4 \div(3+5) \neq(4 \div 3)+(4 \div 5)$

Check It Out

Use the Distributive Property to find each product.
(13) $5 \cdot 96$
(14) $4 \cdot 103$
(15) $9 \cdot 199$
(16) $4 \cdot 318$

Properties of Zero and One

The Identity Property of Addition states that the sum of any number and 0 is that number. The additive identity is 0 because $a+0=a$ and $0+a=a$. The Identity Property of Multiplication states that the product of any number and 1 is that number. The multiplicative identity is 1 because $a \cdot 1=a$ and $1 \cdot a=a$. Subtraction and division do not have identity properties.

The Zero Property of Multiplication states the product of zero and any number is zero: $a \cdot 0=0$ and $0 \cdot a=0$. Since you cannot divide a number by zero, any number divided by zero is undefined.

Check It Out

Name the property shown by each statement.
(17) $\sqrt{9} \cdot 1=\sqrt{9}$
(18) $6 x+0=6 x$
(19) $325 \cdot 0=0$

Equivalent Expressions

The Distributive Property can be used to write an equivalent expression. Equivalent expressions are different ways of writing one expression.

EXAMPLE Writing an Equivalent Expression

Write an equivalent expression for $2(6 x-4)$.

- Distribute the factor of 2 to each term inside the parentheses.
$2 \cdot 6 x-2 \cdot 4$
- Simplify.

So, $2(6 x-4)=12 x-8$.

Distributing When the Factor is Negative

The Distributive Property is applied in the same way if the factor to be distributed is negative.

EXAMPLE Writing an Equivalent Expression

Write an equivalent expression for $-3(5 x-6)$.

$$
\begin{aligned}
& -3(5 x-6) \\
& -3 \cdot 5 x-(-3) \cdot 6 \\
& -15 x+18
\end{aligned}
$$

- Distribute the factor to each term inside the parentheses.
- Simplify. Remember: $(-3) \cdot 6=-18$ and $-(-18)=+18$.
So, $-3(5 x-6)=-15 x+18$.

Check It Out

Write an equivalent expression by using the Distributive Property.
(20) $2(7 x+4)$
(21) $8(3 n-2)$
(22) $-1(7 y-4)$
(23) $-3(-3 x+5)$

The Distributive Property with Common Factors

Given the expression $6 x+9$, you can use the Distributive Property to factor out the greatest common factor and write an equivalent expression. Recognize that the greatest common factor of the two terms is 3 .

Rewrite the expression as $3 \cdot 2 x+3 \cdot 3$. Then write the greatest common factor 3 in front of the parentheses and the remaining factors inside the parentheses: $3(2 x+3)$.

EXAMPLE Factoring Out the Common Factor

Factor out the greatest common factor from the expression $8 n-20$.

$4 \cdot 2 n-4 \cdot 5$	- Find a common factor and rewrite the expression.
$4 \cdot(2 n-5)$	- Use the Distributive Property.
So, $8 n-20=4 \cdot(2 n-5)$.	

Check It Out

Factor out the greatest common factor in each expression.
(24) $7 x+35$
(25) $18 n-15$
(26) $15 c+60$
(27) $40 a-100$

Like Terms

Like terms are terms that contain the exact same variables. Constant terms are like terms because they do not contain variables. Here are some examples of like terms.

Like Terms	Reason
$4 x$ and $5 x$	Both contain the same variable.
5 and 13	Both are constant terms.
$3 n^{2}$ and $9 n^{2}$	Both contain the same variable with the same exponent.

Below are some examples of terms that are not like terms.

Not Like Terms	Reason
$7 x$ and $9 y$	Variables are different.
$2 n$ and 6	One term has a variable; the other is constant.
$8 x^{2}$ and $8 x$	The variables are the same, but the exponents are different.

Like terms may be combined into one term by addition or subtraction. Consider the expression $3 x+5 x$. Notice that the two terms have a common factor, x. Use the Distributive Property to write $x(3+5)$. The expression simplifies to $8 x$, so $3 x+5 x=8 x$.

EXAMPLE Combining Like Terms

Simplify $6 n-8 n$.

$n(6-8)$	- Recognize that the variable is a common factor. Property.
$n(-2)$	-Simplify. $-2 n$
- Use the Commutative Property of Multiplication.	
So, $6 n-8 n=-2 n$.	

Check It Out

Combine like terms.

(28) $3 y+8 y$
(29) $9 x-4 x$
(30) $7 a+6 a+a$
(31) $2 n-5 n$

Simplifying Expressions

Expressions are simplified when all of the like terms have been combined. Terms that are not like terms cannot be combined. In the expression $5 x-7 y+8 x$, there are three terms. Two of the terms are like terms, $5 x$ and $8 x$, which add to $13 x$. The expression can be simplified to $13 x-7 y$.

EXAMPLE Simplifying Expressions

Simplify the expression $2(4 x-5)-12 x+17$.
$2 \cdot 4 x-2 \cdot 5-12 x+17$ - Use the Distributive Property.
$8 x-10-12 x+17 \quad$ - Simplify.
$-4 x+7 \quad$ - Combine like terms.
So, $2(4 x-5)-12 x+17=-4 x+7$.

Check It Out

Simplify each expression.
(32) $4 y+5 z-y+3 z$
(33) $x+4(3 x-5)$
(34) $15 a+8-2(3 a+2)$
(35) $2(5 n-3)-(n-2)$

6.2 Exercises

Decide whether each term is a constant term.

1. $4 n$
2. -9
3. Identify the coefficients in the expression $4 x-7+6 x+10$.

Rewrite each expression using the Commutative Property of Addition or Multiplication.
$4.9+5$
5. $n \cdot 4$
6. $8 x+11$

Rewrite each expression using the Associative Property of Addition or Multiplication.
7. $2+(7+14)$
8. $(8 \cdot 5) \cdot 3$
9. $3 \cdot(6 n)$

Use the Distributive Property to find each product.
10. $8 \cdot 99$
11. 6-108

Name the property shown by each statement.
12. $\sqrt{8}+0=\sqrt{8}$
13. $a^{3} \cdot 1=a^{3}$

Write an equivalent expression.
14. $-7(2 n+8)$
15. $12(3 a-10)$

Factor out the common factor in each expression.
16. $8 x+32$
17. $6 n-9$
18. $30 a-50$

Combine like terms.
19. $14 x-8 x$
20. $7 n+8 n-n$
21. $2 a-11 a$

Simplify each expression.
22. $8 a+b-3 a-5 b$
23. $3 x+2(6 x-5)+8$
24. Which property is illustrated by $7(2 x+1)=14 x+7$?
A. Commutative Property of Multiplication
B. Distributive Property
C. Associative Property of Addition
D. The example does not illustrate a property.

6.3 Evaluating Expressions and Formulas

Evaluating Expressions

You can evaluate an algebraic expression for different values of the variable. To evaluate $5 x-3$ for $x=4$, substitute 4 in place of the $x: 5(4)-3$.

Use the order of operations to simplify: multiply first, then subtract. So, 5(4)-3=20-3=17.

EXAMPLE Evaluating An Expression

Evaluate the expression $3 x^{2}-4 x+5$, when $x=-2$.
$\begin{array}{ll}3(-2)^{2}-4(-2)+5 & \text { - Substitute the numeric value for } x . \\ 3 \cdot 4-4(-2)+5 & \text { - Use the order of operations to simplify. } \\ & \text { Evaluate the power. } \\ 12+8+5=25 & \text { - Multiply and then add from left to right. }\end{array}$
So, when $x=-2$, then $3 x^{2}-4 x+5=25$.

Check It Out

Evaluate each expression for the given value.

$$
\begin{aligned}
& \text { (1) } 9 x-14 \text { for } x=4 \\
& \text { (2) } 5 a+7+a^{2} \text { for } a=-3 \\
& \text { (3) } \frac{n}{3}+2 n-5 \text { for } n=12 \\
& \text { (4) } 2\left(y^{2}-2 y+1\right)+4 y \text { for } y=3
\end{aligned}
$$

Evaluating Formulas

Interest is the amount of money paid or earned for the use of money. If you invest money in a savings account, you earn interest from the bank. For a loan, you pay interest to the bank. The amount of money invested or borrowed is called the principal. The interest rate, I, is the percent charged or paid during a given period of time, t, in years. To solve problems involving simple interest (I), the formula $I=p r t$ can be used.

EXAMPLE Finding Simple Interest

Find the simple interest for $\$ 10,000$ at 4% for 2 years.
$I=p r t$
$I=(10,000)(0.04)(2)$
$I=\$ 800$

- Write the simple interest formula.
- Substitute the values of p, r, and t into the formula for simple interest.
- Simplify.

So, the simple interest is $\$ 800$.

Check It Out

Find the simple interest to the nearest cent.

(5) $\$ 5,000$ at 6% for 10 years
(6) $\$ 135,000$ at 6.25% for 30 years
(7) $\$ 26,000$ at 6.86% for 4 years

The Formula for Distance Traveled

The distance traveled by a person, a vehicle, or an object depends on the rate and the amount of time traveled. The formula $d=r t$ can be used to find the distance traveled, d, if the rate, r, and the amount of time, t, are known.

EXAMPLE Finding the Distance Traveled

Find the distance traveled by a train that averages 60 miles per hour for $3 \frac{1}{4}$ hours.
$d=(60) \cdot\left(3 \frac{1}{4}\right) \quad$ - Substitute values into the distance formula $(d=r t)$.
$60\left(\frac{13}{4}\right)=195 \quad$ - Multiply.
So, the train traveled 195 miles.

Check It Out

Calculate the distance traveled.

(8) A person rides 12 miles per hour for 3 hours.
(9) A plane flies 750 kilometers per hour for $2 \frac{1}{2}$ hours.
(10) A person drives a car 55 miles per hour for 8 hours.
(11) A snail moves 2.3 feet per hour for 4 hours.

Application Maglev

Maglev (short for magnetic levitation) trains fly above the tracks. Magnetic forces lift and propel the trains. Without the friction of the tracks, the maglevs run at speeds of 150 to 300 miles per hour. Are they the trains of the future? At a speed of 200 miles per hour with no stops, how long would it take to travel the distance between these cities? Round to the nearest quarter of an hour.

235 miles from Boston, MA, to New York, NY 440 miles from Los Angeles, CA, to San Francisco, CA 750 miles from Mobile, AL, to Miami, FL See HotSolutions for the answers.

6.3 Exercises

Evaluate each expression for the given value.

1. $6 x-11$ for $x=5$
2. $5 a^{2}+7-3 a$ for $a=4$
3. $\frac{n}{6}-3 n+10$ for $n=-6$
4. $3(4 y-1)-\frac{12}{y}+8$ for $y=2$

Use the formula $I=p r t$ to calculate the simple interest.

5. Johnny borrowed $\$ 12,000$ to buy a car. If the yearly simple interest rate was 18%, how much interest will she pay on a 5 -year loan?
6. Jamil invested $\$ 500$ in a savings account for 3 years. Find the total amount in his account if it earns a yearly simple interest of 3.25%.
7. Susan borrowed $\$ 5,000$ at a yearly simple interest rate of 4.5%. How much interest will she pay on a 2 -year loan?

Use the formula $d=r t$ to find the distance traveled.

8. Find the distance traveled by a jogger who jogs at 6 miles per hour for $1 \frac{1}{2}$ hours.
9. A race car driver averaged 180 miles per hour. If the driver completed the race in $2 \frac{1}{2}$ hours, how many miles was the race?
10. The speed of light is approximately 186,000 miles per second. About how far does light travel in 5 seconds?

6.4 Solving Linear Equations

Additive Inverses

The sum of any term and its additive inverse is 0 . The additive inverse of 7 is -7 , because $7+(-7)=0$, and the additive inverse of $-8 n$ is $8 n$, because $-8 n+8 n=0$.

Check It Out

Give the additive inverse of each term.
(1) 4
(3) -35
(2) $-x$
(4) $10 y$

Solving Addition and Subtraction Equations

In order to solve an equation, the variable needs to be by itself or isolated on one side of the equal sign. The Subtraction Property of Equality states that if you subtract the same number from each side of an equation, the two sides remain equal. Consider the equation $x+3=11$. In order to get x by itself in this equation, subtract 3 from each side.

EXAMPLE Solving Addition Equations

Solve $x+5=9$.

$$
\begin{array}{rlrl}
x+5-5 & =9-5 & & \text { - Isolate } x \text { by subtracting } 5 \text { from each side. } \\
x & =4 & & \text { - Simplify. } \\
(4)+5 & \stackrel{?}{=} 9 & & \text { - Check by substituting the solution into the } \\
9 & =9 & & \text { original equation. } \\
\text { So, } x=4 . & &
\end{array}
$$

The Addition Property of Equality states that if you add the same number to each side of an equation, the two sides remain equal.

EXAMPLE Solving Subtraction Equations

Solve $n-8=7$.

$$
\begin{aligned}
n-8+8 & =7+8 & & \bullet \text { - Isolate } n \text { by adding } 8 \text { to each side. } \\
n & =15 & & \text { • Simplify. } \\
(15)-8 & \stackrel{?}{=} 7 & & \text { - Check by substituting the solution } \\
7 & =7 & & \text { original equation. }
\end{aligned}
$$

So, $n=15$.

Check It Out

Solve each equation. Check your solution.
5
6
6
$x+4=13$
$n-5=11$
(7) $y+10=3$

Solving Equations by Multiplication or Division

The Division Property of Equality states that if you divide each side of the equation by the same nonzero number, the two sides remain equal.

EXAMPLE
 Solving Multiplication Equations Using the Division Property of Equality

Solve $3 x=15$.

$\frac{3 x}{3}=\frac{15}{3}$	- Isolate x by dividing by 3 on each side.	
x	$=5$	- Simplify.
$3(5)$	$\stackrel{?}{=} 15$	- Check by substituting the solution into the
15	$=15$	
Soriginal equation.		
So, $x=5$.		

The Multiplication Property of Equality states that if you multiply each side of the equation by the same number, the two sides remain equal. In order to get x by itself in the equation $\frac{x}{7}=4$, multiply each side by 7 .

EXAMPLE Solving Division Equations Using the Multiplication Property of Equality

Solve the equation $\frac{n}{6}=3$.

$$
\begin{aligned}
\frac{n}{6} \cdot 6 & =3 \cdot 6 \\
n & =18 \\
\frac{(18)}{6} & \stackrel{?}{=} 3 \\
3 & =3
\end{aligned}
$$

- Isolate n by multiplying 6 on each side.
- Simplify.
- Check by substituting the solution into the original equation.
So, $n=18$.

Check It Out

Solve each equation. Check your solution.
(8) $5 x=35$
(9) $\frac{y}{8}=4$
(10) $9 n=-27$

application Prime Time

One week the top five prime-time TV shows were rated like this:

Rating (\%)	Program
23.3	Drama
21.6	Comedy
20.5	Movie
17.0	Cartoon
17.6	Sitcom

Let a equal the number of families watching TV. If the number of families watching the comedy program was 35 million, how many total families were watching TV? See HotSolutions for the answer.

Solving Two-Step Equations

Consider the equation $4 x-7=13$. This type of equation is sometimes referred to as a "two-step" equation because it contains two operations. To solve this type of equation, you undo each operation to isolate the term that contains the variable.

EXAMPLE Solving Two-Step Equations

Solve $4 x-7=13$.

$$
\begin{aligned}
& 4 x-7+7=13+7 \quad \text { - Isolate the term that contains the variable by } \\
& \text { adding } 7 \text { to each side. } \\
& 4 x=20 \quad \text { - Simplify. } \\
& \frac{4 x}{4}=\frac{20}{4} \quad \text { - Divide by } 4 \text { on each side to isolate } \\
& x=5 \quad \text { the variable. } \\
& 4(5)-7 \stackrel{?}{=} 13 \quad \text { - Check by substituting the solution into the } \\
& \text { original equation. } \\
& 20-7=13 \quad \text { - Simplify, using the order of operations. } \\
& \text { So, } x=5 \text {. } \\
& \text { Solve } \frac{n}{4}+8=2 \text {. } \\
& \frac{n}{4}+8-8=2-8 \quad \text { - Isolate the term that contains the variable by } \\
& \text { subtracting } 8 \text { from each side. } \\
& \text { - Simplify. } \\
& \text { - Multiply each side by } 4 \text { to isolate } \\
& \text { the variable. } \\
& \frac{(-24)}{4}+8 \stackrel{?}{=} 2 \\
& \text { - Check by substituting the solution into the } \\
& \text { original equation. } \\
& -6+8=2 \quad \text { - Simplify, using the order of operations. } \\
& \text { So, } n=-24 \text {. }
\end{aligned}
$$

Check It Out

Solve each equation. Check your solution.

(11) $6 x+11=29$
(12) $\frac{y}{5}-3=7$
(13) $2 n+15=1$
(14) $\frac{a}{3}+11=9$

Solving Equations with the Variable on Each Side

Consider the equation $5 x+4=8 x-5$. Notice that each side of the equation has a term that contains the variable. To solve this equation, you use the Addition or Subtraction Properties of Equality to write equivalent equations with the variables collected on one side of the equal sign and the constant terms on the other side of the equal sign. Then solve the equation.

EXAMPLE Solving an Equation with Variables on Each Side

Solve $5 x+4=8 x-5$.
$5 x+4-5 x=8 x-5-5 x$ - Subtract $5 x$ from each side to collect the terms that contain the variable on one side of the equal sign.

$\begin{aligned} 4 & =3 x-5 \\ 4+5 & =3 x-5+5 \end{aligned}$	- Simplify by combining like terms. - Add 5 to each side to collect constant terms on the other side of the equal sign.
$9=3 x$	- Simplify.
$\frac{9}{3}=\frac{3 x}{3}$	- Divide each side by 3 to isolate the variable.
$3=x$	- Simplify.
$5(3)+4 \stackrel{?}{=} 8(3)-5$	- Check by substituting the solution into the original equation.
$15+4 \stackrel{?}{=} 24-5$	- Simplify, using order of operations.
$x=3$.	

Check It Out

Solve each equation. Check your solution.
(15) $2 m-36=6 m$
(10) $9 n-4=6 n+8$
(17) $12 x+9=2 x-11$
(18) $3 a+24=9 a-12$

Equations Involving the Distributive Property

You may need to use the Distributive Property to solve an equation.

EXAMPLE
 Solving Equations by Using the Distributive Property

$$
\begin{aligned}
& 3 x-4(2 x+5)=3(x-2)+10 \quad \text { - Apply the Distributive } \\
& \text { Property. } \\
& 3 x-8 x-20=3 x-6+10 \quad \text { - Combine like terms. } \\
& -5 x-20=3 x+4 \\
& -5 x-20+5 x=3 x+4+5 x \\
& -20=8 x+4 \\
& -20-4=8 x+4-4 \\
& \begin{aligned}
-24 & =8 x \\
-\frac{24}{8} & =\frac{8 x}{8}
\end{aligned} \\
& -3=x \\
& \text { - Add } 5 x \text { to each side to } \\
& \text { collect the } x \text { terms on } \\
& \text { one side of the } \\
& \text { equation. } \\
& \text { - Combine like terms. } \\
& \text { - Subtract } 4 \text { from each } \\
& \text { side to collect the } \\
& \text { constant terms on the } \\
& \text { other side of the } \\
& \text { equation. } \\
& \text { - Combine like terms. } \\
& \text { - Divide each side by } 8 \\
& \text { to isolate the variable. } \\
& \text { - Simplify. }
\end{aligned}
$$

Check the solution.
$3(-3)-4(2(-3)+5) \stackrel{?}{=} 3((-3)-2)+10$ •Evaluate the original

$$
3(-3)-4(-6+5) \stackrel{?}{=} 3(-5)+10
$$

$$
\begin{aligned}
3(-3)-4(-1) & \stackrel{?}{=}-15+10 \\
-9+4 & \stackrel{?}{=}-5 \\
-5 & =-5
\end{aligned}
$$

- The solution is correct.

Check It Out

Solve each equation. Check your solution.
(19) $5(n-3)=10$
(20) $9+3(-2 t-5)=6$
(21) $7 x-(2 x+3)=9(x-1)-5 x$

Solving for a Variable in a Formula

The formula $d=r t$ can be used to find the distance traveled d, by multiplying the rate r, by the time t. You can solve the formula for time t by dividing each side by r.

$$
\begin{array}{ll}
d=r t & \text { • Divide by } r \text { on each side. } \\
\frac{d}{r}=\frac{r t}{r} & \text { • Simplify. } \\
\frac{d}{r}=t &
\end{array}
$$

EXAMPLE Solving for a Variable

Solve $P=2 w+2 \ell$ for w.
$P=2 w+2 \ell$
$P-2 \ell=2 w+\underbrace{2 \ell}-2 \ell \quad$ To isolate the term that contains w, subtract 2ℓ from each side.
$P-2 \ell=2 w$

- Combine like terms.
$\frac{P-2 \ell}{2}=\frac{2 w}{2}$
- To isolate w, divide each side by 2 .
$\frac{P-2 \ell}{2}=w$
- Simplify.

Check It Out

Solve for the indicated variable in each formula.
(22) $A=\ell w$, solve for w
(23) $2 y-3 x=8$, solve for y
(24) $3 a+6 b=9$, solve for b

6.4 Exercises

Give the additive inverse of each term.

1. 8
2. $-6 x$

Solve each equation. Check your solution.
3. $x+8=15$
4. $n-3=9$
5. $\frac{y}{5}=9$
6. $4 a=-28$
7. $x+14=9$
8. $n-12=4$
9. $7 x=63$
10. $\frac{a}{6}=-2$
11. $3 x+7=25$
12. $\frac{y}{9}-2=5$
13. $4 n+11=7$
14. $\frac{a}{5}+8=5$
15. $13 n-5=10 n+7$
16. $y+8=3 y-6$
17. $7 x+9=2 x-1$
18. $6 a+4=7 a-3$
19. $8(2 n-5)=4 n+8$
20. $9 y-5-3 y=4(y+1)-5$
21. $8 x-3(x-1)=4(x+2)$
22. $14-(6 x-5)=5(2 x-1)-4 x$

Solve for the indicated variable in each formula.

23. $d=r t$, solve for r
24. $A=\ell w$, solve for ℓ
25. $4 y-5 x=12$, solve for y
26. $8 y+3 x=11$, solve for y
27. Which of the following equations can be solved by adding 6 to each side and dividing by 5 on each side?
A. $5 x+6=16$
B. $\frac{x}{5}+6=16$
C. $5 x-6=14$
D. $\frac{x}{5}-6=14$
28. Which equation does not have $x=4$ as its solution?
A. $3 x+5=17$
B. $2(x+2)=10$
C. $\frac{x}{2}+5=7$
D. $x+2=2 x-2$

6.5 Ratio and Proportion

Ratio

A ratio is a comparison of two quantities. If there are 10 boys and 15 girls in a class, the ratio of the number of boys to the number of girls is 10 to 15 , which can be expressed as the fraction $\frac{10}{15}$, which in simplest form is $\frac{2}{3}$. Look at some other ratios in the table below.

Comparison	Ratio	As a Fraction
Number of girls to number of boys	16 to 12	$\frac{16}{12}=\frac{4}{3}$
Number of boys to number of students	12 to 28	$\frac{12}{28}=\frac{3}{7}$
Number of students to number of girls	28 to 16	$\frac{28}{16}=\frac{7}{4}$

Check It Out

A coin bank contains 3 nickels and 9 dimes. Write each ratio in fraction form.
(1) number of nickels to number of dimes
(2) number of dimes to number of coins

3 number of coins to number of nickels

Rate

A rate is a ratio that compares quantities with different units. Some examples of rates are listed below.

$$
\frac{100 \mathrm{mi}}{2 \mathrm{~h}} \quad \frac{\$ 400}{2 \mathrm{wks}} \quad \frac{\$ 3}{2 \mathrm{lbs}}
$$

A unit rate is a rate that has been simplified so that it has a denominator of 1 .

$$
\frac{50 \mathrm{mi}}{1 \mathrm{~h}} \quad \frac{\$ 200}{1 \mathrm{wk}} \quad \frac{\$ 1.50}{1 \mathrm{lb}}
$$

Proportions

When two ratios are equal, they form a proportion. For example, if a car averages 18 miles per 1 gallon of fuel, then the car averages $\frac{36 \mathrm{mi}}{2 \mathrm{gal}}, \frac{54 \mathrm{mi}}{3 \mathrm{gal}}$, and so on. The ratios are all equal because they are equal to $\frac{18}{1}$.

One way to determine whether two ratios form a proportion is to compare their cross products. Every proportion has two cross products: the numerator of one ratio multiplied by the denominator of the other ratio. If the cross products are equal, then the ratios form a proportion.

EXAMPLE Determining Whether Ratios Form a Proportion

Determine whether a proportion is formed.

$$
\begin{aligned}
& \frac{9}{12} \stackrel{?}{=} \frac{96}{117} \quad \frac{14}{8} \stackrel{?}{=} \frac{63}{36} \\
& \frac{9}{12} \div \frac{96}{112} \quad \frac{14}{8} \div \frac{63 "}{36} \\
& 9 \cdot 117 \stackrel{?}{=} 96 \cdot 12 \quad 14 \cdot 36 \stackrel{?}{=} 63 \cdot 8 \\
& 1,053 \neq 1,152 \quad 504=504 \\
& \text { - Find the cross products. } \\
& \text { - If the cross products are } \\
& \text { equal, the ratios are } \\
& \text { proportional. } \\
& \text { Because } \frac{9}{12} \neq \frac{96}{117} \text {, the ratios do not form a proportion. } \\
& \text { Because } \frac{14}{8}=\frac{63}{36} \text {, the ratios form a proportion. }
\end{aligned}
$$

Check It Out

Determine whether a proportion is formed.
(4) $\frac{6}{9}=\frac{18}{27}$
(5) $\frac{7}{4}=\frac{40}{49}$
(6) $\frac{3}{5}=\frac{21}{35}$

Using Proportions to Solve Problems

You can use proportions to solve problems.
Suppose that you can buy 2 CDs for $\$ 25$. At that rate, how much does it cost to buy 7 CDs? Let c represent the cost of 7 CDs.

If you express each ratio as $\frac{C D s}{\$}$, then one ratio is $\frac{2}{25}$ and the other is $\frac{7}{c}$. Write a proportion.

$$
\frac{2}{25}=\frac{7}{c}
$$

Now that you have written a proportion, you can use the cross products to solve for c.

$$
2 c=175
$$

To isolate the variable, divide each side by 2 and simplify.

$$
\begin{aligned}
\frac{2 c}{2} & =\frac{175}{2} \\
c & =87.5
\end{aligned}
$$

So, 7 CDs cost $\$ 87.50$.

Check It Out

Use proportions to solve Exercises 7-10.
(7) A car gets 22 miles per gallon of fuel. At this rate, how many gallons of fuel does the car need to travel 121 miles?
(8) A worker earns $\$ 100$ every 8 hours. At this rate, how much will the worker earn in 36 hours?

Use the table below for Exercises 9 and 10.

Top-Five TV Shows in Prime-Time	
Rating	Program
23.3	Drama
22.6	Comedy
20.9	Movie
19.0	Cartoon
18.6	Sitcom

(9) The cartoon earns a 19.0 rating for $18,430,000$ viewers. At this rate, how many viewers are needed for a 1.0 rating?
(10) If $18,042,000$ viewers watched the sitcom, how many viewers watched the drama?

6.5 Exercises

A basketball team has 20 wins and 10 losses. Write each ratio.

1. number of wins to number of losses
2. number of wins to number of games
3. number of losses to number of games

Express each rate as a unit rate.

4. 120 students for every 3 buses
5. $\$ 3.28$ for 10 pencils
6. $\$ 274$ for 40 hours of work

Find the unit rate.

7. $\$ 8.95$ for 3 lbs
8. $\$ 570$ for 660 feet of rope
9. 420 miles in 7 hours

Determine whether a proportion is formed.
10. $\frac{3}{8}=\frac{16}{42}$
11. $\frac{10}{4}=\frac{25}{10}$
12. $\frac{4}{6}=\frac{15}{22}$

Use a proportion to solve each exercise.
13. Clay jogs 2 miles in 17 minutes. At this rate, how far can he run in 30 minutes?
14. If the cost of gasoline is $\$ 3.89$ per gallon, how much does 14 gallons of gasoline cost?
15. Nick can text message 29 words in 45 seconds. At this rate, how many words can he text message in 3 minutes?
16. An online retailer sells each DVD for $\$ 39.99$. What is the cost of 5 DVDs?
17. A map is drawn using a scale of 8 miles to 1 centimeter. On the map, two cities are 7.5 centimeters apart. What is the actual distance between the two cities?

6.6 Inequalities

An inequality is a mathematical sentence comparing two quantities. The inequality symbols are shown in the chart below.

Symbol	Meaning	Example
$>$	Is greater than	$7>4$
$<$	Is less than	$4<7$
\geq	Is greater than or equal to	$x \geq 3$
\leq	Is less than or equal to	$-2 \leq x$

Graphing Inequalities

The equation $x=5$ has one solution, 5 . The inequality $x>5$ has a solution of all real numbers greater than 5 . Note that 5 is not a solution because the solution has to be greater than 5 . Since you cannot list all of the solutions, you can show them on a number line. When graphing an inequality on a number line, a closed circle indicates that the endpoint is a solution. If the endpoint is an open circle, the number is not a solution of the inequality.

To show all the values that are greater than 5, but not including 5 , use an open circle on 5 and shade the number line to the right.

The inequality $y \leq-1$ has a solution of all real numbers less than or equal to -1 . In this case, -1 is also a solution, because -1 is less than or equal to -1 .
To graph all the values that are less than or equal to -1 , use a closed (filled-in) circle on -1 and shade the number line to the left. Be sure to include the arrow.

$y \leq-1$

Check It Out

Graph the solutions to each inequality on a number line.
(1) $x \geq 2$
(2) $y<-4$
(3) $n>-3$
(4) $x \leq 1$

Writing Inequalities

An inequality can be used to describe a range of values. You can translate a word problem into an inequality.

EXAMPLE Writing Inequalities

Define a variable and write an inequality for the sentence, 5 more than a number is greater than 7 .
Let $n=$ a number - Define a variable.
$n+5>7 \quad$ - Write an inequality.
The sum of the variable and 5 is greater than 7 .

Check It Out

Define a variable and write an inequality for each sentence.
(5) You must be 16 years of age or older to drive.
(6) A cell phone costs more than $\$ 19.99$.
(7) The average life span for a snapping turtle is 57 years.
(8) The difference between a number and 9 is no more than 3 .

Solving Inequalities by Addition and Subtraction

To solve an inequality, you must identify the values of the variable that make the inequality true. You can use addition and subtraction to isolate the variable in an inequality in the same way that you do to solve an equation. When you add or subtract the same number from each side of an inequality, the inequality remains true.

It is important to recognize that there are an infinite number of solutions to an inequality.

EXAMPLE Solving Inequalities by Addition and Subtraction

Solve $x-5<11$. Graph the solution on a number line.

Solve $-2 \geq y+5$.
$-2-5 \geq y+5-5$ - Subtract 5 from each side.

$$
-7 \geq y
$$

- Simplify.
So, $-7 \geq y$ or $y \leq-7$.

- Add 5 to each side.
- Combine like terms.
- Graph the solution.

Check It Out

Solve each inequality.
(9) $x+8>5$
(10) $n-8 \leq 12$

application Oops!

Seventeen-year-old Colin Rizzio took the SAT test and found a mistake in its math portion. One of the questions used the letter a to represent a number. The test makers assumed a was a positive number. But Colin Rizzio thought it could stand for any integer. Rizzio was right!

He notified the test makers by E-mail. They had to change the test scores of 45,000 students. Explain how $2+a>2$ changes if a can be positive, zero, or negative. See HotSolutions for the answer.

Solving Inequalities by Multiplication and Division

When you multiply or divide each side of an inequality by a positive number, the inequality remains true.

EXAMPLE Solving Inequalities by Multiplication and Division

Solve $\frac{1}{2} y \geq 7$.
$\begin{array}{rlrl}2\left(\frac{1}{2} y\right) & \geq 2(7) & & \text { - Multiply each side by } 2 . \\ y & \geq 14 & \text { - Simplify. }\end{array}$
So, the value of y is any number greater than or equal to 14 .
Solve $6 x>-30$.
$\begin{array}{ll}\frac{6 x}{6}>\frac{-30}{6} & \text { - Divide each side by } 6 . \\ x>-5 & \text { - Simplify. }\end{array}$
So, the value of x is any number greater than -5 .

When you multiply or divide each side of an inequality by a negative number, the direction of the inequality symbol must be reversed for the inequality to remain true.

EXAMPLE Solving Inequalities with Negative Numbers

Solve $\frac{y}{-3} \leq 9$.
$-3\left(\frac{y}{-3}\right) \geq-3(9)$

- Multiply each side by -3 and reverse the inequality symbol.

$$
y \geq-27 \quad \cdot \text { Simplify. }
$$

So, the value of y is any number greater than or equal to -27 .

Check It Out

Solve each inequality.
(11) $3 x<12$
(12) $5 x \geq 35$
(13) $-2 x>8$
(14) $-4 x \leq 12$

6.6 Exercises

Draw the number line showing the solutions to each inequality.

1. $x<-2$
2. $y \geq 0$
3. $n>-1$
4. $x \leq 7$

Write the inequality for each number line.
5.

6.

Write an inequality for each sentence.
7. You must be 13 years of age or older to sit in the front seat.
8. The difference between a number and 12 is less than 7 .

Solve each inequality.

9. $-3 n+7 \leq 1$
10. $8-y>5$
11. $-7 \leq \frac{a}{6}$
12. $-72>-9 y$
13. Which operation(s) requires that the inequality sign be reversed?
A. addition of -2
B. subtraction of -2
C. multiplication by -2
D. division by -2
14. If $x=-3$, is it true that $3(x-4) \leq 2 x$?
15. If $x=6$, is it true that $2(x-4)<8$?
16. Which of the following statements is false?
A. $-7 \leq 2$
B. $0 \leq-4$
C. $6 \geq-6$
D. $3 \geq 3$
17. Which of the following inequalities does not have $x<2$ as its solution?
A. $-4 x<-8$
B. $x+6<8$
C. $4 x-1<7$
D. $-x>-2$

6.7 Graphing on the Coordinate Plane

Axes and Quadrants

A coordinate plane is a horizontal number line and a vertical number line that intersect at their zero points. The origin is the point of intersection of the two number lines. The \boldsymbol{x}-axis is the horizontal number line, and the \boldsymbol{y}-axis is the vertical number line. There are four sections of the coordinate plane called quadrants. Each quadrant is named by a Roman numeral, as shown in the diagram.

Check It Out

Fill in the blanks.

(1) The vertical number line is called the \qquad .
2. The upper left section of the coordinate plane is called \qquad .
3 The lower right section of the coordinate plane is called \qquad .
4. The horizontal number line is called the \qquad .

Writing an Ordered Pair

A point on the coordinate plane is named by an ordered pair. An ordered pair is a set of numbers, or coordinates, written in the form (x, y). The first number in the ordered pair is the x-coordinate. The x-coordinate represents the horizontal placement of the point. The second number is the y-coordinate. The y-coordinate represents the vertical placement of the point.

The x-coordinate of point R is 4 units to the right of the origin. The y-coordinate of point R is 2 units down. So, the ordered pair for point R is $(4,-2)$. Point S is 3 units to the left of the origin and 0 units up or down, so its ordered pair is $(-3,0)$. Point T is 0 units to the left or right of the origin and 3 units down, so its ordered pair is $(0,-3)$. Point V is the origin, and its ordered pair is $(0,0)$.

Check It Out

Give the ordered pair for each point.
(5) M
(6) N
(7) P
(8) Q

Locating Points on the Coordinate Plane

To locate point $A(2,-2)$, move 2 units to the right of the origin and then 2 units down. Point A lies in Quadrant IV. To locate point $B(-1,0)$, move 1 unit to the left of the origin and 0 units up or down. Point B lies on the x-axis. Point $C(4,3)$ is 4 units to the right and 3 units up from the origin. Point C lies in Quadrant I. Point $D(-2,-4)$ is 2 units to the left of the origin and 4 units down. Point D lies in Quadrant III.

Check It Out
Plot and label each point on a coordinate plane. Then tell in which quadrant or on which axis it lies.
(9) $H(-5,2)$
(10) $J(2,-5)$
(11) $K(-3,-4)$
(12) $L(-1,0)$

Arithmetic Sequences

An arithmetic sequence is an ordered list of numbers in which the difference between any two consecutive terms is the same. The difference between the consecutive terms is called the common difference. You can write an algebraic expression to find the nth term of a sequence. First, use a table to examine the sequence, and then find how the term relates to the term number.

EXAMPLE Arithmetic Sequences

Write an expression to find the nth term of the arithmetic sequence $9,18,27,36, \ldots$ Then find the next three terms.

Term Number (n)	1	2	3	4
Term	9	18	27	36

The term is 9 times the term number (n).
The expression $9 n$ can be used to find the nth term.
$9 \cdot 5=45 ; 9 \cdot 6=54 ; 9 \cdot 7=63$ - Find the next three terms.
So, the next three terms of the sequence are 45,54 , and 63.

Check It Out

Write an expression that can be used to find the nth term of each sequence. Then find the next three terms.
(13) $-12,-18,-24,-30, \ldots$
(14) $\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$
(15) $4,7,10,13, \ldots$

Linear Functions

A relationship that assigns exactly one output value for each input value is called a function. The set of input values in a function is called the domain. The set of output values is called the range.

All linear equations are functions since every x-value corresponds to exactly one y-value. For example, the linear equation $y=2 x-1$ is a function because every value of x will result in a unique y-value. You can write this equation in function notation by replacing the y with the notation $f(x)$. So, $y=2 x-1$ is written as $f(x)=2 x-1$. In a function, x represents the elements of the domain, and $f(x)$ represents the elements of the range. Suppose that you want to find the value of the range that corresponds to $x=2$ in the domain. This is written $f(2)$ and is read " f of 2 ." The value of $f(2)$ is found by substituting 2 for x in the equation.

You can organize the input, rule, and output into a function table.

Input	Rule	Output
x	$f(x)=2 x-1$	$f(x)$
0	$f(x)=2(0)-1$	-1
1	$f(x)=2(1)-1$	1
-1	$f(x)=2(-1)-1$	-3

Recall that a function has exactly one output (y) for each input (x). Therefore, the solutions can be represented as ordered pairs (x, y). Four ordered pairs of the function $f(x)=2 x-1$ are: $(0,-1),(1,1),(-1,-3)$, and $(2,3)$.

A function can also be represented with a graph. The equation $y=\frac{1}{3} x-2$ represents a function. Choose values for the input x to find the output y. Graph the ordered pairs and draw a line that passes through each point.

EXAMPLE Graphing the Equation of a Line

Graph $f(x)=\frac{1}{3} x-2$.

- Choose five values for x.

Because the value of x is to be multiplied by $\frac{1}{3}$, choose values that are multiples of 3 , such as $-3,0,3,6$, and 9 .

- Complete a function table.

Input x	Rule	Output $f(x)$
-3	$f(x)=\frac{1}{3}(-3)-2$	-3
0	$f(x)=\frac{1}{3}(0)-2$	-2
3	$f(x)=\frac{1}{3}(3)-2$	-1
6	$f(x)=\frac{1}{3}(6)-2$	0
9	$f(x)=\frac{1}{3}(9)-2$	1

- Write the five solutions as ordered pairs.

$$
(-3,-3),(0,-2),(3,-1),(6,0), \text { and }(9,1)
$$

- Plot the points on a coordinate plane, and draw the line.

The ordered pair corresponding to any point on the line is a solution of the function $f(x)=\frac{1}{3} x-2$. A function in which the graph of the solutions form a line is called a linear function.

Check It Out

Complete a function table of five values for each equation.
Then graph the line.
(16) $y=3 x-2$
(17) $y=2 x+1$
(13) $y=\frac{1}{2} x-3$
(19) $y=-2 x+3$

6.7 Exercises

Fill in the blanks.

1. The horizontal number line is called the \qquad _.
2. The lower left region of the coordinate plane is called \qquad .
3. The upper right region of the coordinate plane is called \qquad .

Give the ordered pair for each point.
4. A
5. B
6. C
7. D

Plot each point on the coordinate plane and tell in which quadrant or on which axis it lies.
8. $H(2,5)$
9. $J(-1,-2)$
10. $K(0,3)$
11. $L(-4,0)$

Write an expression that can be used to find the nth term of the sequence. Then find the next three terms.
12. $1,4,9,16, \ldots$
13. $5,8,11,14, \ldots$
14. $1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$

Find five solutions for each equation. Graph each line.
15. $y=2 x-2$
16. $y=-3 x+3$
17. $y=\frac{1}{2} x-1$

6.8 Slope and Intercept

Slope

One important characteristic of a line is its slope. Slope is a measure of a line's steepness. The slope, or rate of change, is given by the ratio of rise (vertical change) to run (horizontal change). The rise is the difference in the y-coordinates. The run is the difference in the x-coordinates.
slope $=\frac{\text { rise (difference in the } y \text {-coordinates) }}{\text { run (difference in the } x \text {-coordinates) }}$

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{1}{2}
$$

Notice that for line a, the rise between the two given points is $7-2$, or 5 units, and the run is $3-1$, or 2 units. Therefore, the slope of the line is $\frac{5}{2}$.

For line b, the rise between the two given points is -3 and the run is 6 , so the slope of the line is $-\frac{3}{6}=-\frac{1}{2}$.

The slope of a straight line is constant. Therefore, the slope between any two points on line a will always equal $\frac{5}{2}$. Similarly, the slope between any two points on line b will equal $-\frac{1}{2}$.

Check It Out

Find the slope of each line.

1

2

Calculating the Slope of a Line

You can calculate the slope of a line if you are given any two points on a line. The rise is the difference of the y-coordinates and the run is the difference of the x-coordinates. For the line that passes through the points $(-2,3)$ and $(5,-6)$, the slope can be calculated as shown. The variable m is used to represent slope.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{3-(-6)}{-2-5}=-\frac{9}{7}
$$

The order in which you subtract the coordinates does not matter, as long as you find both differences in the same order.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{-6-3}{5-(-2)}=-\frac{9}{7}
$$

EXAMPLE Calculating the Slope of a Line

Find the slope of the line that contains the points $(3,1)$ and $(-2,-3)$.

$$
\begin{array}{ll}
m=\frac{1-(-3)}{3-(-2)}=\frac{4}{5} & \text { - Use the definition to find the slope. } \\
& \begin{array}{ll}
\text { or } & m=\frac{\text { rise }}{\text { run }}=\frac{\text { difference of } y \text {-coordinates }}{\text { difference of } x \text {-coordinates }} \\
m=\frac{-3-1}{-2-3}=\frac{-4}{-5} & \text { - Simplify. }
\end{array}
\end{array}
$$

So, the slope is $\frac{4}{5}$.

Check It Out

Find the slope of the line that contains the given points.
$3(-1,7)$ and $(4,2)$
(4) $(-3,-4)$ and $(1,2)$
(5) $(-2,0)$ and $(4,-3)$
(6) $(0,-3)$ and $(2,7)$

Slopes of Horizontal and Vertical Lines

Calculate the slope of a horizontal line that contains the points $(-1,-3)$ and $(2,-3)$.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{-3-(-3)}{2-(-1)}=\frac{0}{3}=0
$$

A horizontal line has no rise; its slope is 0 .

Calculate the slope of a vertical line that contains the points $(2,1)$ and $(2,-3)$.

$$
m=\frac{\text { rise }}{\text { run }}=\frac{-3-1}{2-2}=\frac{-4}{0}
$$

Because division by zero is undefined, the slope of a vertical line is undefined. It has no slope.

Check It Out

Find the slope of the line that contains the given points.
(7) $(-1,4)$ and $(5,4)$
$8(2,-1)$ and $(2,6)$
(9) $(-5,0)$ and $(-5,7)$
(10) $(4,-4)$ and $(-1,-4)$

The \boldsymbol{y}-Intercept

The y-intercept of a line is the location along the y-axis where the line crosses, or intercepts, the axis. Therefore, a vertical line, with the exception of $x=0$, does not have a y-intercept.

The y-intercept of line a is -2 , and the y-intercept of line b is 4 .

Check It Out

Identify the y-intercept of each line.

Using the Slope and \boldsymbol{y}-Intercept to Graph a Line

A line can be graphed by using the slope and the y-intercept. First, plot the y-intercept. Then, use the rise and run of the slope to locate a second point on the line. Connect the two points to graph the line.

EXAMPLE Graphing a Line by Using the Slope and y-Intercept

Graph the line with slope -2 and y-intercept 3 .

- Plot the y-intercept.
- Use the slope to locate other points on the line. If the slope is a whole number a, remember $a=\frac{a}{1}$, so rise is a and run is 1.
- Draw a line through the points.

Check It Out

Graph each line.

(15) slope $=\frac{1}{3}, y$-intercept is -2 .
(10) slope $=-\frac{2}{5}, y$-intercept is 4 .
(17) slope $=3, y$-intercept is -3 .
(18) slope $=-2, y$-intercept is 0 .

Slope-Intercept Form

The equation $y=m x+b$ is the slope-intercept form of the equation of a line. When an equation is in this form, it is easy to identify the slope of the line and the y-intercept. The slope of the line is given by m and the y-intercept is b. The graph of the equation $y=\frac{2}{3} x-2$ is a line that has a slope of $\frac{2}{3}$ and a y-intercept at $(0,-2)$. The graph is shown below.

Check It Out
Determine the slope and the y-intercept from the equation of each line.

(19) $y=-2 x+$ (20) $y=\frac{1}{5} x-1$ (21) $y=-\frac{3}{4} x$ (22) $y=4 x-3$

Writing Equations in Slope-Intercept Form

To change the equation $4 x-3 y=9$ from standard form to slope-intercept form, isolate the y on one side of the equation.

EXAMPLE
 Writing the Equation of a Line in
 Slope-Intercept Form

Write $4 x-3 y=9$ in slope-intercept form.
$4 x-3 y-4 x=9-4 x \quad$ - Isolate the term that contains y by subtracting $4 x$ from each side.
$-3 y=-4 x+9$

- Combine like terms.
$\frac{-3 y}{-3}=\frac{-4 x+9}{-3}$
- Isolate y by dividing each side by -3 .
$y=\frac{-4}{-3} x+\frac{9}{-3}$
- Simplify.
$y=\frac{4}{3} x-3$
So, the slope-intercept form of the equation $4 x-3 y=9$ is $y=\frac{4}{3} x-3$.

The slope of the line in the example above is $\frac{4}{3}$ and the y-intercept is located at -3 . The graph of the line is shown.

Check It Out

Write each equation in slope-intercept form. Graph the line.
(23) $x+2 y=6$
(24) $2 x-3 y=9$
(25) $4 x-2 y=4$
(26) $7 x+y=8$

Slope-Intercept Form and Horizontal and Vertical Lines
The equation of a horizontal line is $y=b$, where b is the y-intercept of the line. In the graph below, the horizontal line has the equation $y=2$. This equation is in slope-intercept form since the equation could be written $y=0 x+2$. The slope is 0 , and the y-intercept is 2 .

The equation of a vertical line is $x=a$, where a is the x-intercept of the line. In the graph above, the vertical line has the equation $x=-3$. This equation is not in slope-intercept form because y is not isolated on one side of the equation. A vertical line has no slope; therefore, the equation of a vertical line cannot be written in slope-intercept form.

Check It Out

Give the slope and y-intercept of each line. Graph the line.

```
(27) }y=-
(28)}x=
(24) }y=
(3) }x=-
```


Writing the Equation of a Line

If you know the slope and the y-intercept of a line, you can write the equation of the line. If a line has a slope of 3 and a y-intercept of -2 , substitute 3 for m and -2 for b into the slopeintercept form. The equation of the line is $y=3 x-2$.

EXAMPLE Writing the Equation of a Line

Write the equation of the line in slope-intercept form.

- Identify the y-intercept (b).
- Find the slope ($\left.m=\frac{\text { rise }}{\text { run }}\right)$.
- Substitute the y-intercept and slope into the slope-intercept form. $(y=m x+b)$ $y=-\frac{3}{2} x+3$

So, the equation of the line in slope-intercept form is $y=-\frac{3}{2} x+3$

Check It Out

Write the equation of each line in slope-intercept form.

(31) slope $=-2, y$-intercept at 4
(32) slope $=\frac{2}{3}, y$-intercept at -2

33

Writing the Equation of a Line from Two Points

If you know two points on a line, you can write its equation.
First find the slope. Then find the y-intercept.

EXAMPLE Writing the Equation of a Line from Two Points

Write the equation of the line that contains the points $(6,-1)$ and ($-2,3$).

$$
\begin{array}{rlrl}
\begin{array}{rlrl}
\frac{3-(-1)}{-2-6} & =\frac{4}{-8}=-\frac{1}{2} & & \text { - Calculate the slope using the formula } m=\frac{\text { rise }}{\text { run. }} \\
\text { slope } & =-\frac{1}{2} & & \begin{array}{l}
\text { - Substitute the slope for } m \text { in slope-intercept } \\
\text { form. }(y=m x+b)
\end{array} \\
y & =-\frac{1}{2} x+b & & \begin{array}{l}
\text { - Substitute the } y \text {-coordinate for one point for } y \\
\text { and the } x \text {-coordinate of the same point for } x .
\end{array} \\
-1 & =-\frac{1}{2}(6)+b & & \\
-1 & =-\frac{6}{2}+b & & \text { - Simplify. } \\
-1 & =-3+b & & \\
-3 & =-3+b+3 & \text { - Add or subtract to isolate } b .
\end{array} \\
y & =-\frac{1}{2} x+2 & & \begin{array}{l}
\text { - Combine like terms. }
\end{array} \\
\text { e Substitute the values you found for } m \text { and } b \\
\text { into the slope-intercept form. }
\end{array}
$$

So, the equation of the line through points $(6,-1)$ and $(-2,3)$ is $y=-\frac{1}{2} x+2$.

Check It Out

Write the equation of the line with the given points.
(34) $(1,-1)$ and $(5,3)$
(35) $(-2,9)$ and $(3,-1)$
$36(8,3)$ and $(-4,-6)$
(37) $(-1,2)$ and $(4,2)$

6.8 Exercises

Determine the slope of each line.

1. slope of a
2. slope of b
3. slope of c
4. contains $(-3,1)$ and $(5,-3)$
5. contains $(0,-5)$ and $(2,6)$

Graph each line.
6. $x=5$
7. $y=-2$
8. slope $=-\frac{1}{3} ; y$-intercept is 2
9. slope $=4 ; y$-intercept is -3

Determine the slope and y-intercept from each linear equation.
10. $y=-3 x-2$
11. $y=-\frac{3}{4} x+3$
12. $y=x+2$
13. $y=6$
14. $x=-2$

Write each equation in slope-intercept form. Graph the line.
15. $2 x+y=4$
16. $x-y=1$

Write the equation of each line.
17. slope $=3$; y-intercept is -7
18. slope $=-\frac{1}{3} ; y$-intercept is 2
19. line a in graph above

Write the equation of the line that contains the given points.
20. ($-4,-5$) and $(6,0)$
21. $(-4,2)$ and $(-3,1)$
22. $(-6,4)$ and $(3,-2)$

6.9 Direct Variation

When the ratio of two variable quantities is constant, their relationship is called a direct variation. The constant ratio is called the constant of variation. In a direct variation equation, the constant rate of change, or slope, is assigned a special variable, k.

A direct variation is a relationship in which the ratio of y to x is a constant, k. We say y varies directly with x.
$k=\frac{y}{x}$ or $y=k x$, where $k \neq 0$.
Consider the graph of gas mileage below.

Since the graph of the data forms a line, the rate of change is constant. Use the graph to find the constant ratio.
$k=\frac{\text { miles }(y)}{\text { gallon }(x)} \rightarrow \frac{60}{2}$ or $\frac{30}{1}, \frac{90}{3}$ or $\frac{30}{1}, \frac{120}{4}$ or $\frac{30}{1}, \frac{150}{5}$ or $\frac{30}{1}$
Therefore, the slope $(k)=\frac{30}{1}$.
In this example, the ratio of miles traveled to gallons of gas used remains constant. The car travels 30 miles for every gallon of gas.

EXAMPLE Determining Direct Variation

Determine whether the linear function is a direct variation. If so, state the constant of variation.

Hours, x	2	4	6	8
Earnings, y	16	32	48	64

Compare the ratio of y to x.
$k=\frac{\text { earnings }}{\text { hours }} \rightarrow \frac{16}{2}$ or $\frac{8}{1}, \frac{32}{4}$ or $\frac{8}{1}, \frac{48}{6}$ or $\frac{8}{1}, \frac{64}{8}$ or $\frac{8}{1}$
Because the ratios are the same, the function is a direct variation. So, the constant of variation, k, is $\frac{8}{1}$.

Check It Out

Solve.
(1) The Shelby Super Car (SSC) can travel 13.77 kilometers in 2 minutes and 41.31 kilometers in 6 minutes. If the distance varies directly with time, how many kilometers per hour can the SSC travel?
2. At a farm in Georgia, you can pick 4 peaches for $\$ 1.75$. How much would it cost to pick 9 peaches?
(3) Determine whether the linear function is a direct variation. If so, state the constant of variation.

Minutes, x	20	40	60	80
Profit, y	35	55	75	95

6.9 Exercises

Determine whether each linear function is a direct variation. If so, state the constant of variation.
1.

x	75	90	105	120
y	5	6	7	8

2.

x	4	6	8	10
y	32	48	64	80

3.

x	10	15	20	25
y	20	25	30	35

4.

x	3	6	9	12
y	12	24	36	48

If y varies directly with x, write an equation for the direct variation. Then find each value.
5. If $y=45$ when $x=15$, find y when $x=30$.
6. Find y when $x=20$ if $y=4$ when $x=40$.
7. A cupcake recipe requires $2 \frac{1}{4}$ cups of flour to make 24 cupcakes. How much flour is required to make 36 cupcakes?

6.10 Systems of Equations

Solving a System of Equations with One Solution

A system of equations is a set of two or more equations with the same variables. The equations $y=x+2$ and $y=-1 x+2$ each have two different unknowns, x and y. The solution of a system of equations is an ordered pair that satisfies both equations. That ordered pair represents the point of intersection of the graphs of the equations.

EXAMPLE Solving Systems of Equations with One Solution

Solve the system $y=x+2$ and $y=-1 x+2$ by graphing.

- Graph each equation on the same coordinate plane.

The lines appear to intersect at $(0,2)$.
$y=x+2$
$y=-1 x+2$
$2=0+2 \quad 2=-1(0)+2$
$2=2$
$2=2$

So, the solution of the system is $(0,2)$.

Check It Out

Solve each system of equations by graphing.
(1) $y=x+3$
$y=\frac{1}{2} x+1$
(2) $3 x+y=4$ $y=x-4$

Solving a System of Equations with No Solution

You may find a linear system of equations where the graphs of the equations are parallel. Because the equations have no points in common (no point of intersection), the system has no solution.

EXAMPLE Evaluating Systems of Equations with No Solution

Solve the system $y=x+2$ and $y=x+4$ by graphing.

- Graph each equation on the same coordinate plane.

The lines are parallel. So, there is no solution for this system of equations.

Check It Out

Solve each system of equations by graphing.
3) $y=2 x-1$
$y-2 x=-4$
(4) $y=2 x-2$
$y=-x+1$
(5) $2 y=4 x+2$
$y=2 x+4$

Solving a System of Equations with an Infinitely Many Solutions

When the equations of a linear system have the same slope and the same y-intercept, they graph the same line. Because the lines intersect at every point, there is an infinite number of solutions.

EXAMPLE Solving Systems of Equations with Many Solutions

Solve the system $y=x-2$ and $y+4=x+2$ by graphing.
$y+4-4=x+2-4 \quad$ - Write the equation in slopeintercept form by subtracting 4 from each side.
$y=x-2$
Both equations are the same.

- Graph the equation.

So, the solution of the system is all ordered pairs of the points on line $y=x-2$.

Check It Out

Solve each system of equations by graphing.
(6) $y=3 x-2$
(7) $y=4 x+6$
$y+2=3 x$
$y=2(2 x+3)$

Writing and Solving Systems of Equations

We can use what we know about systems of equations to solve problems that involve two or more different functions. One method of solving a system of equations is to graph the equations on the same coordinate grid and find their point of intersection.

EXAMPLE Writing and Solving Systems of Equations

Two movie channels sell service at different rates. Company A charges $\$ 2$ per month plus $\$ 2$ per hour of viewing. Company B charges $\$ 7$ per month plus $\$ 1$ per hour of viewing. Write a system of equations that represents the cost of each service for a given amount of time.
Company A: $y=2 x+2$ Write an equation for each
Company B: $y=x+7$
 company. Let $x=$ number of hours and $y=$ total cost.

- Graph the equations on the same coordinate plane.

The lines intersect at $(5,12)$. Therefore, the solution of the system is $(5,12)$. This solution indicates that the cost for 5 hours of viewing is $\$ 12$ for each company.

Check It Out

Solve.

(8) A group of adults and children went to a museum. There were 9 people in the group. The number of children was three more than the number of adults. Write a system of equations that represents the number of adults and children. Solve by graphing.

6.10 Exercises

Solve each system of equations by graphing.

1. $6 y=4 x-12$
$2 x+2 y=6$
2. $3 y=-2 x+1$
$4 x+6 y=2$
3. $x-2 y=-1$
$-3 y=4 x-7$
4. $3 x+2 y=6$
$2 y=-3 x+12$
5. $2 y=x+2$
$-x+2 y=-2$
6. $4 x-8 y=-8$
$-2 y=-x-2$

Write and solve a system of equations that represents the situation.

7. Carol and Allison made quilts for a bazaar. Together they made 10 quilts. Carol made 2 more than Allison. Find the number of quilts each girl made.
8. Debbie and Kellie together have seventy-five cents in their pockets. Debbie has fifteen more cents than Kellie. Write a system of equations that represents the amount of money each has in their pocket. Solve by graphing.

Algebra

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 6•2).

Problem Set

Write an equation for each sentence. (Lesson 6.1)

1. If seven is subtracted from the product of three and a number, the result is 5 more than the number.

Factor out the greatest common factor in each expression.
(Lesson 6.2)
2. $4 x+28$
3. $9 n-6$

Simplify each expression. (Lesson 6-2)
4. $11 a-b-4 a+7 b$
5. $8(2 n-1)-(2 n+5)$
6. Find the distance traveled by an in-line skater who skates at 12 miles per hour for $1 \frac{1}{2}$ hours. Use the formula $d=r t$. (Lesson 6.3)

Solve each equation. Check your solution. (Lesson 6-4)
7. $\frac{y}{2}-5=1$
8. $y-10=7 y+8$

Use a proportion to solve the exercise. (Lesson 6.5)
9. In a class, the ratio of boys to girls is $\frac{3}{2}$. If there are 12 girls in the class, how many boys are there?

Solve each inequality. Graph the solution. (Lesson 6.6)
10. $x+9 \leq 6$
11. $4 x+10>2$

Draw each point on the coordinate plane and tell in which quadrant or on which axis it lies. (Lesson 6.7)
12. $A(1,5)$
13. $B(4,0)$
14. $C(0,-2)$
15. $D(-2,3)$
16. Write the equation of the line that contains the points $(3,-2)$ and $(3,5)$. (Lesson 6.8)

Addition Property of Equality (Lesson 6.4)
additive inverse (Lesson 6.4)
arithmetic sequences
(Lesson 6.7)
Associative Property
(Lesson 6.2)
coefficient (Lesson 6.2)
Commutative Property
(Lesson 6.2)
constant of variation
(Lesson 6.9)
cross product (Lesson 6.5)
direct variation (Lesson 6.9)
Distributive Property
(Lesson 6-2)
Division Property of
Equality (Lesson 6.4)
domain (Lesson 6.7)
equation (Lesson 6.1)
equivalent (Lesson 6.1)
equivalent expression
(Lesson 6.2)
expression (Lesson 6.1)
function (Lesson 6.7)
Identity Property (Lesson 6-2)
inequality (Lesson 6.6)

Write definitions for the following words.
like terms (Lesson 6.2)
Multiplication Property of
Equality (Lesson 6.4)
ordered pair (Lesson 6.7)
origin (Lesson 6.7)
point (Lesson 6.7)
product (Lesson 6.1)
proportion (Lesson 6.5)
quadrant (Lesson 6.7)
quotient (Lesson 6.1)
range (Lesson 6.7)
rate (Lesson 6.5)
ratio (Lesson 6.5)
rise (Lesson 6.8)
run (Lesson 6.8)
slope (Lesson 6.8)
Subtraction Property of
Equality (Lesson 6.4)
system of equations
(Lesson 6-10)
term (Lesson 6.1)
unit rate (Lesson 6.5)
variable (Lesson 6.1)
x-axis (Lesson 6.7)
y-axis (Lesson 6.7)
y-intercept (Lesson 6.8)

Hoticile 7

Geometry

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 7.2).

Problem Set

1. Refer to the figure at the right.

Classify the relationship between $\angle J$ and $\angle K$. Then find $m \angle J$. (Lesson 7.1)

2. Find the measure of each interior angle of a regular pentagon. (Lesson 7-2)
3. A right triangle has legs of 5 centimeters and 12 centimeters. What is the perimeter of the triangle? (Lesson 7.4)
4. A trapezoid has bases of 10 feet and 16 feet. The height is 5 feet. What is the area of the trapezoid? (Lesson 7.5)
5. Each face of a triangular prism is a square, 10 centimeters on each side. If the area of each base is 43.3 square centimeters, what is the surface area of the prism? (Lesson 7.6)
6. Find the volume of a cylinder that has a 5 -inch diameter and is 6 inches high. Round to the nearest cubic inch. (Lesson 7.7)
7. What is the circumference and area of a circle with radius 25 feet? Round to the nearest foot or square foot. (Lesson 7.8)
8. Graph the ordered pairs $(-1,-1)$ and $(2,1)$. Then find the distance between the points. (Lesson 7.9)

HoiNortle

alternate exterior
angles (Lesson 7.1)
alternate interior
angles (Lesson 7.1)
arc (Lesson 7.8)
base (Lesson 7.2)
circumference (Lesson 7.8)
complementary angles
(Lesson 7•1)
congruent (Lesson 7.1)
corresponding angles
(Lesson 7•1)
cube (Lesson 7-2)
diagonal (Lesson 7.2)
diameter (Lesson 7.8)
face (Lesson 7.2)
hypotenuse (Lesson 7.9)
line of symmetry (Lesson 7.3)
net (Lesson 7.6)
parallelogram (Lesson 7.2)
pi (Lesson 7.7)
polygon (Lesson 7.2)
polyhedron (Lesson 7.2)
prism (Lesson 7.2)
pyramid (Lesson 7.2)
Pythagorean Theorem
(Lesson 7-9)
Pythagorean triple (Lesson 7.9)
quadrilateral (Lesson 7.2)
radius (Lesson 7.8)
rectangular prism (Lesson 7.2)
reflection (Lesson 7.3)
regular polygon (Lesson 7.2)
rhombus (Lesson 7-2)
rotation (Lesson 7.3)
segment (Lesson 7.2)
supplementary angles
(Lesson 7•1)
surface area (Lesson 7•6)
tetrahedron (Lesson 7.2)
transformation (Lesson 7.3)
translation (Lesson 7.3)
transversal (Lesson 7.1)
trapezoid (Lesson 7.2)
triangular prism (Lesson 7.6)
vertical angles (Lesson 7.1)
volume (Lesson 7.7)

7:1 Classifying Angles and Triangles

Classifying Angles

You can classify angles by their measures.

Acute angle measures less than 90°

Right angle measures 90°

Obtuse angle
measures greater than 90° and less than 180°

Straight angle measures 180°

Reflex angle measures greater than 180°

Angles that share a side are called adjacent angles. You can add measures if the angles are adjacent.
$m \angle A P B=55^{\circ}$
$m \angle B P C=35^{\circ}$
$m \angle A P C=55^{\circ}+35^{\circ}=90^{\circ}$
$\angle A P C$ is a right angle.

Check It Out

Classify each angle.

2

(4)

Special Pairs of Angles

You can also classify angles by their relationship to each other. Vertical angles are opposite angles formed by the intersection of two lines.
$\angle 1$ and $\angle 3$ are vertical angles.
$\angle 2$ and $\angle 4$ are vertical angles.

When two angles have the same angle measure, they are congruent. Since $m \angle 1+m \angle 2=180^{\circ}$ and $m \angle 1+m \angle 4=180^{\circ}$, then $m \angle 2=m \angle 4$. Vertical angles are congruent.

Two angles are complementary angles if the sum of their measures is 90°.
$\angle E F G$ and $\angle G F H$ are complementary angles.

Two angles are supplementary angles if the sum of their measures is 180°.
$\angle M N O$ and $\angle O N Q$ are supplementary angles.

EXAMPLE Finding Missing Angle Measures

$\angle R S U$ is a right angle.
Find the value of x in the figure.

$$
\begin{array}{ll}
m \angle R S T+m \angle T S U=90^{\circ} & \text { - Write an equation. } \\
55+x=90 & \text { - Substitute the known angle measure. } \\
55-55+x=90-55 & \text { - Subtract } 55 \text { from both sides. } \\
& \text { - Simplify. }
\end{array}
$$

So, $x=35^{\circ}$.

Check It Out

Find the value of x in each figure.

Line and Angle Relationships

Lines that lie in the same plane that never intersect are called parallel lines. In the figure, lines b and c are parallel $(b \| c)$. Two lines that intersect at right angles are called perpendicular lines. In the figure, lines a and b are perpendicular $(a \perp b)$ and lines a and c are perpendicular $(a \perp c)$.

A transversal is a line that intersects two or more other lines. In the figure below, line a is a transversal of lines b and c. Eight angles are formed by a transversal: four interior angles and four exterior angles.
$\angle 2, \angle 3, \angle 5$, and $\angle 8$ are interior angles. $\angle 1, \angle 4, \angle 6$, and $\angle 7$ are exterior angles.

Alternate interior angles are interior angles that lie on opposite sides of the transversal.

In the figure below, $\angle 3$ and $\angle 5$ are alternate interior angles, and $\angle 4$ and $\angle 6$ are alternate interior angles.

When a transversal intersects parallel lines, alternate interior angles are congruent.

Alternate exterior angles are exterior angles that lie on different lines on opposite sides of the transversal. In the figure at the right, $\angle 1$ and $\angle 7$ are alternate exterior angles, and
 $\angle 2$ and $\angle 8$ are alternate exterior angles. When a transversal intersects parallel lines, alternate exterior angles are congruent.

Corresponding angles are angles that lie in the same position in relation to the transversal on the parallel lines.

There are four pairs of corresponding angles in the figure above: $\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7$, and $\angle 4$ and $\angle 8$. When a transversal intersects parallel lines, corresponding angles are congruent.

Check It Out

In the figure at the right, the two parallel lines are cut by the transversal $n . \ell \| m$

(7) Classify the relationship between $\angle 4$ and $\angle 8$.
(8) Classify the relationship between $\angle 3$ and $\angle 5$.
(9) Name a pair of alternate
 exterior angles.
(10) Name a pair of congruent angles.

Triangles

Triangles are polygons (p. 328) that have three sides, three vertices, and three angles.

You name a triangle by naming the three vertices, in any order. $\triangle A B C$ is read "triangle $A B C$."

Classifying Triangles

Like angles, triangles are classified by their angle measures. They can also be classified by the number of congruent sides, which are sides of equal length.

Acute triangle three acute angles

Equilateral triangle three congruent sides; three congruent angles

Obtuse triangle one obtuse angle

Isosceles triangle at least two congruent sides; at least two congruent angles

Right triangle one right angle

Scalene triangle no congruent sides

The sum of the measures of the three angles in a triangle is always 180°.

In $\triangle A B C, m \angle A=60^{\circ}, m \angle B=75^{\circ}$, and $m \angle C=45^{\circ}$.

$$
60^{\circ}+75^{\circ}+45^{\circ}=180^{\circ}
$$

So, the sum of the angles of $\triangle A B C$ is 180°.

EXAMPLE
 Finding the Measure of the Unknown Angle in a Triangle

$\angle P$ is a right angle. $m \angle Q=40^{\circ}$.
Find $m \angle R$.

$90^{\circ}+40^{\circ}=130^{\circ}$

- Add the two known angles.
$180^{\circ}-130^{\circ}=50^{\circ}$
- Subtract the sum from 180°. The difference is the measure of the third angle.
So, $m \angle R=50^{\circ}$.

Check It Out

Find the measure of the third angle in each triangle.
(11)

(12)

(13) $m \angle C=94^{\circ}, m \angle D=47^{\circ}, m \angle E=$ \qquad
(14) $m \angle G=38^{\circ}, m \angle H=45^{\circ}, m \angle I=$ \qquad

7.1 Exercises

Use the figure at the right to answer Exercises 1-3.

1. Name an acute angle.
2. Name two obtuse angles.

3. What is the measure of $\angle U V W$?

For Exercises 4-11, use the figure below. In the figure, $j \| k$ and v is a transversal. Justify your answer.
4. Classify the relationship between $\angle 1$ and $\angle 3$.
5. Classify the relationship between $\angle 5$ and $\angle 8$.
6. Classify the relationship between $\angle 4$ and $\angle 8$.
7. Classify the relationship between $\angle 3$ and $\angle 7$.
8. Classify the relationship between $\angle 2$ and $\angle 6$.

9. Find $m \angle 8$ if $m \angle 4=55^{\circ}$.
10. Find $m \angle 1$ if $m \angle 7=137^{\circ}$.
11. Find $m \angle 5$ if $m \angle 4=48^{\circ}$.
12. Find $m \angle D$.
13. Is $\triangle D E F$ an acute, a right, or an obtuse triangle?

14. Find $m \angle T$.
15. Is $\triangle R S T$ an acute, a right, or an obtuse triangle?

7.2 Naming and Classifying Polygons and Polyhedrons

Quadrilaterals

Four-sided figures are called quadrilaterals. Some quadrilaterals have specific names based on the relationship between their sides and/or angles.

To name a quadrilateral, list the four vertices, either clockwise or counterclockwise. One name for the figure at the right is quadrilateral ISHF.

Angles of a Quadrilateral

The sum of the angles of a quadrilateral is 360°. If you know the measures of three angles in a quadrilateral, you can find the measure of the fourth angle.

EXAMPLE
 Finding the Measure of the Unknown Angle in a Quadrilateral

Find $m \angle A$ in quadrilateral $A B C D$.

${ }_{B}^{C}$| 90° | 115° |
| :--- | :--- |
| 90° | |A_{A}^{D}

$90^{\circ}+90^{\circ}+115^{\circ}=295^{\circ}$
$360^{\circ}-295^{\circ}=65^{\circ}$

So, $m \angle A=65^{\circ}$.

- Add the measures of the three known angles.
- Subtract the sum from 360°. The difference is the measure of the fourth angle.

Check It Out

Use the figure below to answer Exercises 1-3.

(1) Name the quadrilateral in two ways.
(2) What is the sum of the angles of a quadrilateral?
(3) Find $m \angle P$.

Types of Quadrilaterals

A rectangle is a quadrilateral with four right angles. $A B C D$ is a rectangle. Its length is 10 centimeters and its width is 6 centimeters.

Opposite sides of a rectangle are congruent. If all four sides of the rectangle are congruent, the rectangle is a square. A square is a regular polygon because all of the sides are congruent and all of the interior angles are congruent. All squares are rectangles, but not all rectangles are squares.

A parallelogram is a quadrilateral with opposite sides parallel. In a parallelogram, opposite sides are congruent, and opposite angles are congruent. $W X Y Z$ is a parallelogram.

Not all parallelograms are rectangles, but all rectangles are parallelograms. Therefore, all squares are also parallelograms. If all four sides of a parallelogram are congruent, the parallelogram is a rhombus. $E F G H$ is a rhombus.

Every square is a rhombus, but not every rhombus is a square because a square must also have congruent angles.

In a trapezoid, two sides are parallel and two are not. A trapezoid is a quadrilateral, but it is not a parallelogram. ACKJ is a trapezoid.

Check It Out

Complete Exercises 4-7.

(4) Is quadrilateral $R S T U$ a rectangle? a parallelogram? a square? a rhombus? a trapezoid?

5. Is a square a rhombus? Why or why not?

6 Is a rectangle always a square? Why or why not?
(7) Is a parallelogram always a rectangle? Why or why not?

Polygons

A polygon is a closed figure that has three or more sides. Each side is a line segment, and the sides meet only at the endpoints, or vertices.

This figure is a polygon.
These figures are not.

A rectangle, a square, a parallelogram, a rhombus, a trapezoid, and a triangle are all examples of polygons.

A regular polygon is a polygon with congruent sides and angles.
A polygon always has an equal number of sides, angles, and vertices.

For example, a polygon with three sides has three angles and three vertices. A polygon with eight sides has eight angles and eight
 vertices, and so on.

A line segment connecting two vertices of a polygon is either a side or a diagonal. $\overline{A E}$ is a side of polygon $A B C D E . \overline{A D}$ is a diagonal.

Types of Polygons

Triangle 3 sides

Quadrilateral 4 sides

Pentagon 5 sides

Hexagon 6 sides

Octagon 8 sides

A seven-sided polygon is called a heptagon, a nine-sided polygon is called a nonagon, and a ten-sided polygon is called a decagon.

Check It Out

State whether the figure is a polygon. If it is a polygon, classify it according to its number of sides.
8

(9)

(10

Angles of a Polygon

You know that the sum of the angles of a triangle is 180°. To find the sum of the interior angles of any polygon, add another 180° for each additional side to the measure of the first three angles. Look at pentagon $A B C D E$.

Diagonals $\overline{E B}$ and $\overline{E C}$ show that the sum of the angles of a pentagon is equal to the sum of the angles in three triangles.

$$
3 \cdot 180^{\circ}=540^{\circ}
$$

So, the sum of the interior angles of a pentagon is 540°.
You can use the formula $(n-2) \cdot 180^{\circ}$ to find the sum of the interior angles of a polygon. Let n equal the number of sides of a polygon. The solution is equal to the sum of the measures of all the angles of the polygon.

EXAMPL: Finding the Sum of the Angles of a Polygon

Find the sum of the interior angles of an octagon.

$$
\begin{aligned}
& (n-2) \cdot 180^{\circ} \\
=(8-2) \cdot 180^{\circ} & \text { - Use the formula. } \\
= & 6 \cdot 180^{\circ} \\
= & 1,080^{\circ}
\end{aligned} \quad \text { - Substitute the number of sides. }
$$

So, the sum of the angles of an octagon is $1,080^{\circ}$.

You can use what you know about finding the sum of the angles of a polygon to find the measure of each angle of a regular polygon.

Begin by finding the sum of all the angles, using the formula $(n-2) \cdot 180^{\circ}$. For example, a hexagon has 6 sides, and so substitute 6 for n.

$$
(6-2) \cdot 180^{\circ}=4 \cdot 180^{\circ}=720^{\circ}
$$

Then divide the sum of the angles by the total number of angles. Because a hexagon has 6 angles, divide by 6 .

$$
720^{\circ} \div 6=120^{\circ}
$$

Therefore, each angle of a regular hexagon measures 120°.

Check It Out

Use the formula $(n-2) \cdot 180^{\circ}$.
(11) Find the sum of the angles of a decagon.
(12) Find the measure of each angle in a regular pentagon.

Polyhedrons

Some solid shapes are curved. These shapes are not polyhedrons.

Some solid shapes have flat surfaces. Each of the figures below is a polyhedron.

Cube

Prism

Pyramid

A polyhedron is a solid with flat surfaces that are polygons. Triangles, quadrilaterals, and pentagons make up the faces of the common polyhedrons below.

A prism has two bases, or "end" faces. The bases of a prism are polygons that are congruent and parallel to each other. The other faces are parallelograms. The bases of the prisms shown below are shaded. When all six faces of a rectangular prism are square, the figure is called a cube.

Triangular prism

Rectangular prism

Cube

Pentagonal prism

A pyramid is a structure that has one polygonal base. It has triangular faces that meet at a point called the apex. The base of each pyramid shown below is shaded. A triangular pyramid is a tetrahedron. A tetrahedron has four faces. Each face is triangular.

Check It Out
Identify each polyhedron.

7.2 Exercises

1. Give two other names for quadrilateral $M N P Q$.
2. Find $m \angle M$.

3. Give two other names for quadrilateral RSTU.
4. Find $m \angle U$.

5. Give two other names for quadrilateral $V W X Y$.
6. Find $m \angle W$.

Tell whether each statement below is true or false.
7. A square is a parallelogram.
8. Every rectangle is a parallelogram.
9. Not all rectangles are squares.
10. Some trapezoids are parallelograms.
11. Every square is a rhombus.
12. All rhombuses are quadrilaterals.
13. A quadrilateral cannot be both a rectangle and a rhombus.

Identify each polygon.

14.

15.

16.

17.

18.

Find the sum of the angles for each polygon.
19. pentagon
20. nonagon
21. heptagon
22. What is the measure of each angle in a regular octagon?

Identify each polyhedron.

24.

25.

Identify each real-world polygon or polyhedron.
26. The infield of a baseball diamond.
27. Home plate on a baseball diamond.

28.

29.

30.

7.3 Symmetry and Transformations

Whenever you move a shape that is in a plane, you are performing a transformation. There are three basic types of transformations: reflections, rotations, and translations.

Reflections

A reflection (or flip) is the mirror image, or reverse image, of a point, a line, or a shape.

A line of reflection is a line such that the figure on one side of the line is the reflection image of the figure on the other side.
P^{\prime} reflects point P on the other side of line $\ell . P^{\prime}$ is read " P-prime." P ' is called the image of P.

Any point, line, or polygon can be reflected. Quadrilateral $D E F G$ is reflected across line m. The image of $D E F G$ is $D^{\prime} E^{\prime} F^{\prime} G^{\prime}$.

To find an image of a shape, measure the horizontal distance of each point to the line of symmetry. The image of each point will be the same horizontal distance from the line of symmetry on the opposite side.

Check It Out

Copy each shape on grid paper. Then draw and label the reflection.
1

2

Reflection Symmetry

A line of symmetry is a line along which a figure can be folded so that the two resulting halves match. Each of these figures has line symmetry.

Some figures have more than one line of symmetry.

A rectangle has two lines of symmetry. A square has four lines of symmetry. Any line through the center of a circle is a line of symmetry. So, a circle has an infinite number of lines of symmetry.

Check It Out

Tell whether each figure has reflection symmetry. If your answer is yes, tell how many lines of symmetry can be drawn through the figure.

Rotations

A rotation (or turn) is a transformation that turns a line or a shape around a fixed point called the center of rotation.

$\stackrel{\rightharpoonup}{R S}$ is rotated 90° around point R.
If you rotate a figure 360°, its position is unchanged.

Check It Out

Find the degrees of rotation.
(7) How many degrees has $\overrightarrow{\mathrm{PQ}}$ been rotated?

8 How many degrees has $\Delta T S R$ been rotated?

Translations

A translation (or slide) is another kind of transformation. When you move a figure to a new position without turning it, you are performing a translation.

Rectangle $A B C D$ moves right and up. $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of $A B C D$ under a translation. A^{\prime} is 7 units to the right and 3 units up from A. All other points on the rectangle moved the same way.

Check It Out

Write whether the figures below represent only a translation.

(9)

10

(11)

7.3 Exercises

1. Copy the shape on grid paper. Then translate and label the image 4 units down and 3 units left.

Copy each shape. Then draw all lines of symmetry.
2.

3.

4.

Which type of transformation is illustrated?
5. A

8.

7.4 Perimeter

Perimeter of a Polygon

The perimeter of a polygon is the sum of the lengths of the sides. To find the perimeter of a regular polygon, you can multiply the length of one side by the total number of sides.

EXAMPLE Finding the Perimeter of a Polygon

Find the perimeter of the hexagon.
$P=5+10+8+10+5+18=56 \mathrm{ft}$

Regular Polygon Perimeters

If you know the perimeter of a regular polygon, you can find the length of each side.

Assume a regular octagon has a perimeter of 36 centimeters.
Let $x=$ length of a side. $\quad 36 \mathrm{~cm}=8 x$

$$
4.5 \mathrm{~cm}=x
$$

Each side is 4.5 centimeters long.

Check It Out

Find the perimeter of each polygon.
1

2

Find the length of each side.
(3) square with a perimeter of 24 meters
(4) regular pentagon with a perimeter of 100 feet

Perimeter of a Rectangle

Opposite sides of a rectangle are congruent. So to find the perimeter of a rectangle, you need to know only its length and width.

EXAMPLE Finding the Perimeter of a Rectangle

Find the perimeter of a rectangle with length 15 meters and width 9 meters.

15 m

$P=2 \ell+2 w$
$=(2 \cdot 15)+(2 \cdot 9)$
$=30+18=48 \mathrm{~m}$

- Use the formula.
- Substitute the length and width.
- Simplify.

So, the perimeter is 48 meters.

A square is a rectangle whose length and width are congruent. Let $s=$ the length of one side. The formula for finding the perimeter of a square is $P=4 \cdot s$ or $P=4 s$.

Check It Out

Find the perimeter.

(5) rectangle with length 16 centimeters and width 14 centimeters
(6) square with sides that are 12 centimeters
(7) square with sides that are 1.3 meters

Perimeter of a Right Triangle

If you know lengths of two sides of a right triangle, you can find the length of the third side by using the Pythagorean Theorem.

For a review of the Pythagorean Theorem, see page 366.

EXAMPLE Finding the Perimeter of a Right Triangle

Use the Pythagorean Theorem to find the perimeter of the right triangle.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =16^{2}+30^{2} \\
& =256+900 \\
& =1,156 \\
\sqrt{c^{2}} & =\sqrt{1156} \\
c & =34 \\
16 \mathrm{~cm} & +30 \mathrm{~cm}+34 \mathrm{~cm}=80 \mathrm{~cm}
\end{aligned}
$$

- The square root of c^{2} is the length of the hypotenuse.
- Add the lengths of the sides. The sum is the perimeter of the triangle.

So, the perimeter is 80 centimeters.

Check It Out

Use the Pythagorean Theorem to find the perimeter of each triangle.

(9)

7.4 Exercises

Find the perimeter of each polygon.

1.

2.

3. Find the perimeter of regular decagon with a side length of 4.8 centimeters.
4. The perimeter of a regular hexagon is 200 inches. Find the length of each side.
5. The perimeter of a square is 16 feet. What is the length of each side?

Find the perimeter of each rectangle.

6. $\ell=6.1 \mathrm{~m}, w=4.3 \mathrm{~m}$
7. $\ell=2 \mathrm{~cm}, w=1.5 \mathrm{~cm}$
8. The perimeter of a rectangle is 15 meters. The length is 6 meters. What is the width?
9. Find the perimeter of a square whose sides are 1.5 centimeters long.
10. Use the Pythagorean Theorem to find the perimeter of the triangle at the right.

11. Two sides of a triangle are 9 inches and 7 inches. If it is an isosceles triangle, what are the two possible perimeters?
12. The perimeter of an equilateral triangle is 27 centimeters. What is the measure of each side?
13. If one side of a regular pentagon measures 18 inches, what is the perimeter?
14. If a side of a regular nonagon measures 8 centimeters, what is the perimeter?
15. A carpenter needs to install trim around the edges of the ceiling in the room shown in the diagram at the right. The trim is sold in 8 foot lengths. How many pieces must the carpenter buy?

For Exercises 16 and 17, use the race course below.

16. How long is the race course?
17. If they changed the course to go around the edge of the lot, how long would it be?
18. Cleve wants to mark off a square with sides that are 60 feet long for a baseball diamond. In addition, he wants to mark off two batters' boxes, each with a length of 5 feet and a width of 3 feet. The chalkbag will make 375 feet of chalk line. How many feet does Cleve need to chalk? Does he have enough chalk to complete the job?

7.5 Area

What Is Area?

Area measures the size of a surface. Instead of measuring with units of length, such as inches, centimeters, feet, and kilometers, you measure area in square units, such as square inches (in ${ }^{2}$) and square centimeters (cm^{2}).

This square has an area of one square centimeter. It takes exactly three of these squares to cover the rectangle. The area of the rectangle is three square centimeters, or $3 \mathrm{~cm}^{2}$.

Area of a Rectangle

The formula for finding the area of a rectangle is $A=\ell \cdot w$, or $A=\ell w$.

EXAMPLE Finding the Area of a Rectangle

Find the area of the rectangle.
$6 \mathrm{ft}=72 \mathrm{in}$.

So, $\ell=72$ inches and
$w=20$ inches.

- The length and the width must be in the same units.
$A=\ell \cdot w$
$=72 \mathrm{in} .20 \mathrm{in}$.
- Use the formula for area.
$=1,440 \mathrm{in}^{2}$
- Substitute the length and the width.

So, the area of the rectangle is 1,440 square inches.

For a square whose sides measure s units, you can use the formula $A=s \cdot s$, or $A=s^{2}$.

Check It Out

Use the formula $A=\ell w$.
(1) Find the area of a rectangle if $\ell=40$ inches and $w=2$ feet.
2. Find the area of a square whose sides are 6 centimeters.

Area of a Parallelogram

To find the area of a parallelogram, you multiply the base by the height.

Area $=$ base \cdot height
$A=b \cdot h$
or $A=b h$

The height of a parallelogram is always perpendicular to the base. In parallelogram $A B C D$, the height, h, is equal to $B E$, not $B C$. The base, b, is equal to $D C$.

EXAMPLE Finding the Area of a Parallelogram

Find the area of a parallelogram with a base of 8 inches and a height of 5 inches.
$A=b \cdot h$

- Use the formula for area.
$=8 \mathrm{in} \cdot 5 \mathrm{in}$.
- Substitute the base and the height.
$=40 \mathrm{in}^{2}$
- Simplify.

So, the area of the parallelogram is 40 square inches.

Check It Out

Use the formula $A=b h$.
3) Find the area of a parallelogram if $b=9$ meters and $h=6$ meters.
(4) Find the length of the base of a parallelogram if the area is 32 square meters and the height is 4 meters.

Area of a Triangle

If you were to cut a parallelogram along a diagonal, you would have two triangles with equal bases, b, and equal height, h.

So, the formula for the area of a triangle is half the area of a parallelogram:
$A=\frac{1}{2} \cdot b \cdot h$, or $A=\frac{1}{2} b h$.

EXAMPLE Finding the Area of a Triangle

Find the area of $\triangle Q R S$.
$A=\frac{1}{2} \cdot b \cdot h$
$A=\frac{1}{2} \cdot 13.5 \mathrm{~cm} \cdot 8.4 \mathrm{~cm}$
$=56.7 \mathrm{~cm}^{2}$

So, the area of the triangle is 56.7 square centimeters.
Find the area of $\triangle A B C$.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \cdot 11 \mathrm{~m} \cdot 9 \mathrm{~m} \\
& =49.5 \mathrm{~m}^{2}
\end{aligned}
$$

So, the area of the triangle is 49.5 square meters.

Check It Out

Use the formula $A=\frac{1}{2} b h$.
(5) Find the area of a triangle where $b=20$ inches and $h=6$ inches.
6 Find the area of a right triangle whose sides are 24 centimeters, 45 centimeters, and 51 centimeters.

Area of a Trapezoid

A trapezoid has two bases, which are labeled b_{1} and b_{2}. You read b_{1} as " b sub-one." The area of a trapezoid is equal to the sum of the areas of two triangles with different base lengths.

So, the formula for the area of a trapezoid is $A=\frac{1}{2} b_{1} h+\frac{1}{2} b_{2} h$ or, in simplified form, $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$.

EXAMPLE Finding the Area of a Trapezoid

Find the area of trapezoid $E F G H$.

$$
\begin{aligned}
A & =\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& =\frac{1}{2} \cdot 5(6+12) \\
& =2.5 \cdot 18 \\
& =45 \mathrm{~cm}^{2}
\end{aligned} \quad H_{b_{2}=6 \mathrm{~cm}}^{b_{2}=12 \mathrm{~cm}}{ }_{G}
$$

So, the area of the trapezoid is 45 square centimeters.

Since $\frac{1}{2} h\left(b_{1}+b_{2}\right)$ is equal to $h \cdot \frac{b_{1}+b_{2}}{2}$, you can also say
$A=$ height \cdot the average of the bases.
For a review of how to find an average or mean, see page 201.

Check It Out

Use the formula $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$.
(7) The height of a trapezoid is 3 feet. The bases are 2 feet and 6 feet. What is the area?
(8) The height of a trapezoid is 4 feet. The bases are 8 feet and 7 feet. What is the area?

7.5 Exercises

Find the area of each rectangle given the length, ℓ, and the width, w.

1. $\ell=3$ meters, $w=2.5$ meters
2. $\ell=200$ centimeters, $w=1.5$ meters

Find the area of each parallelogram.
3.

4.

2 ft
Find the area of each triangle given the base, b, and the height, h.
5. $b=5$ inches, $h=4$ inches
6. $b=6.8$ centimeters, $h=1.5$ centimeters
7. Find the area of a trapezoid with bases 7 inches and 9 inches and a height of 1 foot.
8. Mr. Lopez plans to give the plot of land shown below to his two daughters. How many square yards of land will each daughter receive if the land is divided evenly between them?

7.6 Surface Area

The surface area of a solid is the sum of area of the exterior surfaces. Like area, surface area is expressed in square units.

An unfolded 3-dimensional figure is a net. This is a net of the rectangular prism shown above. The sum of areas of each section of the net is equal to the surface area of the figure.

Surface Area of a Rectangular Prism

To find the surface area of a rectangular prism, find the sum of the areas of the six faces, or rectangles. Remember: Opposite faces are equal. For a review of polyhedrons and prisms, see page 331.

EXAMPLE Finding the Surface Area of a Rectangular Prism

Use the net to find the area of the rectangular prism above.

- Use the formula $A=\ell w$ to find the area of each face.
- Add the six areas.
- Express the answer in square units.

Area	$=$	top + base	+	left + right	+	front + rear
	$=$	$2 \cdot(7 \cdot 5)$	+	$2 \cdot(6 \cdot 5)$	+	$2 \cdot(7 \cdot 6)$
	$=$	$2 \cdot 35$	+	$2 \cdot 30$	+	$2 \cdot 42$
	$=$	70	+	60	+	84
	$=$	$214 \mathrm{~cm}^{2}$				

So, the surface area of the rectangular prism is 214 square centimeters.

Check It Out

Find the surface area of each shape.

1

(2)

Surface Areas of Other Solids

Nets can be used to find the surface area of any polyhedron. Look at the triangular prism and its net.

To find the surface area of this solid, use the area formulas for a rectangle $(A=\ell w)$ and a triangle $\left(A=\frac{1}{2} b h\right)$. Find the areas of the five faces and then find the sum of the areas.

Below are two pyramids and their nets. To find the surface area of these polyhedrons, you would again use the area formulas for a rectangle $(A=\ell w)$ and a triangle $\left(A=\frac{1}{2} b h\right)$.

The surface area of a cylinder is the sum of the areas of two circles and a rectangle. The height of the rectangle is equal to the height of the cylinder. The length of the rectangle is equal to the circumference (p. 360) of the cylinder.

Find the surface area of a cylinder:

- Use the formula for the area of a circle, $A=\pi r^{2}$, to find the area of each base.
- Find the area of the rectangle using the formula $h \cdot(2 \pi r)$.
- Add the area of the circles and the area of the rectangle. You can use the formula $S=2 \pi r^{2}+2 \pi r h$.

Check It Out

Consider the net of each figure.
3 Find the surface area of the triangular prism.

(4) Which unfolded figure represents the pyramid?

5 Find the surface area of the cylinder. Use $\pi \approx 3.14$.

7.6 Exercises

Find the surface area of each shape. Round decimal answers to the nearest tenth.
1.

2.

4.

Find the surface area of each cylinder. Round to the nearest tenth.
5.

6. 5.5 cm

7. Rita and Derrick are building a 3 foot by 3 foot by 6 foot platform to use for skateboarding. They plan to waterproof all six sides of the platform, using sealant that covers about 50 square feet per quart. How many quarts of sealant will they need?

7.7 Volume

What Is Volume?

Volume is the amount of space an object occupies. One way to measure volume is to count the number of cubic units it would take to fill the space inside the object.

The volume of the small cube is 1 cubic inch.

It takes 8 smaller cubes to fill the space inside the larger cube, so the volume of the larger cube is 8 cubic inches.

Volume is measured in cubic units. For example, 1 cubic inch is written as $1 \mathrm{in}^{3}$, and 1 cubic meter is written as $1 \mathrm{~m}^{3}$.

For a review of cubes, see page 330 .

Check It Out

What is the volume of each shape?

(1) 1 cube $=1 \mathrm{~cm}^{3}$

(2) 1 cube $=1 \mathrm{ft}^{3}$

Volume of a Prism

To find the volume of a prism, multiply the area (pp. 344-347) of the base, B, by the height, h.

Volume $=B h$
See Formulas, page 64.

EXAMPLE Finding the Volume of a Prism

Find the volume of the rectangular prism. The base is 14 inches long and 12 inches wide. The height is 17 inches.

base $A=14 \mathrm{in} . \cdot 12 \mathrm{in}$.

$$
\begin{aligned}
& =168 \mathrm{in}^{2} \\
V & =168 \mathrm{in}^{2} \cdot 17 \mathrm{in} . \\
& =2,856 \mathrm{in}^{3}
\end{aligned}
$$

- Multiply the base and the height.

So, the volume of the prism is 2,856 cubic inches.

Check It Out

Find the volume of each shape.

Volume of a Cylinder

You can use the same formula to find the volume of a cylinder: $V=B h$. Remember: The base of a cylinder is a circle.

The base has a radius of 2 inches. Estimating pi (π) at 3.14 , you will find that the area of the base is about 12.56 square inches. Multiply the area of the base by the height to find the volume.

$$
\begin{aligned}
V & =12.56 \mathrm{in}^{2} \cdot 7 \mathrm{in} . \\
& =87.92 \mathrm{in}^{3}
\end{aligned}
$$

The volume of the cylinder is 87.92 cubic inches.

Check It Out

Find the volume of each cylinder. Round to the nearest hundredth. Use 3.14 for π.

5

(6)

Volume of a Pyramid and a Cone

The formula for the volume of a pyramid or a cone is $V=\frac{1}{3} B h$.

EXAMPLE Finding the Volume of a Pyramid

Find the volume of the pyramid. The base is 175 centimeters long and 90 centimeters wide. The height is 200 centimeters.

$$
\begin{aligned}
\text { base } A & =175 \cdot 90 \\
& =15,750 \mathrm{~cm}^{2} \\
V & =\frac{1}{3}(15,750 \cdot 200) \\
& =1,050,000
\end{aligned}
$$

- Find the area of the base.
- Multiply the base by the height and then by $\frac{1}{3}$.
So, the volume is $1,050,000$ cubic centimeters.

To find the volume of a cone, you follow the same procedure as above. For example, a cone has a base with a radius of 3 centimeters and a height of 10 centimeters. What is the volume of the cone to the nearest tenth?

Square the radius and multiply by π to find the area of the base. Then multiply by the height and divide by 3 to find the volume. The volume of the cone is 94.2 cubic centimeters.

Using a calculator, you would press $\pi \times \square=28.27433$ $x 10 \div 3 \square 94.24778$.

For other volume Formulas, see page 64.

Check It Out

Find the volume of the shapes below, rounded to the nearest tenth.

8

application Good Night, T. Rex

Why did the dinosaurs disappear? New evidence from the ocean floor points to a giant asteroid that collided with Earth about 65 million years ago.

The asteroid, 6 to 12 mi in diameter, hit Earth somewhere in the Gulf of Mexico. It was traveling at a speed of thousands of miles per hour.

The collision sent billions of tons of debris into the atmosphere. The debris rained down on the planet, obscuring the Sun. Global temperatures plummeted. The fossil record shows that most of the species that were alive before the collision disappeared.

Assume the crater left by the asteroid had the shape of a hemisphere with a diameter of 165 mi . About how many cubic miles of debris would have been flung from the crater into the air? See page 64 for the formula for the volume of a sphere. See HotSolutions for the answer.

7.7 Exercises

Use the rectangular prism to answer Exercises 1-4.

1. How many centimeter cubes would it take to make one layer in the bottom of the prism?
2. How many layers of centimeter cubes would you need to fill the prism?
3. How many centimeter cubes do you need to fill the prism?
4. Each cube has a volume of 1 cubic centimeter. What is the volume of the prism?
5. Find the volume of a rectangular prism with base 10 centimeters, width 10 centimeters, and height 8 centimeters.
6. The base of a cylinder has an area of 5 square centimeters Its height is 7 centimeters. What is its volume?
7. Find the volume of a cylinder 8.2 meters high when its base has a radius of 2.1 meters. Round your answer to the nearest tenth.
8. Find the volume of a pyramid with a height of 4 inches and a rectangular base that measures 6 inches by 3.5 inches.
9. Look at the cone and the rectangular pyramid below. Which has the greater volume and by how many cubic inches?

10. List the shapes above from the least volume to the greatest volume.

78 Circles

Parts of a Circle

Circles differ from other geometric shapes in several ways. For instance, all circles are the same shape; polygons vary in shape. Circles do not have any sides; polygons are named and classified by the number of sides they have. The only thing that makes one circle different from another is size.

A circle is a set of points equidistant from a given point that is the center of the circle. A circle is named by its center point.

Circle P

A radius is any segment that has one endpoint at the center and the other endpoint on the circle. In circle $P, \overline{P W}$ is a radius, and so is $\overline{P G}$.

A diameter is any line segment that passes through the center of the circle and has both endpoints on the circle. $\overline{G W}$ is the diameter of circle P. Notice that the length of the diameter $\overline{G W}$ is equal to the sum of $\overline{P W}$ and $\overline{P G}$. The diameter, d, is twice the radius, r. So, the diameter of circle P is 2(5) or 10 centimeters.

Check It Out

Solve.

(1) Find the radius of a circle with diameter 18 inches.

2 Find the radius of a circle with diameter 3 meters.
3 Find the radius of a circle in which $d=x$.
4) Find the diameter of a circle with radius 6 centimeters.
(5) Find the diameter of a circle with radius 16 meters.
(6) Find the diameter of a circle where $r=y$.

Circumference

The circumference of a circle is the distance around the circle. The ratio of every circle's circumference to its diameter is always the same. The circumference of every circle is about 3.14 times the diameter. The symbol π, which is read as $p i$, is used to represent the ratio $\frac{C}{d}$.

$$
\begin{aligned}
& \frac{C}{d} \approx 3.141592 \ldots \\
& \quad \text { Circumference }=\text { pi } \cdot \text { diameter, or } C=\pi d
\end{aligned}
$$

Look at the illustration below. The circumference of the circle is a little bit longer than the length of three diameters. This is true for any circle.

Since $d=2 r$, Circumference $=2 \cdot$ pi \cdot radius, or $C=2 \pi r$.
The π key on a calculator gives an approximation for π to several decimal places: $\pi \approx 3.141592 \ldots$ For practical purposes, however, π is often rounded to 3.14 or left in terms of π.

EXAMPLE Finding the Circumference of a Circle

Find the circumference of a circle with radius 13 meters.
$C=2 \pi r$

- Use the formula for circumference.
$C=13 \cdot 2 \cdot \pi$
- Substitute the radius.
$C=26 \pi$
- Simplify.

The exact circumference is 26π meters.

$$
\begin{array}{ll}
C=26 \cdot 3.14 & \text { • Substitute } 3.14 \text { for } \pi . \\
\approx 81.64 & \cdot \text { Simplify. }
\end{array}
$$

So, to the nearest tenth, the circumference is 81.6 meters.

You can find the diameter if you know the circumference. Divide both sides by π.

$$
\begin{aligned}
& C=\pi d \\
& \frac{C}{\pi}=\frac{\pi d}{\pi} \\
& \frac{C}{\pi}=d
\end{aligned}
$$

Check It Out

Solve.

(7) Find the circumference of a circle with a diameter of 5 inches. Give the answer in terms of π.
8 Find the circumference of a circle with a radius of 3.2 centimeters. Round to the nearest tenth.
(9) Find the diameter of a circle with circumference 25 meters. Round to the nearest hundredth of a meter.
(10) Using the π key on your calculator or $\pi \approx 3.141592$, find the radius of a circle with a circumference of 35 inches. Round your answer to the nearest half inch.

Central Angles

A central angle is an angle whose vertex is at the center of a circle. The sum of the central angles in any circle is 360°.

The part of a circle where a central angle intercepts the circle is called an arc. The measure of the arc, in degrees, is equal to the measure of the central angle.

$$
\widehat{E G}=60^{\circ} \text { and } m \angle E F G=60^{\circ} .
$$

Check It Out

Use circle B to answer Exercises 11-13.

(11) Name a central angle in circle B.
(12) What is the measure of $\overparen{A C}$?
(13) What is the measure of $\widehat{A D C}$?

Use circle M to answer Exercises 14 and 15.
(14) What is the measure of $\angle L M N$?
(15) What is the measure of $\angle L M O+\angle O M N$?

Area of a Circle

To find the area of a circle, you use the formula $A=\pi r^{2}$. As with the area of polygons, the area of a circle is expressed in square units.

For a review of area and square units, see page 344.

EXAMPLE Finding the Area of a Circle

Find the area of circle Q to the nearest whole number.

$$
\begin{aligned}
A & =\pi \cdot 8^{2} \\
& =64 \pi \\
& \approx 200.96 \\
& \approx 201 \mathrm{~cm}^{2}
\end{aligned}
$$

- Use the formula $A=\pi r^{2}$.
- Square the radius.
- Multiply by 3.14, or use the π key on the calculator for a more exact answer.

So, the area of circle Q is about 201 square centimeters.

If you are given the diameter instead of the radius, remember to divide the diameter by 2 .

Check It Out

Find the area of each circle.

16 Find the area of a circle with radius 6.5 meters. Use 3.14 for π and round to the nearest tenth.
(17) The diameter of a circle is 9 inches. Find the area. Give your answer in terms of π; then multiply and round to the nearest tenth.
(18) Use your calculator to find the area of a circle with a diameter of 15 centimeters. Use 3.14 or the calculator key for π and round to the nearest square centimeter.

7.8 Exercises

Find the diameter of each circle with the given radius.

1. $r=11 \mathrm{ft}$
2. $r=7.2 \mathrm{~cm}$
3. $r=x$

Find the radius with the given diameter.
4. $d=7 \mathrm{in}$.
5. $d=2.6 \mathrm{~m}$
6. $d=y$

Given the r or d, find the circumference to the nearest tenth.
7. $d=1 \mathrm{~m}$
8. $d=7.9 \mathrm{~cm}$
9. $r=18 \mathrm{in}$.

The circumference of a circle is 47 centimeters. Find the following to the nearest tenth.
10. the diameter
11. the radius

Find the measure of each arc.
12. $\overparen{A B}$
13. $\overparen{C B}$
14. $\overparen{A C}$

Find the area of each circle, given the radius r or the diameter d.
Round to the nearest whole number.
15. $r=2 \mathrm{~m}$
16. $r=35 \mathrm{in}$.
17. $d=50 \mathrm{~cm}$
18. $d=10 \mathrm{ft}$
19. A dog is tied to a stake. The rope is 20 meters long, so the dog can roam up to 20 meters from the stake. Find the area within which the dog can roam. (If you use a calculator, round to the nearest whole number.)
20. Tony's Pizza Palace sells a large pizza with a diameter of 14 inches. Pizza Emporium sells a large pizza with a diameter of 15 inches for the same price. How much more pizza do you get for your money at Pizza Emporium?

7.9 Pythagorean Theorem

Right Triangles

The smaller illustration at the right shows a right triangle on a geoboard. You can count that leg a is 3 units long and leg b is 4 units long. The hypotenuse, side c, is always
 opposite the right angle.

Now look at the larger illustration on the right. A square is drawn on each of the three sides of the triangle.

Using the formula for the area of a square ($A=s^{2}$), the area of the square on $\operatorname{leg} a$ is $A=3^{2}=9$ square units. The area of the square on leg b is $A=4^{2}=16$ square units. Both the squares on legs a and b combine to make the square on leg c. The area of the square on leg c must be equal to the sum of the areas of the squares on legs a and b. The area of the square on leg c is $A=3^{2}+4^{2}=9+16=25$ square units.

Area of square $a+$ Area of square $b=$ Area of square c This relationship holds true for all right triangles.

Check It Out

For Exercises 1 and 2, use the illustration below.

(1) What is the area of each of the squares?
(2) Does the sum of the areas of the two smaller squares equal the area of the largest square?

The Pythagorean Theorem

In every right triangle, there is a relationship between the area of the square of the hypotenuse (the side opposite the right angle) and the areas of the squares of the legs. A Greek mathematician named Pythagoras noticed the relationship about 2,500 years ago and drew a conclusion. That conclusion, known as the Pythagorean Theorem, can be stated as follows: In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs.

You can use the Pythagorean Theorem to find the length of the third side of a right triangle if you know the length of two sides.

EXAMPLE
 Using the Pythagorean Theorem to Find the Hypotenuse

Use the Pythagorean Theorem to find the length of the hypotenuse, c, of $\triangle E F G$.

$c^{2}=a^{2}+b^{2}$
$c^{2}=6^{2}+8^{2}$

- Substitute the two known lengths for a and b.
$c^{2}=36+64$
- Square the two known lengths.
$c^{2}=100$
- Find the sum of the squares of the two legs.
$c=10 \mathrm{~m}$
- Take the square root of the sum.

So, the length of the hypotenuse is 10 meters.

EXAMPLE

Using the Pythagorean Theorem
to Find a Side Length
Use the Pythagorean Theorem, $c^{2}=a^{2}+b^{2}$, to find the length of leg b of a right triangle with a hypotenuse 14 inches and leg $a 5$ inches.

14^{2}	$=5^{2}+b^{2}$		- Substitute the two known lengths
		for a and c.	
196	$=25+b^{2}$		- Square the known lengths.
$196-25$	$=(25-25)+b^{2}$		- Subtract to isolate the unknown.
171	$=b^{2}$		- Use your calculator to find the square
13.1	$=b$		root. Round to the nearest tenth.

So, the length of the unknown side is 13.1 inches.

Check It Out

Use the Pythagorean Theorem to find the missing length.
(3) To the nearest whole number, find the length of the hypotenuse of a right triangle with legs 9 centimeters and 11 centimeters.
4. Find the length of $\overline{S R}$ to the nearest whole number.

Pythagorean Triples

The numbers 3, 4, and 5 form a Pythagorean triple because $3^{2}+4^{2}=5^{2}$. Pythagorean triples are formed by whole numbers, so that $a^{2}+b^{2}=c^{2}$. There are many Pythagorean triples. Here are three:

$$
5,12,13 \quad 8,15,17 \quad 7,24,25
$$

If you multiply each number of a Pythagorean triple by the same number, you form another Pythagorean triple. 6, 8, 10 is a triple because it is 2(3), 2(4), 2(5).

Distance and the Pythagorean Theorem

To find the diagonal distance between two points on the coordinate plane, connect them with a line (the hypotenuse, c). Then draw the horizontal and vertical legs (a and b) to complete the right triangle. Use the Pythagorean Theorem to solve for c.

EXAMPLE Finding Distance on the Coordinate Grid

Find the distance c between the points $(4,-2)$ and $(2,-6)$.

- Graph the ordered pairs $(4,-2)$ and $(2,-6)$.
- Connect the two points to create the hypotenuse (c).
- Draw the horizontal and vertical legs (sides a and b).
$c^{2}=a^{2}+b^{2}$
$c^{2}=2^{2}+4^{2}$
$c^{2}=4+16$
$c^{2}=20$
$c \approx 4.5$
- Using the Pythagorean Theorem, replace a with 2 and b with 4 .
- Solve to find the distance c between the two points.

So, the points are about 4.5 units apart.

Check It Out

Find the distance between the points to the nearest tenth.

$$
\text { (5) }(1,2),(3,5)
$$

6 $(-2,2),(-6,-4)$

7.9 Exercises

Each side of the triangle has a square on it. The squares are labeled regions I, II, and III.

1. Find the areas of regions I, II, and III.
2. What relationship exists among the areas of regions I, II, and III?

Find the missing length in each right triangle. Round to the nearest tenth.
3.

4.

5.

Are the numbers Pythagorean triples? Write yes or no.
6. $3,4,5$
7. $4,5,6$
8. $24,45,51$
9. Find the length, to the nearest tenth, of the unknown leg of a right triangle with a hypotenuse of 16 inches and one leg measuring 9 inches.
10. To the nearest tenth, find the length of the hypotenuse of a right triangle with legs measuring 39 centimeters and 44 centimeters.

Find the distance between the points to the nearest tenth.
11. $(-5,-7),(-1,0)$

12. $(2,1),(4,8)$

Geometry

What have you learned?

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 7.2).

Problem Set

Refer to this figure to answer Exercises 1-3. (Lesson 7.1)

1. Name the angle adjacent to $\angle B K E$.
2. Name the right angle in this figure.
3. $\angle F K E$ is a straight angle. What is $m \angle F K A$?
4. Find the measure of each angle of a regular hexagon.
(Lesson 7.2)
5. Find the perimeter of a right triangle with legs 3 centimeters and 4 centimeters. (Lesson 7.4)
6. Find the area of a right triangle with legs 20 meters and 5 meters. (Lesson 7.5)
7. A trapezoid has bases 12 feet and 20 feet and height 6 feet. What is the area? (Lesson 7.5)
8. Find the surface area of a cylinder if $h=10$ feet and $C=4.5$ feet. Round to the nearest square foot. (Lesson 7.6)
9. Find the volume of a cylinder that has an 8 -inch diameter and is 6 inches high. Round to the nearest cubic inch. (Lesson 7.7)
10. A triangle has sides 15 centimeters, 16 centimeters, and 23 centimeters. Use the Pythagorean Theorem to determine whether this triangle is a right triangle. (Lesson 7.9)
11. Find the length of the unknown leg of a right triangle that has hypotenuse 18 meters and one leg that is 10 meters.

Howtortis

alternate exterior
angles (Lesson 7.1)
alternate interior
angles (Lesson 7.1)
arc (Lesson 7.8)
base (Lesson 7.2)
circumference (Lesson 7.8)
complementary angles
(Lesson 7•1)
congruent (Lesson 7.1)
corresponding angles
(Lesson 7•1)
cube (Lesson 7-2)
diagonal (Lesson 7.2)
diameter (Lesson 7.8)
face (Lesson 7.2)
hypotenuse (Lesson 7.9)
line of symmetry (Lesson 7.3)
net (Lesson 7.6)
parallelogram (Lesson 7.2)
pi (Lesson 7.7)
polygon (Lesson 7.2)
polyhedron (Lesson 7.2)
prism (Lesson 7.2)
pyramid (Lesson 7.2)
Pythagorean Theorem
(Lesson 7.9)
Pythagorean triple (Lesson 7.9)
quadrilateral (Lesson 7.2)
radius (Lesson 7.8)
rectangular prism (Lesson 7.2)
reflection (Lesson 7.3)
regular polygon (Lesson 7.2)
rhombus (Lesson 7.2)
rotation (Lesson 7.3)
segment (Lesson 7.2)
supplementary angles
(Lesson 7•1)
surface area (Lesson 7.6)
tetrahedron (Lesson 7.2)
transformation (Lesson 7.3)
translation (Lesson 7.3)
transversal (Lesson 7.1)
trapezoid (Lesson 7.2)
triangular prism (Lesson 7.6)
vertical angles (Lesson 7.1)
volume (Lesson 7.7)

Hotinile 8

Measurement

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 8-2).

Problem Set

Give the meaning for each metric system prefix. (Lesson 8.1)

1. centi-
2. kilo-
3. milli-

Complete each of the following conversions. Round your answers to the nearest hundredth. (Lesson 8.2)
4. $800 \mathrm{~mm}=$ \qquad m
5. $5,500 \mathrm{~m}=$ \qquad km
6. $3 \mathrm{mi}=$ \qquad ft
7. 468 in. $=$ \qquad yd

Exercises 8-13 refer to the rectangle. Round to the nearest whole unit.

36 in.

8. What is the perimeter in inches? (Lesson 8-2)
9. What is the perimeter in yards? (Lesson 8.2)
10. What is the perimeter in centimeters? (Lesson 8.2)
11. What is the approximate perimeter in meters? (Lesson 8.2)
12. What is the area in square inches? (Lesson 8.3)
13. What is the area in square centimeters? (Lesson $8 \cdot 3$)

Convert the following area and volume measurements as indicated. (Lesson 8.3)
14. $5 \mathrm{~m}^{2}=$ \qquad cm^{2}
15. $10 \mathrm{yd}^{2}=$ \qquad ft^{2}
16. $3 \mathrm{ft}^{3}=$ \qquad in ${ }^{3}$
17. $4 \mathrm{~cm}^{3}=$ \qquad mm^{3}
18. You pour 6 pints of water into a gallon jar. What fraction of the jar is filled? (Lesson 8.3)
19. A perfume bottle holds $\frac{1}{2}$ fluid ounce. How many bottles would you need to fill 1 cup? (Lesson 8.3)
20. A can of juice holds 385 milliliters. About how many cans will it take to fill a 5 liter container? (Lesson 8.3)
21. You are allowed to take a 20 kilogram suitcase on a small airplane in Africa. About how many pounds will your suitcase weigh? (Lesson 8.4)
22. Your cookie recipe calls for 4 ounces of butter to make one batch. If you want to make 12 batches of cookies for the bake sale, how many pounds of butter do you buy? (Lesson 8.4)

A picture 5 inches high and 8 inches wide was enlarged to make a poster. The width of the poster is 1.5 feet.
23. What is the ratio of the width of the poster to the width of the original photo? (Lesson 8-6)
24. What is the scale factor? (Lesson 8.6)

HotWortls

area (Lesson 8.3)
customary system (Lesson 8.1) metric system (Lesson 8.1)
scale factor (Lesson 8.5)
similar figures (Lesson 8.5)
volume (Lesson 8-3)

8-1 Systems of Measurement

The most common system of measurement in the world is the metric system. The customary system of measurement is used in the United States. It may be useful to make conversions from one unit of measurement to another within each system, as well as to convert units between the two systems.

The metric system of measuring is based on powers of ten, such as 10,100 , and 1,000 . To convert within the metric system, multiply and divide by powers of ten.

Prefixes in the metric system have consistent meaning.

Prefix	Meaning	Example
milli-	one thousandth	1 milliliter is 0.001 liter.
centi-	one hundredth	1 centimeter is 0.01 meter.
kilo-	one thousand	1 kilogram is 1,000 grams.

The customary system of measurement is not based on powers of ten. It is based on numbers such as 12 and 16 , which have many factors. Whereas the metric system uses decimals, you will frequently encounter fractions in the customary system.

Unfortunately, there are no convenient prefixes as in the metric system, so you will have to memorize the basic equivalent units: 16 ounces $=1$ pound, 36 inches $=1$ yard, 4 quarts $=1$ gallon, and so on.

Check It Out

Use the words metric or customary to answer Exercises 1-3.
(1) Which system is based on multiples of 10 ?
(2) Which system uses fractions?
(3) Which system is the most common system of measurement in the world?

8.1 Exercises

Give the meaning of each prefix.

1. centi-
2. kilo-
3. milli-

Write the system of measurement used for the following.

4. inches
5. meters
6. quarts
7. yards
8. liters
9. pounds
10. gallons
11. grams
12. tons
13. ounces
14. What system of measurement is based on powers of ten?

Write the unit you would use for the following.
15. dispenser of dental floss
16. football field
17. soft drink bottle
18. toothpaste
19. flour
20. lumber
21. gasoline
22. storage capacity in computer

8.2 Length and Distance

Metric and Customary Units

Both systems of measurement can be used to measure length and distance. The commonly used metric measures for length and distance are millimeter, centimeter, meter, and kilometer. The customary system uses inch, foot, yard, and mile.

EXAMPLE Changing Units Within a System

How many inches are in $\frac{1}{3}$ mile?
units you have
$1 \mathrm{mi}=63,360 \mathrm{in}$.

- Find the units you have equal to 1 on the equivalents chart.
- Find the conversion factor.
$\frac{1}{3} \cdot 63,360=21,120$
So, there are 21,120 inches in $\frac{1}{3}$ mile.

Check It Out

Complete the conversions.

(1) $8 \mathrm{~m}=$ \qquad cm
(2) $3,500 \mathrm{~m}=$ \qquad km
(3) 48 in. $=$ \qquad ft
(4) $2 \mathrm{mi}=$ \qquad ft

Conversions Between Systems

You may need to convert between the metric system and the customary system. You can use this conversion table to help.

Conversion Table			
1 inch $=25.4$ millimeters	1 millimeter $=0.0394$ inch		
1 inch $=2.54$ centimeters	1 centimeter $=0.3937$ inch		
1 foot $=0.3048$ meter	1 meter $=3.2808$ feet		
1 yard $=0.914$ meter	1 meter $=1.0936$ yards		
1 mile $=1.609$ kilometers	1 kilometer $=0.621$ mile		

To calculate a conversion, find the conversion factor in the table above.

Your friend in Costa Rica says that he can jump 119 centimeters. Should you be impressed? 1 centimeter $=0.39737$ inch. So, $119 \cdot 0.3937 \approx 46.9$ inches. How far can you jump?

Most of the time, you need only to estimate the conversion from one system to the other to get an idea of the size of your item. Round numbers in the conversion table to simplify your thinking.

Check It Out

Use a calculator, and round each conversion to the nearest tenth.
(5) Convert 28 inches to centimeters.
(6) Convert 82 meters to yards.
(7) 9 kilometers is about \qquad .
A. 9 mi
B. 6 mi
C. 15 mi

8.2 Exercises

Complete the conversions.

1. $10 \mathrm{~cm}=$ \qquad mm
2. $200 \mathrm{~mm}=$ \qquad m
3. $3,000 \mathrm{~mm}=$ \qquad cm
4. $2.4 \mathrm{~km}=$ \qquad m
5. $11 \mathrm{yd}=$ \qquad in.
6. $7 \mathrm{mi}=$ \qquad ft
7. 400 in . $=$ \qquad ft
8. 3,024 in. $=$ \qquad yd
9. $0.5 \mathrm{yd}=$ \qquad ft
10. $520 \mathrm{yd}=$ \qquad mi

Use a calculator, and round each conversion to the nearest tenth.
11. Convert 6 inches to centimeters.
12. Convert 2 feet to centimeters.
13. Convert 200 millimeters to inches.

Choose the nearest conversion estimate for the following lengths.
14. 5 mm
A. 5 in .
B. 2 in.
C. 5 yd
D. $\frac{1}{5} \mathrm{in}$.
15. 1 ft
A. 30 cm
B. 1 m
C. 50 cm
D. 35 mm
16. 25 in .
A. 25 cm
B. 1 m
C. 0.5 m
D. 63.5 cm
17. 300 m
A. $\frac{1}{2} \mathrm{mi}$
B. 300 yd
C. 600 ft
D. 100 yd
18. 100 km
A. 200 mi
B. $1,000 \mathrm{yd}$
C. 60 mi
D. 600 mi
19. 36 in.
A. 1 cm
B. 1 mm
C. 1 km
D. 1 m
20. 6 ft
A. 6 m
B. 200 cm
C. 600 cm
D. 60 cm
21. 1 cm
A. $\frac{1}{2} \mathrm{in}$.
B. 1 in.
C. 2 in.
D. 1 ft
22. 2 mi
A. 300 m
B. $2,000 \mathrm{~m}$
C. 2 km
D. 3 km

8.3 Area, Volume, and Capacity

Area

Area is the measure of the interior region of a 2-dimensional figure. Area is expressed in square units.

Area can be measured in metric units or customary units. You might need to convert within a measurement system. Below is a conversion table that provides the most common conversions.

Metric	Customary
$100 \mathrm{~mm}^{2}=1 \mathrm{~cm}^{2}$	$144 \mathrm{in}^{2}=1 \mathrm{ft}^{2}$
$90,000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}$	$=1 \mathrm{yd}^{2}$
$4,840 \mathrm{yd}^{2}=1 \mathrm{acre}$	
$640 \mathrm{acres}=1 \mathrm{mi}^{2}$	

To convert to a new unit, find the conversion factor in the table above.

EXAMPLE Changing Area Units

The area of the United States is approximately 3,500,000 square miles. How many acres does the United States cover? 640 acres $=1 \mathrm{mi}^{2} \quad$ - Find the units you have equal to 1 in the conversion table.

- Find the conversion factor.
$3,500,000 \cdot 640$ - Multiply to get the new units.
So, there are $2,240,000,000$ acres covered by the United States.

Check It Out

Solve.

(1) How many square millimeters are equal to 16 square centimeters?
2. How many square inches are equal to 2 square feet?
(3) How many square yards are equal to 3 acres?

Volume

Volume is the space occupied by a solid and is expressed in cubic units. Here are the basic relationships among units of volume.

Metric	Customary
$1,000 \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3}$	$1,728 \mathrm{in}^{3}=1 \mathrm{ft}^{3}$
$1,000,000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}$	$27 \mathrm{ft}^{3}=1 \mathrm{yd}^{3}$

EXAMPL E Converting Volume Within a System of Measurement

Express the volume of the carton in cubic meters.

$$
\begin{array}{ll}
\begin{array}{ll}
V=\ell w h & \\
=90 \cdot 40 \cdot 30 & \\
=108,000 \mathrm{~cm}^{3} & \text { Use a formula to find the volume, } \\
& \text { using the units of the dimensions. }
\end{array} \\
1,000,000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3} & \\
108,000 \div 1,000,000=0.108 \mathrm{~m}^{3} & \text { - Find the conversion factor. } \\
& \begin{array}{l}
\text { - Divide to convert to larger units. } \\
\\
\\
\\
\\
\text { in your answer. }
\end{array}
\end{array}
$$

So, the volume of the carton is $0.108 \mathrm{~m}^{3}$.

Check It Out

Solve.

(4) Find the volume of a box that measures 9 feet by 6 feet by 6 feet. Convert to cubic yards.
(5) Find the volume of a cube that measures 8 centimeters on a side. Convert to cubic millimeters.
6 How many cubic inches are equal to 15 cubic feet?
(7) How many cubic centimeters are equal to 250 cubic millimeters?

Capacity

Capacity is closely related to volume, but there is a difference. The capacity of a container is a measure of the amount of liquid it can hold. A block of wood has volume but no capacity to hold liquid.

Conversion Table		
1 liter $(\mathrm{L})=1,000$ milliliters (mL)	8 fluid ounces (fl oz) $=1$ cup (c)	
1 liter $=1.057$ quarts (qt)	2 cups $=1$ int (pt)	
2 pints $=1$ quart (qt)		
4 4uarts $=1$ gallon (gal)		

Note the use of fluid ounce ($f l o z$) in the table. This is to distinguish it from ounce ($o z$) which is a unit of weight ($16 \mathrm{oz}=1 \mathrm{lb}$). Fluid ounce is a unit of capacity ($16 \mathrm{fl} \mathrm{oz}=1$ pint). There is a connection between ounce and fluid ounce. A pint of water weighs about a pound, so a fluid ounce of water weighs an ounce. For water, as well as for most other liquids used in cooking, fluid ounce and ounce are equivalent, and the "fl" is sometimes omitted (for example, " $8 \mathrm{oz}=1$ cup"). To be correct, use ounce for weight only and fluid ounce for capacity. For liquids that weigh considerably more or less than water, the difference is significant.

EXAMPLE Changing Capacity Units

Gasoline is priced at $\$ 0.92$ per liter. What is the price per gallon?
$1 \mathrm{gal}=4 \mathrm{qt}$
$1 \mathrm{qt}=1.057 \mathrm{~L}$
$4 \cdot 1.057=4.228 \mathrm{~L}$
\$0.92 • 4.228
So, the price of gasoline is $\$ 3.89$ per gallon.

Check It Out

Solve.

8. If liters of cola are on sale for $\$ 0.99$ each and you can buy a can of juice concentrate that makes 1 gallon for $\$ 3.49$, which is the better buy?

application In the Soup

One morning on a California freeway, a big-rig truck tipped over on its side. The truck was carrying 43,000 cans of cream of mushroom soup.

At 24 cans per carton, how many cartons of soup was the truck carrying? If each carton had a width of 11 inches, a length of 16 inches, and a height of 5 inches, what was the approximate carrying capacity of the truck in cubic feet? See HotSolutions for the answer.

8.3 Exercises

Tell whether the unit is a measure of distance, area, or volume.

1. cm
2. in ${ }^{3}$
3. acre
4. mm^{2}

Calculate the volume of the cartons in each measurement unit below.
5. ft
6. in.

7. cm
8. m
9. mm

Convert to new units.
10. $1 \mathrm{gal}=$ \qquad c
11. $2 \mathrm{qt}=$ \qquad fl oz
12. $160 \mathrm{fl} \mathrm{oz}=$ \qquad qt
13. $4 \mathrm{gal}=$ \qquad qt
14. $3 \mathrm{pt}=$ \qquad gal
15. $4 \mathrm{fl} \mathrm{oz}=$ \qquad pt
16. $8 \mathrm{~L}=$ \qquad mL
17. $24,500 \mathrm{~mL}=$ \qquad L
18. $10 \mathrm{~mL}=$ \qquad L
19. Krutika has a fish tank that holds 15 liters of water. One liter of water has evaporated. She has a 200 -milliliter measuring cup. How many times will she have to fill the cup in order to refill the tank?
20. Estimate, to the nearest dime, the price per liter of gasoline selling for $\$ 3.68$ per gallon.

8.4 Mass and Weight

Mass and weight are different. Mass is the amount of matter in an object. Weight is determined by the mass of an object and the effect of gravity on that object. On Earth, mass and weight are equal, but on the Moon, mass and weight are quite different. Your mass would be the same on the Moon as it is here on Earth. But, if you weigh 100 pounds on Earth, you weigh about $16 \frac{2}{3}$ pounds on the Moon. That is because the gravitational pull of the Moon is only $\frac{1}{6}$ that of Earth.

Customary	
$1 \mathrm{~T}=$	$2,000 \mathrm{lb}=32,000 \mathrm{oz}$
$0.0005 \mathrm{~T}=$	$1 \mathrm{lb}=16 \mathrm{oz}$
$0.0625 \mathrm{lb}=$	1 oz

1 pound ≈ 0.4536 kilogram
1 kilogram ≈ 2.205 pounds
To convert from one unit to another, first find the 1 for the units you have in the list of equivalents. Then use the conversion factor to calculate the new units.

If you have 32 ounces of peanut butter, how many pounds do you have? $1 \mathrm{oz}=0.0625 \mathrm{lb}$, so $32 \mathrm{oz}=32 \cdot 0.0625 \mathrm{lb}=2 \mathrm{lb}$.
You have 2 pounds of peanut butter.

Check It Out

Complete the following conversions.

(1) $5 \mathrm{lb}=$ \qquad oz
(2) $7,500 \mathrm{lb}=\ldots \mathrm{T}$
(3) $8 \mathrm{~kg}=$ \qquad mg
(4) $375 \mathrm{mg}=$ \qquad

8.4 Exercises

Convert to the indicated units.

1. $1.2 \mathrm{~kg}=$ \qquad mg
2. $250 \mathrm{mg}=$ \qquad
3. $126,500 \mathrm{lb}=$ \qquad T
4. $24 \mathrm{oz}=$ \qquad lb
5. $8,000 \mathrm{mg}=$ \qquad kg
6. $2.3 \mathrm{~T}=$ \qquad lb
7. $8 \mathrm{oz}=$ \qquad lb
8. $250 \mathrm{~g}=$ \qquad oz
9. $100 \mathrm{~kg}=$ \qquad lb
10. $25 \mathrm{lb}=$ \qquad kg
11. $200 \mathrm{oz}=$ \qquad lb
12. $880 \mathrm{oz}=\ldots \mathrm{kg}$
13. $880 \mathrm{~g}=$ \qquad lb
14. $8 \mathrm{~g}=$ \qquad oz
15. $16 \mathrm{oz}=$ \qquad kg
16. $1.5 \mathrm{~T}=$ \qquad kg
17. Your cookie recipe calls for 12 ounces of butter to make one batch. For your party, you will make 4 batches of cookies. How many pounds of butter do you need to buy?
18. Two brands of laundry soap are on sale. A 2-pound box of Brand Y is selling for $\$ 12.50$. A 20 -ounce box of Brand Z is on sale for $\$ 7.35$. Which is the better buy?
19. French chocolates sell for $\$ 18.50$ per kilogram. A 10 -ounce box of domestic chocolates sells for $\$ 7.75$. Which is the better buy?
20. If an elephant weighs about 3,500 kilograms on Earth, how many pounds would it weigh on the Moon? Could you lift it? Round your answer to the nearest pound.

8.5 Size and Scale

Similar Figures

Similar figures are figures that have exactly the same shape. Figures that are similar may be the same size or different sizes. However, all the corresponding sides of the figure will have the same ratio. Remember that each ratio must be set up in the same order.

EXAMPLE Deciding Whether Two Figures Are Similar

Are these two rectangles similar?

$$
\begin{array}{ll}
\frac{7}{14} \stackrel{?}{=} \frac{4}{8} & \text { - Set up the ratios: } \frac{\operatorname{length} A}{\text { length } B} \stackrel{?}{=} \frac{\text { width } A}{\text { width } B} . \\
56=56 & \text { - Cross multiply to see whether ratios are equal. } \\
& \text { - If all sides have equal ratios, the figures are } \\
& \text { similar. }
\end{array}
$$

So, the rectangles are similar.

Check It Out

Use the figures below to answer Exercise 1.
(1) Are these two figures similar?

Scale Factors

The scale factor of two similar figures is the ratio of the corresponding side lengths.

Triangle A is similar to triangle B. ΔB is 3 times larger than $\triangle A$, so the scale factor is 3 .

EXAMPL E Finding the Scale Factor

What is the scale factor for the similar pentagons?

- Decide which figure is the "original figure."
- Make a ratio of corresponding sides:

$$
\begin{aligned}
\frac{K^{\prime} J^{\prime}}{K J} & =\frac{8}{6} \\
& =\frac{4}{3}
\end{aligned}
$$

$$
\frac{\text { new figure }}{\text { original figure }}
$$

- Simplify, if possible.

So, the scale factor of the two pentagons is $\frac{4}{3}$.

When a figure is enlarged, the scale factor is greater than 1. When similar figures are identical in size, the scale factor is equal to 1 . When a figure is reduced, the scale factor is less than 1 but greater than zero.

Check It Out

What is the scale factor?
2

Scale Factors and Area

Scale factor refers to a ratio of lengths only, not of the areas.

For the squares, the scale factor is $\frac{1}{2}$ because the ratio of sides is $\frac{3}{6}=\frac{1}{2}$. Notice that, although the scale factor is $\frac{1}{2}$, the ratio of the areas is $\frac{1}{4}$.

$$
\frac{\text { Area of } B}{\text { Area of } A}=\frac{3^{2}}{6^{2}}=\frac{9}{36}=\frac{1}{4}
$$

For the rectangles below, the scale factor is $\frac{1}{3}$. What is the ratio of the areas?

The ratio of the areas is $\frac{1}{9}$.
The ratio of the areas of similar figures is the square of the scale factor.

Check It Out

Solve.

(3) The scale factor for two similar figures is $\frac{3}{2}$. What is the ratio of the areas?
4. The scale on a blueprint for a garage is 1 foot $=4$ feet. An area of 1 square foot on the blueprint represents how much area on the garage floor?
(5) Complete the table below.

	Area
Scale Factor $\mathbf{2}$	$\mathbf{4}$ times
Scale Factor $\mathbf{3}$	
Scale Factor $\mathbf{4}$	
Scale Factor $\mathbf{5}$	
Scale Factor X	

Scale Factors and Volume

Remember that scale factor refers to a ratio of lengths.

Cube A has a volume of $1 \mathrm{~cm}^{3}$. Cube B is an enlargement of Cube A by a scale factor 3 . The volume changes by a factor of s^{3}. Multiply $3 \cdot 3 \cdot 3$ to find the volume of the enlarged cube.

$$
\frac{\text { Volume of } B}{\text { Volume of } A}=\frac{3 \cdot 3 \cdot 3}{1 \cdot 1 \cdot 1}=\frac{27}{1}
$$

The volume of the enlarged cube is $27 \mathrm{~cm}^{3}$.

If the scale factor is $\frac{2}{3}$, what is the ratio of the volumes?

The ratio of the volumes is $\frac{8}{27}$.
The ratio of the volume of similar figures is the scale factor cubed.

Check It Out

Solve.

6 The scale factor for two similar figures is $\frac{3}{4}$. What is the ratio of the volumes?
(7) Complete the table below.

	Volume
Scale Factor $\mathbf{2}$	$\mathbf{8}$ times
Scale Factor $\mathbf{3}$	
Scale Factor $\mathbf{4}$	
Scale Factor 5	
Scale Factor \boldsymbol{X}	

8.5 Exercises

Give the scale factor.

1. 5

2.

3. A 3 -inch by 5 -inch photograph is enlarged by a scale factor of 3. What are the dimensions of the enlarged photo?
4. A document 11 inches long and $8 \frac{1}{2}$ inches wide is reduced. The reduced document is $5 \frac{1}{2}$ inches long. How wide is it?
5. A map shows a scale of 1 centimeter $=20$ kilometers. If two towns are about 50 kilometers apart, how far apart will they be on the map?
6. If a map's scale is 1 inch $=5$ miles, and the map is a rectangle 12 inches by 15 inches, what is the area shown on the map?
7. A photo is enlarged by a scale factor of 1.5 . The area of the larger photo is how many times the area of the smaller photo?
8. On a map, a road appears to be $2 \frac{3}{4}$ inches long. The map's scale is $\frac{1}{2}$ inch $=10$ miles. About how many miles long is the road?
9. The triangles below are similar. Find the values of x and y.

10. The scale factor for two similar figures is $\frac{5}{2}$. What is the ratio of the volumes?

Measurement

What
 have you
 learned?

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 8.2).

Problem Set

Give the meaning for each metric system prefix. (Lesson 8.1)

1. centi-
2. kilo-
3. milli-

Complete each of the following conversions. Round to the nearest hundredth. (Lesson 8.2)
4. $600 \mathrm{~mm}=$ \qquad m
5. $367 \mathrm{~m}=$ \qquad km
6. $2.5 \mathrm{mi}=$ \qquad ft
7. 288 in. $=$ \qquad yd

Exercises 8-13 refer to the rectangle. Round

8. What is the perimeter in inches? (Lesson 8-2)
9. What is the perimeter in yards? (Lesson 8.2)
10. What is the perimeter in centimeters? (Lesson 8-2)
11. What is the approximate perimeter in meters? (Lesson 8-2)
12. What is the area in square inches? (Lesson $8 \cdot 3$)
13. What is the area in square centimeters? (Lesson $8 \cdot 3$)

Convert the following area and volume measurements as indicated. (Lesson 8.3)
14. $42.5 \mathrm{~m}^{2}=$ \qquad cm^{2}
15. $7 \mathrm{yd}^{2}=$ \qquad ft^{2}
16. $10 \mathrm{ft}^{3}=$ \qquad in^{3}
17. $6.5 \mathrm{~cm}^{3}=$ \qquad mm^{3}
18. You pour 3 pints of water into a gallon jar. What fraction of the jar is filled? (Lesson 8.3)
19. A perfume bottle holds $\frac{1}{2}$ fluid ounce. How many bottles do you need to fill $\frac{1}{2}$ cup? (Lesson 8.3)
20. A can of juice holds 1,250 milliliters. How many cans will it take to fill a 15 -liter container? (Lesson 8-3)
21. About how many kilograms are in 17 pounds? (Lesson 8.4)
22. How many ounces are in 8 pounds? (Lesson $8 \cdot 4$)

A photograph 5 inches high and 3 inches wide was enlarged to make a poster. The width of the poster is $\mathbf{1}$ foot.
23. What is the ratio of the width of the poster to the width of the original photo? (Lesson 8.6)
24. What is the scale factor? (Lesson $8 \cdot 6$)
25. A cube has a volume of 216 cubic feet. Suppose that the cube was enlarged by a ratio of $\frac{2}{1}$. What is the volume of the original cube?
26. What is the scale factor of the similar rectangles below?

[^0]Write definitions for the following words.
scale factor (Lesson 8.5)
similar figures (Lesson 8.5)
volume (Lesson 8.3)

Hotilith 8

Tools

What do you know?

You can use the problems and the list of words that follow to see what you already know about this chapter. The answers to the problems are in HotSolutions at the back of the book, and the definitions of the words are in HotWords at the front of the book. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 9-2).

Problem Set

Use a scientific calculator for Exercises 1-6. Round decimal answers to the nearest hundredth. (Lesson 9-1)

1. 8.9^{5}
2. Find the reciprocal of 3.4.
3. Find the square of 4.5 .
4. Find the square root of 4.5 .
5. $\left(8 \cdot 10^{4}\right) \cdot\left(4 \cdot 10^{8}\right)$
6. $0.7 \cdot(4.6+37)$

Use the protractor to find the measure of each angle. (Lesson 9-2)

7. What is the measure of $\angle V R T$?
8. What is the measure of $\angle V R S$?
9. What is the measure of $\angle S R T$?
10. Does $\overrightarrow{R T}$ divide $\angle V R S$ into two equal angles?
11. What are the basic construction tools in geometry? (Lesson 9.2)

Using a ruler, protractor, and compass, copy the figures below. (Lesson 9-2)
12.

13.

14.

15.

For Exercises 16-18, refer to the spreadsheet below. (Lesson 9.3)

File Edit					
Sample.xls				$\square \square$	
-	A	B	C	D	\wedge
1	34	68	100	66	
2	14	28	200		
3	20	40	300		=
1					
	M She	Sh			\checkmark
$<$	\|II			>	

16. Name the cell holding 14.
17. A formula for cell C 3 is $3{ }^{*} \mathrm{C} 1$. Name another formula for cell C3.
18. Cell D1 contains the number 66 and no formula. After using the command fill down, what number will be in cell D10?

cell (Lesson 9.3)
spreadsheet (Lesson 9.3)
formula (Lesson 9-3)

9.1 Scientilic Calculator

Mathematicians and scientists use scientific calculators to help quickly and accurately solve problems. Scientific calculators vary widely; some perform a few functions and others perform many functions. Some calculators can be programmed with functions you choose. The calculator below shows functions you might find on your scientific calculator.

Frequently Used Functions

Because each scientific calculator is set up differently, your calculator may not work exactly as below. These keystrokes work with the calculator illustrated on page 396 . Use the reference material that came with your calculator to perform similar functions. See the index for more information about the mathematics mentioned here.

Function	Problem	Keystrokes
Cube Root $\sqrt[3]{x}$ Finds the cube root of the display.	$\sqrt[3]{343}$	343 2nd $\sqrt[3]{\sqrt[3]{x}} \square 7$.
Cube x^{3} Finds the cube of the display.	17^{3}	17 2nd $x^{3} \square 4913$.
Factorial X! Finds the factorial of the display.	$7!$	7 2nd x! 5040.
Fix number of decimal places. FIX Rounds display to number of places you determine.	Round 3.046 to the tenths place.	3.046 2nd FIX $2 \square 3.05$
Parentheses () \square Groups calculations.	$12 \cdot(7+8)$	$\begin{aligned} & 12 \boxed{x}(\square 7+8 \square)= \\ & \square \frac{180 .}{} \end{aligned}$
Powers y^{x} Finds the x power of the display.	56^{5}	$56 y^{x} 5 \equiv 550731776$.
Powers of Ten 10^{x} Raises ten to the power displayed.	10^{5}	5 2nd $100^{x} 100000$.

Function	Problem	Keystrokes
Reciprocal $1 / x$ Finds the reciprocal of the display.	Find the reciprocal of 8 .	8 1/x 0.125
Roots $\sqrt[x]{y}$ Finds the x root of the display.	$\sqrt[4]{852}$	$\begin{aligned} & 852 \sqrt[2 n d]{\sqrt[x]{y}} 4= \\ & 5.402688131 \end{aligned}$
Square x^{2} Finds the square of the display.	17^{2}	17×289.

Some calculators have keys with special functions.

Key	Function
\sqrt{x}	Finds the square root of the display.
π	Automatically enters pi to as many places as your calculator holds.

The π key saves you time by reducing the number of keystrokes The $\sqrt{\sqrt{x}}$ key allows you to find square roots precisely, something difficult to do with pencil and paper.

See how these two keys are used in the examples below.

$$
\begin{aligned}
& \text { Problem: } 7+\sqrt{21} \\
& \text { Keystrokes: } 7+21 \sqrt{\sqrt{x}}= \\
& \text { Final display: } 11.582575
\end{aligned}
$$

If you try to take a square root of a negative number, your calculator will display an error message. For example, if you enter $9 \sqrt{+/-\sqrt{x}}$, the resulting display is $E \quad$ 3. There is no square root of -9 , because no number multiplied by itself can result in a negative number.

Problem: Find the area of a circle with radius 3.

 (Use formula $A=\pi r^{2}$.)Keystrokes: \square $\times 3$三
Final display: 28.274333

If your calculator does not have the π key, you can use 3.14 or 3.1416 as an approximation for π.

Check It Out

Use your calculator to find the following.

Use your calculator to find the following to the nearest thousandth.
(3) the reciprocal of 27
(4) $\left(10^{3}+56^{5}-\sqrt[3]{512}\right) \div 7$!
(5) the square root of 7,225

application Magic Numbers

On a calculator, press the same number three times to display a three-digit number, for example 333. Then divide the number by the sum of the three digits and press the \square key. Do you get 37? Try this with other three-digit numbers. Write an algebraic expression that shows why the answer is always the same. See HotSolutions for the answer.

9•1 Exercises

Use a scientific calculator to find the following. Round decimal answers to the nearest hundredth.

1. 69^{2}
2. 44^{2}
3. 13^{3}
4. 0.1^{5}
5. $\frac{60}{\pi}$
6. $9(\pi)$
7. $\frac{1}{9}$
8. $\frac{1}{\pi}$
9. $(15-4.4)^{3}+6$
10. $25+(8 \div 6.2)$
11. 5! • 4 !
12. $9!\div 4$!
13. $11!+6$!
14. 5^{-3}
15. $\sqrt[4]{1,336,336}$
16. reciprocal of 0.0625
17. reciprocal of 25

Find the value of each expression, using your calculator.
18. $\sqrt{804} \div 17.35+620$
19. $\sqrt{68} \cdot 7+4$
20. Find the perimeter of the rectangle if $x=11.9 \mathrm{~cm}$.
21. Find the area of the rectangle if $x=9.68 \mathrm{~cm}$.

22. Find the circumference of the circle if $a=3.7 \mathrm{in}$.
23. Find the area of the circle if $a=2$ in.

9.2 Geometry Tools

Protractor

Angles are measured with a protractor. There are many different kinds of protractors. The key is to find the center point of the protractor to which you align the vertex of the angle.

EXAMPLE Measuring Angles with a Protractor

Find $m \angle C D E$ and $m \angle F D C$.

So, $m \angle C D E=60^{\circ}$ and $m \angle F D C=120^{\circ}$.

To draw an angle, draw one ray first, and position the center of the protractor at the endpoint. (The endpoint will be the vertex of the angle.) Then make a dot at the desired measure, and draw a ray through that dot from the endpoint.

EXAMPLE Drawing Angles

Use a protractor to draw a 45° angle.

- Draw $\overrightarrow{A B}$.
- Align the center of the protractor with point A.
- Mark a dot at 45°.
- Draw $\overrightarrow{A C}$.

So, $\angle B A C$ is a 45° angle.

Check It Out

Measure each angle to the nearest degree, using your protractor.
1

2

Compass

A compass is used to construct circles and arcs. To construct a circle or an arc, place one point at the center and hold it there. Pivot the point with the pencil attached to draw the arc, or circle.

The distance between the point that is stationary (the center) and the pencil is the radius. A compass allows you to set the radius exactly.

For a review of circles, see page 359 .

To draw a circle with a radius of $1 \frac{1}{2}$ inches, set the distance between the stationary point of your compass and the pencil at $1 \frac{1}{2}$ inches. Draw a circle.

Check It Out

Use a compass to draw these circles.

(3) Draw a circle with a radius of 2.5 centimeters.
(4) Draw a circle with a radius of 2 inches.

Construction Problem

A construction is a drawing in geometry that permits the use of only the straightedge and the compass. When you make a construction by using a straightedge and compass, you have to use what you know about geometry.

Follow the step-by-step directions below to inscribe an equilateral triangle in a circle.

- Draw a circle with center K.
- Draw a diameter $(\overline{S J})$.
- Using S as a center and $\overline{S K}$ as a radius, draw an arc that intersects the circle. Label the points of intersection L and P.
- Connect L, P, and J to form the triangle.

You can create a more complex design by inscribing another triangle in your circle by using J as a center for drawing another intersecting arc.

Once you have the framework, you can fill in different sections to create a variety of designs based on this construction.

Check It Out

Construct.

5 Draw the framework based on four triangles inscribed in two concentric circles. Fill in sections to copy the design below.

(6) Create your own design based on one or two triangles inscribed in a circle.

9.2 Exercises

Using a protractor, measure each angle in $\triangle A B C$.

1. $\angle A$
2. $\angle B$
3. $\angle C$

4. When you use a protractor to measure an angle, how do you know which of the two scales to read?

Write the measure of each angle.
5. $\angle G F H$
6. $\angle G F I$
7. $\angle H F I$
8. $\angle J F H$
9. $\angle H F J$

Match each tool with the function.

Tool
10. compass
11. protractor
12. ruler

Function

A. measure distance
B. measure angles
C. draw circles or arcs

Find the measure of each angle.
13. $\angle K L M$
14. $\angle M N K$
15. $\angle L M N$
16. $\angle N K L$
17. Use a protractor to copy $\angle L M N$.

Using a ruler, protractor, and compass, copy the figures below.
18.

19.

20.

21.

22.

9.3 Spreadsheets

What Is a Spreadsheet?

People use spreadsheets as a tool to keep track of information, such as finances. Spreadsheets were paper-and-pencil math tools before being computerized. You may be familiar with computer spreadsheet programs.

A computer program spreadsheet calculates and organizes information in cells within a grid. When the value of a cell is changed, all other cells dependent on that value automatically update.

Spreadsheets are organized in rows and columns. Rows are horizontal and are numbered. Columns are vertical and are named by capital letters. The cells are named according to the column and row in which they are located.

File Edit					
Sample.xls				\square 回	
\diamond	A	B	C	D	\wedge
1	1	3	1		
2	2	6	4		$=$
3	3	9	9		
4	4	12	16		
5	5	15	25		
- 6	, She	She	, She		\checkmark
\bigcirc	III] $>$	

The cell A3 is in Column A, Row 3. In this spreadsheet, there is a 3 in cell A3.

Check It Out

In the spreadsheet above, what number appears in each cell?
(1) A2
(2) B1
(3) C5

Spreadsheet Formulas

A cell can contain a number or a formula. A formula generates a value dependent on other cells in the spreadsheet. The way that the formulas are written depends on the particular spreadsheet computer software you are using. Although you enter a formula in the cell, the value generated by the formula appears in the cell. The formula is stored behind the cell.

EXAMPLE Creating a Spreadsheet Formula

In spreadsheets, an asterisk is used to represent multiplication.

If you change the value of a cell and a formula depends on that value, the result of the formula will change.

In the spreadsheet above, if you entered 3 sweaters instead of 2 $(\mathrm{C} 2=3)$, the total column would automatically change to $\$ 75$.

Check It Out

Use the spreadsheet above. If the total is always figured the same way, write the formula for:
(4) D3
(5) D4
(6) If D5 is to be the total of column D, write the formula for D5.

Fill Down and Fill Right

Spreadsheet programs are designed to perform other tasks as well. Fill down and fill right are two useful spreadsheet commands.

To use fill down, select a portion of a column. Fill down will take the top cell that has been selected and copy it into the rest of the highlighted cells. If the top cell in the selected range contains a number, such as 5 , fill down will generate a column of 5 s .

If the top cell of the selected range contains a formula, the fill down feature will automatically update the formula as you go from cell to cell.

The selected column is highlighted.

The spreadsheet fills the column and adjusts the formula.

File Edit				
Sa	Fill down s $\quad \square \times$			
-	A	B		\wedge
1	100			
2	= A1 + 10			
3	$=\mathrm{A} 2+10$			$=$
4	$=\mathrm{A} 3+10$			
5	$=\mathrm{A} 4+10$			
6				
7				
K\| 1	1 M Sheet 1	12		\checkmark
$<$	III			

These are the values that actually appear.

File Edit				
Sal	Fill down;	- ${ }^{\text {a }}$		
\diamond	$\frac{\text { Fill right }}{\text { A }}$	B		\wedge
1	100			
2	110			
3	120			
4	130			
5	140			
141	团 Sheet 1	et 2 /		\checkmark
<	III		>	

Fill right works in a similar way. It copies the contents of the leftmost cell of the selected range into each selected cell within a row.

File Edit

Row 1 is selected.

The 100 fills to the right.

If you select A1 to E1 and fill right, you will get all 100s. If you select A2 to E2 and fill right, you will "copy" the formula A1 +10 as shown.

File Edit						
Sa	Fill down				$\square \square$	
\diamond	A	B	C	D	E	\wedge
1	100	100	100	100	100	
2	= A1 + 10	$=B 1+10$	$=C 1+10$	= D1 + 10	$=E 1+10$	
3	$=A 2+10$					$=$
4	$=A 3+10$					
5	$=A 4+10$					
6						
	- 1 \| Sheet	1 Sheet				\checkmark
<	III				>	

File Edit

Sample.xls					$\square \square$		
-	A	B	C	D	E	\wedge	
1	100	100	100	100	100		
2	110	110	110	110	110		
3						$=$	
4							
5							
6							
7							
8							
	- She	1 She				V	
<	\|	I				>	

The spreadsheet fills the row and adjusts the formulas.

Check It Out

Use the spreadsheet above.

(7) "Select" A2 to A8 and fill down. What formula will be in A7? What number?
8 "Select" A3 to E3 and fill right. What formula will be in D3? What number?

Spreadsheet Graphs

You can also generate a graph from a spreadsheet. As an example, use a spreadsheet that compares the perimeter of a square to the length of its side.

File Edit

Sample.xls					$\square \square$	
-	A	B	C	D	E	\wedge
1	side	perimeter				
2	1	4				
3	2	8				$=$
4	3	12				
5	4	16				
6	5	20				
7						
141	M) She	et 1 She				\checkmark
$<$	\|II				>	

Most spreadsheets have a function that displays tables as graphs. See your spreadsheet reference for more information.

Check It Out

Use the spreadsheet above.

(9) What cells give the point $(1,4)$?
(10) What cells give the point $(4,16)$?
(11) What cells give the point $(2,8)$?

9.3 Exercises

File Edit

Sample.xls				$\square \square$	
-	A	B	C	D	\wedge
1	1	1	200	1	
2	2	3	500	6	
3	3	5	800	15	三
4	4	7	1100	28	
					\checkmark
<	\|II			>	

In which cell does each number appear?

1. 15
2. 7
3. 800
4. If the formula behind cell A2 is A1 +1 and is copied down, what formula is behind cell A3?
5. The formula behind cell D2 is A2 * B2. What formula is behind cell D4?
6. If row 5 were included in the spreadsheet, what numbers would be in that row?

Use the spreadsheet below to answer Exercises 7-9.

7. If you select A2 to A5 and fill down, what formula will appear in A3?
8. If you select A3 to A5 and fill down, what numbers will appear in A3 to A5?
9. If you select B 1 to E 1 and fill right, what will appear in $\mathrm{C} 1, \mathrm{D} 1$, and E1?

Tools

What have you learned?

You can use the problems and the list of words that follow to see what you learned in this chapter. You can find out more about a particular problem or word by referring to the topic number (for example, Lesson 9-2).

Problem Set

Use a scientific calculator for Exercises 1-6. Round decimal answers to the nearest hundredth. (Lesson 9.1)

1. 2.027^{5}
2. Find the reciprocal of 4.5 .
3. Find the square of 4.5 .
4. Find the square root of 5.4 .
5. $\left(4 \cdot 10^{3}\right) \cdot\left(7 \cdot 10^{6}\right)$
6. $0.6 \cdot(3.6+13)$

Use the protractor to find the measure of each angle. (Lesson 9-2)

7. What is the measure of $\angle V R T$?
8. What is the measure of $\angle V R S$?
9. What is the measure of $\angle S R T$?
10. Does $\overrightarrow{R T}$ divide $\angle V R S$ into 2 equal angles?

Use a compass. (Lesson 9-2)
11. Draw a circle with a radius of 3 centimeters.
12. Draw a circle with a radius of 1 inch.

For Exercises 13-15, refer to the spreadsheet below. (Lesson 9.3)

File Edit					
Sa	Fill down			$\square \square$	
\diamond		B	C	D	\wedge
1	10	15	25	77	
2	47	28	75		
3	64	36	100		$=$
1	1 Shee	Sh			\checkmark
<	III			$>$	

13. Name the cell holding 28.
14. A formula for cell C 3 is $\mathrm{C} 1+\mathrm{C} 2$. Name another formula for cell C3.
15. Cell D1 contains the number 77 and no formula. After using the command fill down, what number will be in cell D 10 ?

1 Numbers and Computation 418
2 Rational Numbers 419
3 Powers and Roots 422
4 Data, Statistics, and Probability 424
5 Logic 430
6 Algebra 432
7 Geometry 440
8 Measurement 443
9 Tools 444
Index 447

Chapter 1 Numbers and Computation
p. 72

1. $(4+7) \cdot 3=33 \quad$ 2. $(30+15) \div 5+5=14$
2. no
3. no
4. yes
5. no
6. $2^{3} \cdot 5$
7. $2 \cdot 5 \cdot 11$
8. $2 \cdot 5 \cdot 23 \quad 10.4$
9. $5 \quad 12.9$
10. 60
11. 120
12. $90 \quad 16.60$
p. 73
13. 7, 7
14. $15,-15$
15. 12,12 20. $10,-10$
16. >;

17. $<$;

18. >;

19. >;

$\begin{array}{llllll}25.2 & \text { 26. }-4 & 27 .-11 & 28.16 & 29.0 & 30.6\end{array}$
$\begin{array}{llllll}\text { 31. } 42 & 32 . & -4 & 33.7 & 34.24 & 35 . \\ -36 & \text { 36. }-50\end{array}$
20. It will be a negative integer.
21. It will be a positive integer.

1.1 Order of Operations

p. 74 :

1. 12
2. 87

1.2 Factors and Multiples

p. 76

1. $1,2,4,8$ 2. $1,2,3,4,6,8,12,16,24,48$
p. 77
2. 1,2
3. 1,5
5.2
6.6
4. 14
5. 12
p. 78
6. yes
7. no
8. yes
9. yes
p. 79 13. yes 14. no 15 . yes 16 . no
10. Sample answers: $(17,19)$; $(29,31)$; $(41,43)$
p. 80
11. $2^{4} \cdot 5$
12. $2^{3} \cdot 3 \cdot 5$
p. 81
13. 6
14. 8
15. 14
16. 12
$\begin{array}{l:llll}\text { p. } 82 & \vdots 24.18 & 25.140 & 26.36 & 27.75\end{array}$

1.3 Integer Operations

p. 84

1. -6
2. +200
3. 12,12
4. $5,-5$
5. 0,0
p. 85

6. $-4,-1,3,6$ 9. $-5,-2,4,7$
p. 87
7. -2
11.0
8. -5
9. -3
p. 88
10. 10
11. -3
12. 3

Chapter 2 Rational Numbers

1. about 9 days
2. 10 servings
3. second game
4. 85%
5. C
6. B. $\frac{4}{3}=1 \frac{1}{3}$
p. 93
7. $1 \frac{1}{6}$
8. $1 \frac{3}{4}$
9. $3 \frac{1}{4}$
10. $8 \frac{3}{10}$
11. $\frac{2}{5}$
12. $\frac{1}{2}$
13. $\frac{3}{4} \quad 14.3$
$\begin{array}{llll}\text { 15. } 16.154 & 16.1 .32 & 17.30 .855 & 18.7 .02\end{array}$
14. $\frac{33}{200} ; 1.065 ; 1.605 ; 1 \frac{13}{20} \quad$ 20. irrational
15. rational $\quad 22.30 \% \quad$ 23. $27.8 \quad 24.55$

2.1 Fractions

p. 95 1. Sample answers: $\frac{2}{8}$ and $\frac{3}{12}$
2. Sample answers: $\frac{1}{2}$ and $\frac{5}{10}$
3. Sample answers: $\frac{8}{10}$ and $\frac{40}{50}$
4. Sample answers: $\frac{2}{2}, \frac{5}{5}$, and $\frac{50}{50}$
p. 95
5. \neq
6. $=7 . \neq$
p. 96
8. $\frac{4}{5}$
9. $\frac{3}{4} \quad 10 . \frac{2}{5}$
p. 97
11. $7 \frac{1}{6}$
12. $11 \frac{1}{3} \quad 13.6 \frac{2}{5} \quad 14.9 \frac{1}{4}$
p. 98
15. $\frac{37}{8}$
16. $\frac{77}{6}$
17. $\frac{49}{2}$
18. $\frac{98}{3}$

2.2 Operations with Fractions

p. 100 :

1. $1 \frac{1}{5}$
2. $1 \frac{3}{34}$
3. $\frac{1}{2}$
4. $\frac{1}{2}$
p. 101
5. $1 \frac{2}{5}$
6. $1 \frac{3}{14}$
7. $\frac{1}{20}$
8. $\frac{11}{24}$
p. 102
9. $9 \frac{5}{6}$
10. $34 \frac{5}{8}$
11. 61
p. 103
12. $23 \frac{39}{40}$
13. $20 \frac{1}{24}$
14. $22 \frac{7}{15} \quad$ 15. $10 \frac{5}{9}$
p. 104
15. $3 \frac{4}{11}$
16. $5 \frac{1}{2}$
17. $-7 \frac{3}{4}$
p. 105
18. $7 \frac{1}{2}$
19. $3 \frac{37}{70}$
20. $11 \frac{1}{8}$
$\begin{array}{lllll}\text { p. } 106 & 22 . \frac{1}{3} & \text { 23. } \frac{1}{12} & 24.2 & \text { 25. } \frac{77}{5} \text { or } 15 \frac{2}{5}\end{array}$
$\begin{array}{l:lllll}\text { p. } 107 & \text { 26. } \frac{1}{10} & \text { 27. } \frac{8}{15} & \text { 28.2 } & \text { 29. } \frac{7}{3} & \text { 30. } \frac{1}{3}\end{array} \quad$ 31. $\frac{5}{22}$
$\begin{array}{llll}\text { p. } 108 & 32.1 \frac{1}{2} & \text { 33. } \frac{1}{14} & 34 . \frac{1}{4}\end{array}$

2.3 Operations with Decimals

p. 110

1. 7.1814
2. 96.674
3. 38.54 4. 802.0556
p. 111
4. 59.481
5. 80.42615
6. 62.95383
p. 112
7. 900
8. $4 \quad 10.50$
9. 21.6
10. 5.23
11. $92 \quad 14.25 .8$
p. $113 \vdots 15.10 .06$
12. $24.8 \quad$ 17. 307.625
p. 114 : 18. 0.07
13. 0.65
14. 1.64
15. 0.78

2.4 Fractions and Decimals

p. 117

1. 0.8
2. 0.55
3. 0.875
4. $0.41 \overline{6}$
5. -0.75
6. -0.625 7. 3.875 8. 2.3125
p. 118
$\begin{array}{lllll}\text { 9. } 2 \frac{2}{5} \text { or } \frac{12}{5} & \text { 10. } \frac{7}{125} & \text { 11. }-\frac{3}{5} & \text { 12. }-1 \frac{3}{8} & \text { 13. } \frac{4}{9}\end{array}$ $\begin{array}{lll}\text { 14. }-3 \frac{2}{11} & \text { 15. }-\frac{5}{6} & 16.7 \frac{8}{25}\end{array}$

2.5 The Real Number System

p. 121 : 1. integer, rational 2. rational 3. irrational
4. irrational 5. rational 6. irrational
p. $122: 7.3 .3$

8. -5.4

9. 4.2

2.6 Percents

p. 123

1. 150
2. 100
3. 150
4. 250
p. 124
5. $\$ 1$
6. $\$ 6$ 7. $\$ 9.50$
7. $\$ 10$
p. 125
8. 80%
9. $65 \% \quad 11.45 \%$
10. 38%
p. 126
11. $\frac{11}{20}$
12. $\frac{29}{100}$
13. $\frac{17}{20}$
14. $\frac{23}{25}$
15. $\frac{89}{200}$
16. $\frac{43}{125}$
p. 127
17. 8%
18. 66%
19. 39.8%
20. 74%
p. 128:23. 0.145
21. 0.0001
22. 0.23
23. 0.35

2.7 Using and Finding Percents

p. 130

1. 60
2.665
2. 11.34
3. 27
p. 132
4. 665
5. 72
6. 130
7. 340
p. 133
8. $33 \frac{1}{3} \%$
9. 450%
10. 400%
11. 60%
p. 134
12. 104
13. 20
14. 25
15. 1,200
p. 135
16. 25%
17. 95%
18. 120%
19. 20%
p. 136
20. 11%
21. 50%
22. 16%
23. 30%
p. 137 : 25. discount: $\$ 162.65$; sale price: $\$ 650.60$
24. discount: $\$ 5.67$; sale price: $\$ 13.23$
25. discount: \$12; sale price: $\$ 67.99$
p. $138: 28.100 \quad 29.2 \quad 30.15 \quad 31.30$
p. $139: 32 . I=\$ 1,800$; total amount $=\$ 6,600$
26. $I=\$ 131.25$; total amount $=\$ 2,631.25$

Chapter 3 Powers and Roots

p. 144

1. 5^{7}
2. a^{5}
3.4
3. 81
4. 36
$6.8 \quad 7.125$
5. 343
6. 1,296
7. 2,187
8. 512
9. 1,000
10. $10,000,000$
11. $100,000,000,000$
12. $4 \quad 16.7$
13. $11 \quad 18.5$ and $6 \quad 19.3$ and $4 \quad 20.8$ and 9
$\begin{array}{l:lllll}\text { p. } 145 & 21.3 .873 & 22.6 .164 & 23.2 & 24.4 & 25.7\end{array}$
$\begin{array}{lll}\text { 26. very small } & 27 \text {. very large } \quad 28.7 .8 \cdot 10^{7}\end{array}$
14. $2.0 \cdot 10^{5} \quad 30.2 .8 \cdot 10^{-3} \quad 31.3 .02 \cdot 10^{-5}$
15. 8,100,000 33. 200,700,000 34.4,000
16. 0.00085 36. 0.00000906 37. 0.0000007
17. $12 \quad 39.13 \quad 40.18$

3-1 Power and Exponents

p. 146 :

1. 4^{3}
2. 6^{9}
3. x^{4}
4. y^{6}
p. 147
5. 25
6. 100
7.9
7. $\frac{1}{16}$
p. 148 : Squaring Triangles 21,28 ; It is the sequence of squares.
p. 149
8. 64
9. -216
10. 27
11. -512
p. 150
12. -128
13. 59,049
14. 81
15. 390,625
p. 152
16. 1
17. $\frac{1}{216}$
18. $1 \quad$ 20. $\frac{1}{81}$
p. 153
19. 0.0001 22. 1,000,000
20. 1,000,000,000 24. 0.00000001
$\begin{array}{llll}\text { p. 154:25. } 324 & \text { 26. } 9,765,625 & \text { 27. 33,554,432 } & \text { 28. 20,511,149 }\end{array}$

3.2 Square and Cube Roots

p. 156 :

1. 4
2.7
2. 10
3. 12
p. 157
4. between 7 and 8
5. between 4 and 5
6. between 2 and 3
7. between 9 and 10
p. 159
8. $1.414 \quad 10.7 .071$
9. 8.660
10. 9.950
11. 4
$14.7 \quad 15.10 \quad 16.5$

3-3 Scientific Notation

p. 161

1. very small
2. very large
3. very small
p. 162
4. $6.8 \cdot 10^{4}$
5. $7.0 \cdot 10^{6}$
6. $7.328 \cdot 10^{7}$
7. $3.05 \cdot 10^{10}$ Bugs $1.2 \cdot 10^{18}$
p. 163
8. $3.8 \cdot 10^{-3} \quad 9.4 .0 \cdot 10^{-7} \quad 10.6 .03 \cdot 10^{-11}$
9. $7.124 \cdot 10^{-4}$
$\begin{array}{l:lll}\text { p. } 164 & 12.53,000 & 13.924,000,000 & 14.120,500\end{array}$
10. 8,840,730,000,000
p. 165
11. $0.00071 \quad 17.0 .000005704$
12. 0.0865
13. 0.000000000030904

3.4 Laws of Exponents

p. 167

1. 23
2. 17
3. 18
4. 19
p. 168
5. 3^{9}
6. 2^{18}
7. 8^{3}
8. 30^{2}
p. 169
9. 2^{1}
10. 5^{3}
11. 2^{4}
12. 3^{2}
p. 170
13. 3^{8}
14. 3^{18}
15. $64 a^{3} b^{3}$
16. $27 x^{3} y^{18}$

Chapter 4 Data, Statistics, and Probability

p. 174

1. late morning
2. seventh
3. no
4. bar graph
p. 175
5. positive
6. 34
7. mode
8. 21
9. $\frac{2}{15}$

4-1 Collecting Data

p. $177 \vdots$ 1. adults over the age of $45 ; 150,000$ 2. elk in Roosevelt National Forest; 200 3. motor vehicle drivers in California in 2007; 500
p. 178
p. 179
p. 180
4. No, it is limited to people who are friends of her parents, and they may have similar beliefs.
5. Yes, if the population is the class. Each student has the same chance of being picked.
6. Yes, the sample is biased because it favored a part of the population and was only given to the customers that were listening to the country music radio station.
7. The sample is not biased. All students participated in the survey.
8. It assumes you like pizza. 9. It does not assume that you watch TV after school. 10. Do you recycle newspapers? 11.6 12. bagels 13. pizza; Students chose pizza more than any other food.

4.2 Displaying Data

p. 182 1. One of the words has 11 letters.
2. 1944 Winter Olympics

No. of Gold Medals	0	1	2	3	4	5	6	7	8	9	10
11											
No. of Countries	8	4	2	2	1	0	1	1	0	1	1

p. 183
3. 25 g
4. 11.5 g
5. 50%
p. 185
6. about half 7. about a quarter
8.

Class Earnings

p. 186
9. 8:00 A.M. $\mathbf{1 0 . 6}$
11.

p. 187:12. Gabe 13. Gabe 14.7 15.37.1; 27.2
p. 188 16. September 17. Sample answer: Kirti's earnings increased from May to July.
18.

Middle-School Students on Honor Roll

$\begin{array}{l:l}\text { p. } 189 & \text { 19. } \$ 120,000,000,000 \text { 20. Sample answer: It increased }\end{array}$ slightly for the first three years and then remained constant.
p. 191 21. 16
22. 13;

4.3 Analyzing Data

p. 194 1. Yes, as the price increases, the number sold decreases.
2.

3. Age and Letters in Name 4. negative
5. Miles cycled and Hours
p. 196 How Risky Is It?

Life expectancy has been steadily increasing during the past century.; Sample answers: better nutrition and healthcare, safer transportation, increased awareness of safe working conditions, better tools to work with
p. 197
6.

p. 199
8. flat 9. normal 10. skewed to right 11. bimodal 12. skewed to left

4.4 Statistics

4.5 Combinations and Permutations

p. 215 :

1. 216 three-digit numbers
2. 36 routes
3. 12;

p. 217
4. 210
5. 720
6. 40,320
7. 1,190
8.6
8. 120
9. 362,880
$\begin{array}{l:lll}\text { p. } 219 & 11.84 & 12.91 & 13.220\end{array}$
10. There are twice as many permutations as combinations.

4.6 Probability

$\begin{array}{l:lll}\text { p. } 222 & \text { 1. } \frac{1}{2} & \text { 2. } \frac{1}{20} & \text { 3. Sample answer: } \frac{2}{50} \text { or } \frac{1}{25}\end{array}$
p. 223
$\begin{array}{llll}\text { 4. } \frac{3}{4} & 5.0 & \text { 6. } \frac{1}{6} & \text { 7. } \frac{4}{11}\end{array}$
p. 224
$\begin{array}{ll}\text { 8. } \frac{1}{4}, 0.25,1: 4,25 \% & \text { 9. } \frac{1}{8}, 0.125,1: 8,12.5 \%\end{array}$
$\begin{array}{ll}\text { 10. } \frac{1}{8}, 0.125,1: 8,12.5 \% & \text { 11. } \frac{1}{25}, 0.04,1: 25,4 \%\end{array}$
 1 in 1 million, compared to the 1 -in-16-million chance of winning a 6 -out-of- 50 lottery.

p. 227 12. Second Spin

		R	B	G	Y
'민	R	RR	RB	RG	RY
¢	B	BR	BB	BG	Y
¢	G	GR	GB	GG	GY
立	Y	YR	YB		

13. $\frac{7}{16}$
p. $228: 14$.

14.

16.

17.

$\begin{array}{lll}\text { p. } 229 & 18 . \frac{1}{4} \text {; independent } & \text { 19. } \frac{91}{190} \text {; dependent }\end{array}$
p. $230: 20 . \frac{1}{16}$
21. $\frac{13}{204}$
22. $\frac{3}{14}$
23. $\frac{36}{105}$

Chapter 5 Logic

p. 234

1. false 2. false
2. true
3. true
4. true
5. true
6. If it is Tuesday, then the jet flies to Belgium.
7. If it is Sunday, then the bank is closed. 9. If $x^{2}=49$, then $x=7$. 10. If an angle is acute, then it has a measure less than 90°.
p. 235 11. The playground will not close at sundown.
8. These two lines do not form an angle.
9. If two lines do not intersect, then they do not form four angles. 14. If a pentagon is not equilateral, then it does not have five equal sides.
10. Thursday 16. any nonisosceles trapezoid
11. $\{a, c, d, e, 3,4\} \quad$ 18. $\{e, m, 2,4,5\}$
$\begin{array}{ll}\text { 19. }\{a, c, d, e, m, 2,3,4,5\} & \text { 20. }\{e, 4\}\end{array}$

5.1 If/Then Statements

p. 237 1. If lines are perpendicular, then they meet to form right angles. 2. If an integer ends in 0 or 5, then it is a multiple of 5. 3. If you are a runner, then you participate in marathons. 4. If an integer is odd, then it ends in $1,3,5,7$, or 9 . 5. If Jacy is too young to vote, then he is 15 years old. 6. If you see a cumulus cloud, then it is raining.
7. A rectangle does not have four sides.
8. The donuts were not eaten before noon. 9. If an integer does not end with 0 to 5 , then it is not a multiple of 5 .
10. If I am not in Seattle, then I am not in the state of Washington.
p. 239 11. true 12. If an angle is not a right angle, then it does not have a measure of 90°. 13. If $2 x=6$, then $x=3$. 14. If school is not canceled, then it will not snow. 15. If you do not buy an adult ticket, then you are not over 12 years old. 16. If you did not pay less for your tickets, then you did not buy them in advance.

5.2 Counterexamples

p. 241 1. true; false; counterexample: skew lines 2. true; true
p. $242: 150,000$. . . . , But Who's Counting If your town has 150,002 or more people, there are two people with the same number of hairs on their head. If your town has 150,001 or fewer people, you cannot prove whether two have the same number of hairs. This is the same logic as on page 242.

5.3 Sets

p. 244

1. false 2. true 3. true 4. $\{1\} ;\{4\} ;\{1,4\} ; \varnothing$ 5. $\{\mathrm{m}\} ; \varnothing$ 6. $\{\mathrm{a}\} ;\{\mathrm{b}\} ;\{\mathrm{c}\} ;\{\mathrm{a}, \mathrm{b}\} ;\{\mathrm{b}, \mathrm{c}\} ;\{\mathrm{a}, \mathrm{c}\} ;\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} ; \varnothing$
p. 245
2. $\{1,2,9,10\}$
3. $\{m, a, p, t, h\}$
4. $\{\infty, \%, \$$, \#,
$\Delta, \varsigma, \star\}$
5. $\{9\}$
6. \varnothing 12. $\{\infty, \%, \$\}$
p. 246 13. $\{1,2,3,4,5,6\} \quad$ 14. $\{1,2,3,4,5,6,9,12,15\}$
7. $\{6,12\}$ 16. $\{6\}$

Chapter 6 Algebra

p. 250 :

1. $4(n+2)=2 n-4$
2. $a+3 b$
3. $11 n-10$
4. 3 hrs. 5. $y=54$
5. $n=4$
6. 16 girls
7.

9.

$x \geq 4$
10.

$n>2$
p. 251 13-16.

17. $y=x-4$

6.1 Writing Expressions and Equations

p. 252 :

1. 2
2. 1
3. 3
4. 2
p. 253
5. $7+x$
6. $n+10$
7. $y+3$
8. $n+1$
p. 254
9. $14-x$
10. $n-2$
11. $y-8$
12. $n-9$
p. 255: 13. $3 x$
13. $7 n$
14. $0.35 y$
15. $12 n$
p. 256
16. $\frac{x}{7}$
17. $\frac{16}{n}$
18. $\frac{40}{y}$
19. $\frac{a}{11}$
$\begin{array}{llll}\text { p. } 257 \vdots & 21.8 n-12 & \text { 22. } \frac{4}{x}-1 & \text { 23. } 2(n-6)\end{array} \quad$ 24. $x-8=5 x$
20. $4 n-5=4+2 n \quad$ 26. $\frac{x}{6}+1=x-9$

6.2 Simplifying Expressions

p. 259 :

1. no
2. yes
3. no
4. yes
p. 260
5. $5+2 x$
6. $7 n$
7. $4 y+9$
8. $6 \cdot 5 \quad 9.4+(8+11)$
10.5•(2•9) 11. $2 x+(5 y+4) \quad$ 12. $(7 \cdot 8) n$
p. $261: 13.5(100-4)=480 \quad$ 14. $4(100+3)=412$
9. $9(200-1)=1,791 \quad$ 16. $4(300+10+8)=1,272$
10. Identity Property of Multiplication
11. Identity Property of Addition
12. Zero Property of Multiplication
$\begin{array}{llll}\text { p. } 262: 20.14 x+8 & \text { 21. } 24 n-16 & \text { 22. }-7 y+4 & \text { 23. } 9 x-15\end{array}$
p. $263: 24.7(x+5) \quad 25.3(6 n-5) \quad 26.15(c+4)$
13. $20(2 a-5)$
$\begin{array}{l:llll}\text { p. } 265: 28.11 y & 29.5 x & \text { 30.14a } & \text { 31. }-3 n & 32.3 y+8 z\end{array}$
14. $13 x-20 \quad 34.9 a+4 \quad 35.9 n-4$

6.3 Evaluating Expressions and Formulas

p. 267 :

1. 22
2. 1
3. 23
4. 20
p. 268
5. $\$ 3,000$
6. $\$ 253,125$
7. \$7,134.40
p. 269
8. 36 mi
9. $1,875 \mathrm{~km}$
10. 440 mi
11. 9.2 ft

Maglev $1 \frac{1}{4} \mathrm{hr} ; 2 \frac{1}{4} \mathrm{hr} ; 3 \frac{3}{4} \mathrm{hr}$

6.4 Solving Linear Equations

p. 271

1. -4
2. x
3. 35
4. $-10 y$
p. 272
5. $x=9$
6. $n=16$
7. $y=-7$
p. 273
8. $x=7$
9. $y=32$
10. $n=-3$

Prime Time 162,037,037
p. 275
$\begin{array}{llll}\text { 11. } x=3 & \text { 12. } y=50 & \text { 13. } n=-7 & \text { 14. } a=-6\end{array}$
15. $m=-9$
$\begin{array}{ll}\text { 16. } n=4 & \text { 17. } x=-2\end{array}$
18. $a=6$
p. 277
19. $n=5$
20. $t=-2$
$\begin{array}{ll}\text { 21. } x=-6 & \text { 22. } w=\frac{A}{\ell}\end{array}$
23. $y=\frac{3 x+8}{2}$
24. $b=\frac{9-3 a}{6}$ or $\frac{3-a}{2}$

6.5 Ratio and Proportion

p. 279 :

1. $\frac{3}{9}=\frac{1}{3}$
2. $\frac{9}{12}=\frac{3}{4}$
3. $\frac{12}{3}=\frac{4}{1}=4$
4. 280
5. yes 5. no
6. yes
p. 281
7. 5.5 gal
8. $\$ 450$
9. 970,000
10. $22,601,000$

6.6 Inequalities

p. 284
1.

2.

3.

4.

5. let $a=$ driving age; $a \geq 16 \quad 6$. let $c=$ cost of cell phone; $c>\$ 19.99 \quad 7$. let $t=$ age; $t \leq 57$
8. let $n=$ a number; $n-9 \leq 3$
p. 285
$\begin{array}{ll}\text { 9. } x>-3 & \text { 10. } n \leq 20\end{array}$
Oops! If a can be positive, negative, or zero, then $2+a$ can be greater than, equal to, or less than 2.
p. 286: 11. $x<4$
12. $x \geq 7$
13. $x<-4$
14. $x \geq-3$

6.7 Graphing on the Coordinate Plane

p. 288 :

1. y-axis
2. Quadrant II
3. Quadrant IV
4. x-axis
p. 289 :
5. $(-2,4)$
6. $(1,-3)$
7. $(-4,0)$
8. $(0,1)$
p. 290: 9-12.

p. $291 \vdots$ 13. $(n+1)(-6) ;-36,-42,-48$
9. $\frac{1}{n^{2}} ; \frac{1}{25}, \frac{1}{36}, \frac{1}{49}$
10. $3 n+1 ; 16,19,22$
p. 293 : 16.

11.

18.

19.

6.8 Slope and Intercept

p. 296 :

1. $\frac{2}{3}$
2. $-\frac{5}{1}=-5$
p. 297 !
3. -1
4. $\frac{3}{2}$
5. $-\frac{1}{2}$
6. 5
7. no slope
8. no slope
9. 0
10. 0
11. $-\frac{1}{3}$
12. 1
13. no y-intercept
p. 299 : 15.

14.

17.

18.

p. 300 :
19. slope $=-2, y$-intercept at 3
20. slope $=\frac{1}{5}, y$-intercept at -1
21. slope $=-\frac{3}{4}, y$-intercept at 0
22. slope $=4, y$-intercept at -3
p. 301

24.

25.

26.

p. 302 : 27.

28.

29.

30.

$\begin{array}{lll}\text { p. } 303 & \text { 31. } y=-2 x+4 & \text { 32. } y=\frac{2}{3} x-2\end{array} \quad$ 33. $y=3 x-4$
p. 304 34. $y=x-2$
35. $y=-2 x+5$
36. $y=\frac{3}{4} x-3$
37. $y=2$

6.9 Direct Variation

p. 307

1. 413.1 kph
2. $\$ 3.94$
3. The ratios are not the same, so the function is not a direct variation.

6.10 Systems of Equations

p. 309 :

1. $(-4,-1)$
2. $(2,-2)$
p. 310
3. no solution

4. $(1,0)$

5. no solution

p. 311
6. all ordered pairs of the points on the line $y=3 x-2$

7. all ordered pairs of the points on the line $y=4 x+6$

8. $x=y+3 ; x+y=9 ;(6,3)$

Chapter 7 Geometry

p. 316

1. corresponding angles; 131°
2. 108°
3. 30 cm
4. $65 \mathrm{ft}^{2} \quad 5.386 .6 \mathrm{~cm}^{2}$
p. 317 6. 118 in $^{3} \quad 7.157 \mathrm{ft}^{2}$ and $1,963 \mathrm{ft}^{2}$
5.

7.1 Classifying Angles and Triangles

p. 318

1. reflex angle
2. straight angle
3. acute angle
4. obtuse angle
p. 320
5. 30°
6. 100°
7. corresponding angles
8. alternate interior angles
9. $\angle 1$ and $\angle 7$, or $\angle 2$ and $\angle 8 \quad \mathbf{1 0}$. Possible pairs include any two obtuse angles: $\angle 1, \angle 3, \angle 5$, or $\angle 7$, or any two acute angles: $\angle 2, \angle 4, \angle 6$, or $\angle 8$.
p. $323: 11 . m \angle Z=90^{\circ}$
10. $m \angle M=60^{\circ}$
11. 39°
12. 97°

7.2 Naming and Classifying Polygons and Polyhedrons

p. 326: 1. Sample answers: RSPQ; QPSR; SPQR; RQPS; PQRS;
QRSP; PSRQ; SRQP
2. 360°
3. 105°
p. 327 4. no; yes; no; yes; no 5. yes, because it has four sides that are the same length and opposite sides are parallel 6. no, because all sides of the rectangle may not be of equal length 7 . no, because it may not have 4 right angles
p. 329
8. yes; quadrilateral
9. no
10. yes; hexagon
p. 330
11. $1,440^{\circ}$
12. 108°
p. 331 13. triangular prism
14. triangular pyramid or tetrahedron

7.3 Symmetry and Transformations

p. 335 : 1.

2.

p. 336 :
3. no
4. yes; two
5. no
6. yes; four
7. 180°
8. 270°
p. 337 : 9. yes 10. no 11. no
7.4 Perimeter
p. 339

1. 29 cm
2.39 in.
3.6 m
2. 20 ft
p. 340 :
3. 60 cm
4. 48 cm
7.5 .2 m
p. 341
5. 35.69 in.
6. 38.58 m

7.5 Area

p. 345 :

1. $6 \frac{2}{3} \mathrm{ft}^{2}$ or $960 \mathrm{in}^{2}$
2. $36 \mathrm{~cm}^{2}$
3. $54 \mathrm{~m}^{2}$
4.8 m
p. 346
4. $60 \mathrm{in}^{2}$
5. $540 \mathrm{~cm}^{2}$
p. 347 :
6. $12 \mathrm{ft}^{2}$
7. $30 \mathrm{ft}^{2}$

7.6 Surface Area

p. 350 :

1. $126 \mathrm{~m}^{2}$
2. $88 \mathrm{~cm}^{2}$
p. 351 :
3. $560 \mathrm{~cm}^{2}$
4. A
5. $1,632.8 \mathrm{~cm}^{2}$

7.7 Volume

p. 353 : $1.3 \mathrm{~cm}^{3}$
$2.6 \mathrm{ft}^{3}$
p. 354
3. 896 in 3
4. $27 \mathrm{~cm}^{3}$
p. 355
5. $113.04 \mathrm{in}^{3}$
6. $56.52 \mathrm{~cm}^{3}$
p. 357
7. $9.4 \mathrm{~m}^{3}$
8. $2,406.7$ in 3

Good Night, T.Rex about $1,176,000 \mathrm{mi}^{3}$

7.8 Circles

p. 360 :

1. 9 in.
2. 1.5 m
3. $\frac{x}{2}$
4. 12 cm
5. 32 m
6. $2 y$
p. 361
7. 5π in.
8. 20.1 cm
9. 7.96 m
10. $5 \frac{1}{2}$ in.
p. 362
11. $\angle A B C$
12. 90°
13. 270°
14. 120°
15. 240°
p. $363: 16.132 .7 \mathrm{~m}^{2}$
16. 20.25π in $^{2} ; 63.6$ in 2
17. $177 \mathrm{~cm}^{2}$

7.9 Pythagorean Theorem

p. 365 :

1. $9,16,25$
2. yes
p. 367
3. 14 cm
4.55 in.
p. 368:
4. $c \approx 3.6$
5. $c \approx 7.2$

Chapter 8 Measurement

p. 372: 1. one hundredth 2 . one thousand
$\begin{array}{llll}\text { 3. one thousandth } & \mathbf{4 .} 0.8 & \mathbf{5 . 5 . 5} & \mathbf{6 .} 15,840\end{array}$
7. $13 \quad \mathbf{8 . 1 0 8}$ in. 9.3 yd $\quad \mathbf{1 0 . 2 7 4} \mathrm{cm} \quad \mathbf{1 1 . 3} \mathrm{m}$
$\begin{array}{l:llll}\text { p. } 373: 12.684 \text { in }^{2} & 13.4,181 \mathrm{~cm}^{2} & \text { 14. } 50,000 & 15.90\end{array}$
$\begin{array}{lll}\text { 16. } 5,184 & \text { 17. } 4,000 & \text { 18. } \frac{6}{8} \text { or } \frac{3}{4}\end{array}$
19. 16 bottles 20. about 13 cans 21. about 4.4 lb
22. $3 \mathrm{lb} \quad$ 23. $9: 4 \quad 24.2 .25$ or $\frac{9}{4}$

8.1 Systems of Measurement

p. 374 !

1. metric
2. customary
3. metric

8.2 Length and Distance

p. 377 :

1. 800
2. 3.5
3. 4
4. 10,560
5. 71.1 cm
6. 89.7 yd
7. B

8.3 Area, Volume, and Capacity

p. 380

1. $1,600 \mathrm{~mm}^{2}$
2. 288 in 2
3. $14,520 \mathrm{yd}^{2}$
p. 381
4. $324 \mathrm{ft}^{3}=12 \mathrm{yd}^{3} \quad 5.512 \mathrm{~cm}^{3}=512,000 \mathrm{~mm}^{3}$
5. $25,920 \mathrm{in}^{3} \quad 7.0 .25 \mathrm{~cm}^{3}$
p. 382 8. the juice

In the Soup! 1,792 cartons; $912.6 \mathrm{ft}^{3}$

8.4 Mass and Weight

p. 384:

1. 80
2. 3.75
3. $8,000,000$
4. 0.375

8.5 Size and Scale

p. 386 : 1. yes
p. 388: 2. 2
4. $16 \mathrm{ft}^{2}$
5. Complete the table below.

	Area
Scale Factor $\mathbf{2}$	4 times
Scale Factor $\mathbf{3}$	9 times
Scale Factor $\mathbf{4}$	16 times
Scale Factor $\mathbf{5}$	25 times
Scale Factor X	X^{2} times

6. $\frac{27}{64}$
7. Complete the table below.

	Volume
Scale Factor 2	8 times
Scale Factor 3	27 times
Scale Factor 4	64 times
Scale Factor 5	125 times
Scale Factor X	X^{3} times

Chapter 9 Tools

p. 394
$\begin{array}{ll}\text { 1. } 55,840.59 & \text { 2. } 0.29\end{array}$
3. 20.25
4. 2.12
5. $3.2 \cdot 10^{13}$
6. 29.12
7. 74°
8. 148°
9. 74°
10. yes
p. 395 11. straightedge and compass

12-15. Check that students' drawings match original figures. 16. A2 17. C1 + C2 18. 66

9-1 Scientific Calculator

p. 399

1. $479,001,600$
2. 38,416
3. 0.037
4. 85
Magic Numbers $\frac{100 a+10 a+1 a}{a+a+a}=\frac{111 a}{3 a}=37$
5. $109,272.375$

9.2 Geometry Tools

p. 404
5.

6. Sample answer:

9.3 Spreadsheets

p. 407

1. 2
2. 3
3. 25
p. 408
4. B 3 * C 3
5. $\mathrm{B} 4{ }^{*} \mathrm{C} 4$
6. $\mathrm{D} 2+\mathrm{D} 3+\mathrm{D} 4$
p. 411
7. $A 6+10 ; 160$
8. $\mathrm{D} 2+10 ; 120$
p. 412 :
9. A2, B2
10. A5, B5
11. A3, B3

Index

A

Absolute value of integers, 84
Acute angles, 318
Acute triangles, 322
Addition Property of Equality, 272
Additive inverse, 271
Adjacent angles, 318
Aerobic activities, 131
Aerobic fitness zone, 131
Alternate exterior angles, 321
Alternate interior angles, 321
Analyzing data, 193-199, 201-211
correlation, 185-186, 194-195
distribution of data, 198-199
line of best fit, 197
with measures of central tendency, 201-204
with scatter plots, 193
Angles, 318-321
central angle of a circle, 362
classifying, 318-321
congruent, 328
measuring, 401
of polygons, 328, 329-330
relationships with lines, 320-321
special pairs of, 319
sum of central angles of circle, 362
sum of in quadrilaterals, 325
sum of in triangles, 323
Apex of pyramids, 331
Arcs, 362
Area, 344-347, 379
of circle, 363
of parallelogram, 345
of rectangles, 344
scale factors and, 388
of trapezoids, 347
of triangles, 346
units of measures of, 379
Arithmetic sequences, 291
Associative Property of Addition and
Multiplication, 260
Averages, 201, 206
weighted, 206
Axes, 288

B
Bar graphs, 187, 188 double, 189
Bases, 146

Benchmarks, 123
Biased samples, 178-179
Bimodal data, 199, 204
Bimodal distribution, 199
Box plot, 182, 183
C
Calculator, 136
estimating irrational numbers, 122
estimating square roots with, 158
evaluating powers with, 153-154
finding discounts and sale prices, 137
finding percents of decrease, 136
finding percents of increase, 135
finding the volume of a cone, 356
FIX function, 113, 397
Pi key on, 396, 398-399
powers key on, 153-154, 397
rounding decimal quotients, 113
scientific, 396-399
special keys on, 153, 158, 396-398
square key on, 398
square root key on, 158, 398
Capacity, 381
Cells in spreadsheets, 407
Center of rotation, 336
Central angles, 362
Circle graphs, 184
Circles
areas of, 363
drawing with a compass, 402-403
parts of, 359
triangle inscribed in, 402-403
Circumference
of a circle, 360-361
Classifying
angles, 318-321
polygons, 325
triangles, 322-323
Coefficients, 259
Collecting data, 176-179
Columns in spreadsheets, 407
Combinations, 217-219
Common denominators, 100
Common difference, 291
Common factors, 76
Distributive Property with, 263
factoring out, 263
greatest common factors (GCF), 77, 81, 96, 263

Commutative Property of Addition and Multiplication, 259
Comparing integers, 85
rational numbers, 119
Compass, 402-403
Complementary angles, 319
Composite numbers, 79
Compound interest, 140
Conditional statements, 236
contrapositives of, 239
converse of, 237
counterexamples of, 241
inverse of, 238
negation of, 238
Cones, 330
volume of, 355-356
Congruent angles, 319
Congruent sides, 322-323
of quadrilaterals, 326
Constant of variation, 306-307
Constant terms, 259
Construction problems, 403
Coordinate plane, 193, 288-290
ordered pairs of points on, 289-290
Correlation, 194-195
Corresponding angles, 321
Counterexamples, 241
Cross products, 280
Cube, 331
Cube of a number, 149
Cube roots, 159
Cubes, 330
Cubic units, 353, 380
Customary equivalents, 379
Cylinders, 330
surface area of, 351
volume of, 355

D

Decagons, 328
Decimal points, 111
Decimals
addition of, 110
converting
to fractions, 117
fractions to, 116
mixed numbers to, 117
to percents, 127
percents to, 128
division of, 112
fractions and, 116-118
multiplication of, 111
probability expressed as, 224
repeating, 116
subtraction of, 110
terminating, 116
Denominators
common or like, 100
adding mixed numbers with, 102
addition and subtraction of fractions with, 100
subtracting mixed numbers with, 104
in reciprocals of numbers, 107
unlike
adding fractions with, 100, 101
adding mixed numbers with, 103
subtracting fractions with, 101
subtracting mixed numbers with, 105
Dependent events, 229
Diagonals of polygons, 328
Diameter, 359
Direct variation, 306-307
Discounts, 136-137
Displaying data, 182-197
Distance, 376
finding distance traveled, 268-269
finding with Pythagorean Theorem, 368
units of measures of, 376
Distribution of data, 198-199
Distributive Property of Addition and
Multiplication, 260-261
with common factors, 263
solving equations involving, 276
writing equivalent expressions using, 262
Divisibility rules for numbers, 78
Division Property of Equality, 272
Double-bar graph, 189
E
Elements of a set, 244
Empty set, 244
Equally likely events, 227
Equations
equivalent, 275
graphing with two variables, 311-312
of a line
slope-intercept form, 300-302
writing from two points, 303-304
linear, 271-277, 292-293, 300-302
solutions of, 292
solving, see Solving equations
systems of, 309-312
writing, 257
Equilateral triangles, 322
Equivalent expressions, 257, 262, 263
Equivalent fractions, 94-95
Estimating, 156
decimal products, 111
percents of numbers, 123-124, 138
square roots, 157, 158

Evaluating
cube of a number, 149
expressions, 267
expressions with exponents, 167
formulas, 268-269
higher powers, 150
zero and negative exponents, 151
Events, 213
dependent, 229
equally likely, 227
impossible, 227
independent, 229
Experimental probability, 221
Exponents, 146-154
division with, 169
evaluating expressions with, 167
higher powers, 149
laws of, 167-170
multiplication using, 146
multiplication with, 168
negative number as, 151
order of operations with, 74, 75, 167
power of a power, 170
in prime factorization, 80
square of a number, 147-148
of ten, 152
zero as, 151
Expressions, 252
for arithmetic sequences, 291
equivalent, 257, 262, 263
evaluating, 267
with exponents, 167
simplifying, 263-265
writing, 253-256

F

Faces of polyhedrons, 331
Factorial notation, 217
Factorization, prime, see Prime factorization
Factors, 76
common or like, 76
simplifying, 107-108
Fill down and fill right on spreadsheets
commands, 409-411
Flat distribution, 199
Formulas, 268
for area of a circle, 363
for distance traveled, 269
evaluating, 268-269
solving for variables in, 277
on spreadsheets, 408
for theoretical probability of an
event, 222
for volume of cylinders, 355
for volume of prisms, 354
for volume of pyramids and cones, 356

Fractions, 94-108
addition of, 100-101
converting
to decimals, 116
decimals to, 117
to percents, 125
percents to, 126
cross products of, 95
decimals and, 116-118
division of, 108
equivalent, 94-95
greatest common factors, 77
improper, see Improper fractions
multiplication of, 106
percents and, 125-126
probability expressed as, 224
subtraction of, 100-101
writing, in simplest form, 96
Frequency graphs, 185
Frequency tables, 180, 190
Functions
graphing, 293
linear, 292-293, 306-307
solutions of, 292
(
Geometry tools, 401
Graphing
on coordinate plane, 288-289
data on coordinate graph, 193
equation of a line, 293
equations with two variables, 311-312
inequalities, 283
lines using slope and y-intercept, 299
real numbers, 122
with a spreadsheet, 412
systems of equations, 311-312
Greater than (>), 283
Greater than or equal to (\geq), 283
Greatest common factor (GCF), 77, 96, 263
prime factorization in finding, 81

H

Heptagons, 328
Hexagons, 328, 330
angles of, 330
Histograms, 190, 198
Horizontal lines
in slope-intercept form, 302
slope of, 297-298
Horizontal number line, 288
Horizontal rows in spreadsheets, 407
Hypotenuse, 365, 367
Hypotheses of conditional statements, 236, 237
(1)

Identity Property of Addition, 261
Identity Property of Multiplication, 261
If/then statements, see Conditional statements
Impossible events, 227
Improper fractions, 97-98
converting to mixed numbers, 97
mixed numbers to, 98
Increase, percents of, 135, 140
Independent events, 229
Inequalities, 283-286
graphing, 283
solving
by addition and subtraction, 284-285
by multiplication and division, 285-286
with negative numbers, 286
writing, 284
Integers, 84-88
Interest, 139
compound, 140
simple, 139
Interest rate, 139
Interior angles, 326, 327
Interquartile range, 210
Intersection of sets, 245
Inverse, additive, 271
Inverse of conditional statement, 238
Irrational numbers, 121
Isosceles triangle, 322
(L)

Laws of exponents, 167-170
power of a power, 170
of products, 168
of quotients, 169
Least common denominator (LCD), 119
Least common multiple (LCM), 81-82
Less than (<), 283
Less than or equal to $(\leq), 283$
Like terms, 264
Distributive Property with, 264-265
Linear equations, 271-277, 292-293
slope-intercept form, 300-302
Linear functions, 292-293
direct variation, 306-307
graphing, 293
Linear system of equations
of intersecting lines, 309
of parallel lines, 310
of same line, 311
Line graphs, 186
Line of best fit, 197

Line plots, 185
Lines
of best fit, 197
of direct variation, 306
graphing equation of, 293
graphing using slope and y-intercept, 299
probability line, 227-228
relationships with angles, 320-321
slope-intercept form of, 300-302
slope of, 295-298
of symmetry, 334
writing equations of in slope-intercept form, 300-302
from two points, 303-304
y-intercept of, 300
Line segments, 328
Lower Quartile, 208-209

(1)

Magic numbers, 399
Mass, 384
Maximum, 183
Mean, 201
weighted averages, 206
Measurement, systems of, 374-377, 379-384
Measures of central tendency mean, 201
median, 183, 202-203, 208-209
mode, 199, 204
weighted averages, 206
Measures of variation, 207-211
interquartile range, 210
outliers, 210-211
quartiles, 183, 208-209
range, 207
Measuring angles, 401
Median, 183, 202-203
of even number of data, 203, 208
quartiles and, 208-209
Members of sets, 244
Mental math, 124
Metric equivalents, 379
Metric system, 374-384
Mixed numbers
addition of, 102-103
converting
to decimals, 117
decimals to, 118
to improper fractions, 98
improper fractions to, 97
subtraction of, 104-105
Mode, 204
bimodal, 199, 204

Multiples, least common multiple, 81-82
Multiplication Property of Equality, 273
Multiplicative inverses, 107, 151

0

Negation of statements, 238
Negative integers, 84
Negative numbers, 84
as exponents, 151
solving inequalities with, 286
Nets, 349-351
Nonagons, 328
Normal distribution, 198
Notation
factorial, 217
scientific, 161-162
Number line, 85
comparing rational numbers on, 119
graphing irrational numbers on, 122
Numbers, see also Decimals; Fractions;
Percents
common factors of, 76, 77
composite, 79
cube root of, 156
divisibility rules for, 78
factors of, 76
finding percents of, 130
greatest common factors of, 77,81 , 96, 263
higher powers of, 150
integers, 94, 121
irrational, 121
large, 161-162
least common multiple of, 81-82
mixed, see Mixed numbers
multiples of, 81-82
multiplicative inverses of, 107
negative, 84
positive, 84
prime, 79
prime factorization of, 80
rational, $94,118,119$
reciprocals of, 107
relatively prime, 79
square root of, 156
squares of, 147-148
whole, 94
Numerators, 107
0
Obtuse angles, 318
Obtuse triangles, 322
Octagons, 328, 339
Odds, 196
Operations, 85
with decimals, 110-114
with fractions, 102-108
with integers, 86-88
order of, 74,75
properties of, 259-261, 271-273
writing expressions involving, 253-256
Opposites of integers, 84
Ordered pairs
coordinates of a point, 289
solution of system of equations, 309
Ordering
integers, 85
rational numbers, 119
Order of operations, 74, 75
Origin, 289
Outcome grids, 226
Outcomes, 213-215, 222-223
Outliers, 210-211
Output values, 292-293

Parallel lines, 310
Parallelograms, 326-327
area of, 345
as faces of prisms, 331
Parentheses
on calculators, 397
order of operations with, $74,75,167$
PEMDAS acronym, 75
Pentagon, 328
Pentagonal prisms, 331
Pentagonal pyramids, 331
Pentagons, 328
Percent proportion, 132-134
finding percent of a whole with, 133
finding the whole with, 134
Percents, 123-128
benchmarks in, 123
converting
to decimals, 128
decimals to, 127
to fractions, 126
fractions to, 125
decimals and, 127-128
of decrease, 136
discount, 136-137
estimating, 123-124, 138
fractions and, 125-126
of increase, 135
interest, 139
meaning of, 123,128
methods for finding, 130, 131
probability expressed as, 224
sale price from, 137
simple interest, 139
ways to express, 123

Perfect squares, 158
Perimeter of polygons, 339-341
of rectangles, 340
of right triangle, 340
Permutations, 216-217
Perpendicular lines, 320
$\operatorname{Pi}(\pi), 94,360,363$
key on a calculators, 396, 398-399
Polygons, 322-330
angles of, 328, 329-330
area of, 344-347
classifying, 325
as faces of polyhedrons, 331
perimeter of, 339-341
regular, 326
sides of, 328
triangles, 322-323
Polyhedrons, 330-331
surface area of, 349-350
volume of, 354-356
Positive integers, 84
Powers, 146, 152, 167-170
division with, 169
evaluating with a calculator, 153-154
higher, evaluating, 150
key on a calculator, 153-154, 397
multiplication of, 168
of a power, 170
of ten, 152-153, 374
Powers function key, 153-154, 397
Powers of numbers, 146-149
Prefixes of metric measure, 374
Prime factorization, 80
in finding greatest common factor, 81
in finding least common multiple, 82
Prime numbers, 79
Principal, 139
Prisms, 330, 331
surface area of, 349,350
volume of, 354
Probability, 221-230
of dependent events, 229
experimental, 221
expressing, 224
of independent events, 229
outcome grids, 226
probability line, 227-228
sampling with and without replacement, 229
theoretical, 222-223
Probability line, 227-228
Products, 255
decimal points in, 111
estimating decimals, 111
with exponents, 168
writing with exponents, 146
Proportion method for finding percents of numbers, 132

Proportions, 280-281
solving problems with, 281
Protractors, 401
Pyramids, 330, 331
surface area of, 350
volume of, 355-356
Pythagorean Theorem, 341, 366-368
finding distance on coordinate grid with, 368
Pythagorean triples, 367
0
Quadrants, 288
Quadrilaterals, 325-327, 328
area of, 344-347
finding the fourth angle of, 325
sum of the angles, 325
types of, 326-327
Quartiles, 183, 208-209
interquartile range, 210
Questionnaires, 179
Quotients, 255
with exponents, 169
rounding in decimals, 113

R

Radius, 359
Random sample, 177
Range, 207
interquartile range, 210
Rates, 279
of change, 295-298
constant of variation of, 306
direct variation of, 306
interest, 139
Rational numbers, 118,119 , see also
Decimals; Fractions
Ratios, 279
of constant of variation, 306-307
percent proportion, 132-134
percents as, 123
probability expressed as, 224
proportions as, 280
scale factor, 387-390
slope as, 295
Real numbers, graphing, 122
Real number system, 121, see also
Decimals; Fractions; Integers
irrational numbers, 121
rational numbers, 119
Reciprocal function key, 398
Reciprocal of numbers, 107
Rectangles, 326, 327, 328
area of, 344
perimeter of, 340

Rectangular prisms, 331
surface area of, 349
Rectangular pyramids, 331, 350
Reflections, see Flips, 335
Reflection symmetry, 335-336
Reflex angle, 318
Regular polygons, 326, 328, 329-330
angles of, 330
perimeter of, 339
Regular prisms, 331
Relatively prime numbers, 79
Repeating decimals, 116, 118
converting to fractions, 118
Rhombus (Rhombi), 327, 328
Right angles, 318
Right triangles, 322, 365-368
perimeter of, 340
Pythagorean Theorem and, 366-368
Rise, 295
Roots function key, 398
Rotations, see Turns, 336
Run, 295
S
Samples, 176
biased, 178-179
random, 177
Sample space, 213
Sampling with and without replacement, 229, 230
Scale factors, 387-390
area and, 388
volume and, 389-390
Scalene triangle, 322
Scatter plots, 188, 193-195
line of best fit, 197
Scientific calculators, 396-399
Scientific notation, 161-166
converting to standard form, 164-165
with negative exponents, 165
writing large numbers using, 161-162
writing small numbers using, 163
Sets, 244-246
intersection of, 245-246
union of, 244, 246
Venn diagrams of, 245-246
Similar figures, 386-390
Simple interest, 139
Simplest form, 96
writing fractions in, 96
Simplifying expressions, 263-265
Simplifying fractions, 96
Skewed distribution, 198
Slides, 337
Slope-intercept form, 300-302
of horizontal and vertical lines, 302
writing equations in, 300-301
Slope of a line, 295-298
calculating from two points, 296-297
of direct variation, 306
graphing lines using y-intercept and, 299
of horizontal and vertical lines, 297-298
Solids, 330-331
surface area of, 349-351
volume of, 354, 355, 355-356
Solutions
of equations, 292
of systems of equations
of equations with same slope and intercept, 311
of intersecting lines, 309
of parallel lines, 310
Solutions of functions, 292
Solving formulas for variables, 277
Solving inequalities, 284-286
with addition and subtraction, 284-285
with multiplication and division, 285-286
with negative numbers, 286
Solving linear equations, 271-277
with addition and subtraction, 271-272
involving Distributive Property, 276
with multiplication and division, 272-273
requiring two steps, 274
with variables on each side, 275
Solving problems with proportions, 281
Solving systems of equations, 311-312
with infinite number of solutions, 311
with no solution, 310
with one solution, 309
Special keys on calculators, 396-398
Spheres, 330
Spinners, 213-214
Spreadsheets, 407-412
fill down and fill right on spreadsheets
commands, 409-411
formulas on, 408
graphing with, 412
Square of number, 147-148
key on a calculator, 153, 398
perfect, 158
Square pyramids, 331
Square roots, 156-157
estimating, 157, 158
key on a calculator, 158, 398
Squares, 326, 327, 331
Square units, 344, 349
Squaring triangles, 148
Standard form
converting scientific notation to, 164-165
with negative exponents, 165
Statements, conditional (If, then), 236
Statistics, 196, 201-211
interquartile range, 210
mean, 196
median, 183, 201-203, 208-209
mode, 199, 204
outliers, 210-211
quartiles, 183, 208-210
range, 207, 210
weighted averages, 205, 206
Stem-and-leaf plot, 187
Stems, 187
Straight angle, 318
Subsets, 244
Subtraction Property of Equality, 271
Supplementary angles, 319
Surface area, 349-351
of cylinder, 351
of pyramid, 350
of rectangular prism, 349
of triangular prism, 350
Surveys, 176-179
Symmetry
lines of, 334
reflection, 335
Systems of equations, 309-312
with one solution, 309

T

Tables, 180-181
of data, 193
frequency, 180, 190
Tally marks, 180
Ten, powers of, 152
Terminating decimals, 116
Tetrahedrons, 331
Theoretical probability, 222-223
Transformations, 334-337
Translations, see Slides, 337
Transversals, 321
Trapezoids, 327, 328
area of, 347
Tree diagrams, 213-216
Triangles, 322-323, 328
area of, 346
classifying, 322-323
as faces of pyramids, 331
finding the measure of the unknown angle, 323
inscribed in a circle, 402-403
right, 365-368
squaring, 148
sum of the measure of the angles, 323

Triangular prisms, 331
surface area of, 350
Triangular pyramids, 331
Truth value of contrapositives, 239
of converse of conditionals, 237
counterexamples of, 241
of negation of conditional, 238
Turns, 336

U

Union of sets, 244, 246
Unit rates, 279
Units of measurement, see Customary system; Metric system
Unlike terms, 264
Upper Quartile, 208-209

Variables, 252
coefficients of, 259
graphing equations with two, 311-312
solving equations with variables on both sides, 275
solving formulas for, 277
solving problems and, 271
in systems of equations, 309
Venn diagrams, 245-246
Vertical angles, 319
Vertical columns in spreadsheets, 407
Vertical lines
in slope-intercept form, 302
slope of, 297-298
y-intercept and, 298
Vertical number line, 288
Vertices
of polygons, 328
of quadrilaterals, 325
Volume
of cone, 355-356
of cylinder, 355
of prisms, 354
of pyramid, 355-356
scale factors and, 389-390
units of measures of, 380
W
Weight, 384
Weighted averages, 205, 206
Whole
circle graph showing parts of, 184
finding with percent proportion, 134
percent of, 133
X-axis, 288
X-coordinate, 289
slope of a line and, 295

Y
Y-axis, 288
Y-coordinate, 289
slope of a line and, 295
Y-intercept, 298-303
graphing lines using slopes and, 299 vertical lines and, 298

Zero
in division of decimals, 112
as an exponent, 151
Identity Property of Addition and, 261 as possibility of an impossible event, 227 in powers of ten, 153
Zero Property of Multiplication, 261

Photo Credits

All coins photographed by United States Mint.
002-003 CORBIS; 070-071 Jupiterimages; $\mathbf{1 3 1}$ Larry Dale
Gordon/Getty Images; $\mathbf{1 4 0}$ Janis Christie/Getty Images;
162 Getty Images; 196 Dale O'Dell/Alamy; 205 CORBIS;
225 Alamy; 242 David R. Frazier/Alamy; 269 Paul Souders/Getty
Images; 273 Yasuhide Fumoto/Getty Images; 285 PictureQuest;
357 U.S. Geological Survey; 382 Alamy; 399 SuperStock;
416-417 Alamy.

[^0]: HolWortle
 area (Lesson 8.3)
 customary system (Lesson 8.1)
 metric system (Lesson 8-1)

